hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_lapack_zsytrs (f07ns)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_lapack_zsytrs (f07ns) solves a complex symmetric system of linear equations with multiple right-hand sides,
AX=B ,  
where A has been factorized by nag_lapack_zsytrf (f07nr).

Syntax

[b, info] = f07ns(uplo, a, ipiv, b, 'n', n, 'nrhs_p', nrhs_p)
[b, info] = nag_lapack_zsytrs(uplo, a, ipiv, b, 'n', n, 'nrhs_p', nrhs_p)

Description

nag_lapack_zsytrs (f07ns) is used to solve a complex symmetric system of linear equations AX=B, this function must be preceded by a call to nag_lapack_zsytrf (f07nr) which computes the Bunch–Kaufman factorization of A.
If uplo='U', A=PUDUTPT, where P is a permutation matrix, U is an upper triangular matrix and D is a symmetric block diagonal matrix with 1 by 1 and 2 by 2 blocks; the solution X is computed by solving PUDY=B and then UTPTX=Y.
If uplo='L', A=PLDLTPT, where L is a lower triangular matrix; the solution X is computed by solving PLDY=B and then LTPTX=Y.

References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

Parameters

Compulsory Input Parameters

1:     uplo – string (length ≥ 1)
Specifies how A has been factorized.
uplo='U'
A=PUDUTPT, where U is upper triangular.
uplo='L'
A=PLDLTPT, where L is lower triangular.
Constