D06 — Mesh Generation d06ac

NAG Toolbox

nag_mesh 2d_gen_front (d06ac)

1 Purpose

nag_mesh 2d_gen front (d06ac) generates a triangular mesh of a closed polygonal region in R?, given
a mesh of its boundary. It uses an Advancing Front process, based on an incremental method.

2 Syntax
[nv, nelt, coor, conn, ifail] = nag_mesh_2d_gen_front(nvb, edge, coor, weight,
itrace, ’'nvint’, nvint, ’'nvmax’, nvmax, ’'nedge’, nedge)
[nv, nelt, coor, conn, ifail] = dOcac(nvb, edge, coor, weight, itrace, ’'nvint’,

nvint, ’‘nvmax’, nvmax, 'nedge’, nedge)

3  Description

nag _mesh_2d gen front (d06ac) generates the set of interior vertices using an Advancing Front
process, based on an incremental method. It allows you to specify a number of fixed interior mesh
vertices together with weights which allow concentration of the mesh in their neighbourhood. For more
details about the triangulation method, consult the D06 Chapter Introduction as well as George and
Borouchaki (1998).

This function is derived from material in the MODULEF package from INRIA (Institut National de
Recherche en Informatique et Automatique).

4 References

George P L and Borouchaki H (1998) Delaunay Triangulation and Meshing: Application to Finite
Elements Editions HERMES, Paris

5  Parameters
5.1 Compulsory Input Parameters
1: nvb — INTEGER
The number of vertices in the input boundary mesh.

Constraint: nvb > 3.

2: edge(3,nedge) — INTEGER array

The specification of the boundary edges. edge(1, j) and edge(2, j) contain the vertex numbers of
the two end points of the jth boundary edge. edge(3,j) is a user-supplied tag for the jth
boundary edge and is not used by nag mesh 2d gen front (dO6ac).

Constraint: 1 < edge(,7) < nvb and edge(1,5) # edge(2,5), for i = 1,2 and j = 1,2,...,nedge.

3: coor(2,nvmax) — REAL (KIND=nag_wp) array
coor(1,4) contains the = coordinate of the ith input boundary mesh vertex, for i =1,2,... nvb.
coor(1,7) contains the =z coordinate of the (i— nvb)th fixed interior vertex, for
i=nvb+1,...,nvb + nvint. For boundary and interior vertices, coor(2,:) contains the
corresponding y coordinate, for ¢ = 1,2,...,nvb + nvint.

Mark 25 d06ac. 1



d06ac NAG Toolbox for MATLAB Manual

4: weight(:) — REAL (KIND=nag_wp) array
The dimension of the array weight must be at least max(1, nvint)

The weight of fixed interior vertices. It is the diameter of triangles (length of the longer edge)
created around each of the given interior vertices.

Constraint: if nvint > 0, weight(i) > 0.0, for i =1,2,..., nvint.

5: itrace — INTEGER
The level of trace information required from nag mesh 2d gen_ front (d06ac).

itrace <0
No output is generated.

itrace > 1
Output from the meshing solver is printed on the current advisory message unit (see
nag_file set unit advisory (x04ab)). This output contains details of the vertices and
triangles generated by the process.

You are advised to set itrace =0, unless you are experienced with finite element mesh
generation.

5.2 Optional Input Parameters
1: nvint — INTEGER
Default: the dimension of the array weight.
The number of fixed interior mesh vertices to which a weight will be applied.

Constraint: nvint > 0.

2: nvmax — INTEGER
Default: the dimension of the array coor.
The maximum number of vertices in the mesh to be generated.

Constraint: nvmax > nvb + nvint.

3: nedge — INTEGER
Default: the dimension of the array edge.
The number of boundary edges in the input mesh.

Constraint: nedge > 1.

5.3 Output Parameters
1: nv — INTEGER

The total number of vertices in the output mesh (including both boundary and interior vertices).
If nvb + nvint = nvmax, no interior vertices will be generated and nv = nvmax.

2: nelt — INTEGER

The number of triangular elements in the mesh.

3: coor(2,nvmax) — REAL (KIND=nag_wp) array

coor(1,4) will contain the x coordinate of the (i — nvb — nvint)th generated interior mesh vertex,
for 4 =nvb + nvint + 1,... nv; while coor(2,7) will contain the corresponding y coordinate.
The remaining elements are unchanged.

d06ac.2 Mark 25



D06 — Mesh Generation d06ac

4: conn(3,2 x nvmax + 5) — INTEGER array

The connectivity of the mesh between triangles and vertices. For each triangle j, conn(i, j) gives
the indices of its three vertices (in anticlockwise order), for ¢ =1,2,3 and j=1,2,..., nelt.

5: ifail — INTEGER

ifail = O unless the function detects an error (see Section 5).

6  Error Indicators and Warnings

Errors or warnings detected by the function:

ifail =1
On entry, nvb < 3,
or nvint < 0,
or nvb + nvint > nvmax,
or nedge < 1,
or edge(i,j) < 1 or edge(i,j) > nvb, for some i = 1,2 and j=1,2,...,nedge,
or edge(1,7) = edge(2, j), for some j=1,2,...,nedge,
or if nvint > 0, weight(i) < 0.0, for some ¢ = 1,2, ..., nvint;
or lrwork < 12 x nvmax + 30015,
or liwork < 8 x nedge + 53 x nvmax + 2 x nvb + 10078.
ifail = 2

An error has occurred during the generation of the interior mesh. Check the definition of the
boundary (arguments coor and edge) as well as the orientation of the boundary (especially in the
case of a multiple connected component boundary). Setting itrace > 0 may provide more details.

ifail = —99
An unexpected error has been triggered by this routine. Please contact NAG.

ifail = —399

Your licence key may have expired or may not have been installed correctly.

ifail = —999

Dynamic memory allocation failed.

7  Accuracy

Not applicable.

8 Further Comments

The position of the internal vertices is a function position of the vertices on the given boundary. A fine
mesh on the boundary results in a fine mesh in the interior. During the process vertices are generated on
edges of the mesh 7; to obtain the mesh 7,,; in the general incremental method (consult the D06
Chapter Introduction or George and Borouchaki (1998)).

You are advised to take care to set the boundary inputs properly, especially for a boundary with
multiply connected components. The orientation of the interior boundaries should be in clockwise order
and opposite to that of the exterior boundary. If the boundary has only one connected component, its
orientation should be anticlockwise.

Mark 25 d06ac.3



d06ac NAG Toolbox for MATLAB Manual

9 Example

In this example, a geometry with two holes (two wings inside an exterior circle) is meshed using a
Delaunay—Voronoi method. The exterior circle is centred at the point (1.5,0.0) with a radius 4.5, the
first wing begins at the origin and it is normalized, finally the last wing is also normalized and begins at
the point (0.8, —0.3). To be able to carry out some realistic computation on that geometry, some interior

points have been introduced to have a finer mesh in the wake of those airfoils.

The boundary mesh has 120 vertices and 120 edges. Note that the particular mesh generated could be
sensitive to the machine precision and therefore may differ from one implementation to another.

9.1 Program Text

function dO6ac_example
fprintf (’d06ac example results\n\n’);

% The characteristic points of the boundary mesh

coorch = [0, 1, -3, 6, 0.8, 1.8, 1.5, 1.5;
o, o, o0, 0, -0.3, -0.3, 4.5, -4.5]1;

coorus = zeros(2,100);

% The lines of the boundary mesh

blines = [nag_int(21), 21, 11, 11, 21, 21, 11, 11;
2, i, 3, 4, 6, 5, 7, 8;
1, 2, 8, 7, 5, 6, 3, 4;
1l 2! 3! 31 4! 5! 31 3];

rate = ones(8,1);

% The number of connected components to the boundary

ncomp = nag_int(3);
% Number and direction of lines per contour
nlcomp = [nag_int(-2), 4, -21;
% List of line numbers
lcomp = [nag_int(1l), 2, 3, 8, 4, 7, 5, 6];
user = struct(’'x0’, 1.5, ’'y0’, 0, ’'radius’, 4.5, ’'x1’, 0.8, ’'yl’, -0.3);
nvmax = nag_int (2000) ;
nedmx = nag_int (200) ;
itrace = nag_int(0);
[nvb, coor, nedge, edge, user, ifaill] =
dO6ba(
coorch, blines, @fbnd, coorus, rate, nlcomp, lcomp, nvmax,
nedmx, itrace, 'user’, user);

fprintf (’\nBoundary mesh characteristics:\n’);
fprintf(’ nvb = %d\n’, nvb);
fprintf(’ nedge = %d\n’, nedge);
% Generation of interior vertices for the wake of the first naca
nvint = 40;
nvint2 = 20;
dnvint = 5/(nvint2+1);
weight = ones(nvint,1)/nvint2;
for i=l:nvint2

coor(1l, nvb+i) = 1l+i*dnvint;
end
% ... for the wake of the second naca
for i = nvint2+1l:nvint

coor (1, double(nvb)+i) = 1.8 + (i-nvint2)*dnvint;

coor (2, double(nvb)+i) = -0.3;
end
% Call the 2D advancing front mesh generator. Note only pass relevant

% portion of edge
[nv, nelt, coor, conn, ifail] =
dObac (
nvb, edge(:,l:nedge), coor, weight, itrace);

d06ac.4

Mark 25



D06 — Mesh Generation

fprintf (’\nComplete mesh characteristics:\n');

fprintf(’ nv = %d\n’, nv);
fprintf(’ nelt = %d\n’, nelt);
% Plot mesh

figl = figure;
triplot(transpose(double(conn(:,1l:nelt))), coor(l,:), coor(2,:));

function

result = 0;
c = 1.008930411365;

pd = @(x) 0.6*( 0.2969*sqgrt(c*x) - 0.126*c*x - 0.3516*(c*x)" "2 +

0.2843*(c*x) "3 - 0.1015*(c*x) "4 );
if (i==1)
% upper naca00l2 wing beginning at
result = p4(x) -c*y;
elseif (i==2)
% lower nacaO00l2 wing beginning at
result = pd(x) + c*y;
elseif (i==3)

[result, user] = fbnd(i, x, y, user)

the origin

the origin

result = (x-user.x0)"2 + (y-user.y0)"2 - user.radius"2;

elseif (i==4)

% upper naca00l1l2 wing beginning at
result = p4d(x-user.xl) - c*(y-user

elseif (i==5)

% lower naca00l2 wing beginning at
result = p4(x-user.xl) + c*(y-user

end

9.2 Program Results

dObac example results

Boundary mesh characteristics:

nvb = 120
nedge = 120

Complete mesh characteristics:

nv 1894
nelt = 3664

Mark 25

(user.xl;user.yl)
.y1);

(user.xl;user.yl)
.y1l);

d06ac

d06ac.5



NAG Toolbox for MATLAB Manual

d06ac

NS

Mark 25

d06ac.6 (last)



	nag_mesh_2d_gen_front (d06ac)
	1 Purpose
	2 Syntax
	3 Description
	4 References
	George and Borouchaki (1998)

	5 Parameters
	5.1 Compulsory Input Parameters
	nvb
	edge
	coor
	weight
	itrace

	5.2 Optional Input Parameters
	nvint
	nvmax
	nedge

	5.3 Output Parameters
	nv
	nelt
	coor
	conn
	ifail


	6 Error Indicators and Warnings
	ifail=1
	ifail=2
	ifail=-99
	ifail=-399
	ifail=-999

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Results


	NAG Toolbox for Matlab Manual, Mark 25
	Chapters of the Library
	A00 - library identification
	A00 Chapter Introduction

	A02 - complex arithmetic
	A02 Chapter Introduction

	C02 - zeros of polynomials
	C02 Chapter Introduction

	C05 - roots of one or more transcendental equations
	C05 Chapter Introduction

	C06 - summation of series
	C06 Chapter Introduction

	C09 - wavelet transforms
	C09 Chapter Introduction

	D01 - quadrature
	D01 Chapter Introduction

	D02 - ordinary differential equations
	D02 Chapter Introduction

	D03 - partial differential equations
	D03 Chapter Introduction

	D04 - numerical differentiation
	D04 Chapter Introduction

	D05 - integral equations
	D05 Chapter Introduction

	D06 - mesh generation
	D06 Chapter Introduction

	E01 - interpolation
	E01 Chapter Introduction

	E02 - curve and surface fitting
	E02 Chapter Introduction

	E04 - minimizing or maximizing a function
	E04 Chapter Introduction

	E05 - global optimization of a function
	E05 Chapter Introduction

	F - linear algebra
	F Chapter Introduction

	F01 - matrix operations, including inversion
	F01 Chapter Introduction

	F02 - eigenvalues and eigenvectors
	F02 Chapter Introduction

	F03 - determinants
	F03 Chapter Introduction

	F04 - simultaneous linear equations
	F04 Chapter Introduction

	F05 - orthogonalization
	F05 Chapter Introduction

	F07 - linear equations (lapack)
	F07 Chapter Introduction

	F08 - least squares and eigenvalue problems (lapack)
	F08 Chapter Introduction

	F11 - large scale linear systems
	F11 Chapter Introduction

	F12 - large scale eigenproblems
	F12 Chapter Introduction

	F16 - further linear algebra support routines
	F16 Chapter Introduction

	G01 - simple calculations on statistical data
	G01 Chapter Introduction

	G02 - correlation and regression analysis
	G02 Chapter Introduction

	G03 - multivariate methods
	G03 Chapter Introduction

	G04 - analysis of variance
	G04 Chapter Introduction

	G05 - random number generators
	G05 Chapter Introduction

	G07 - univariate estimation
	G07 Chapter Introduction

	G08 - nonparametric statistics
	G08 Chapter Introduction

	G10 - smoothing in statistics
	G10 Chapter Introduction

	G11 - contingency table analysis
	G11 Chapter Introduction

	G12 - survival analysis
	G12 Chapter Introduction

	G13 - time series analysis
	G13 Chapter Introduction

	H - operations research
	H Chapter Introduction

	M01 - sorting and searching
	M01 Chapter Introduction

	S - approximations of special functions
	S Chapter Introduction

	X01 - mathematical constants
	X01 Chapter Introduction

	X02 - machine constants
	X02 Chapter Introduction

	X03 - inner products
	X03 Chapter Introduction

	X04 - input/output utilities
	X04 Chapter Introduction

	X05 - date and time utilities
	X05 Chapter Introduction

	X06 - Multi-threading Utilities
	X06 Chapter Introduction




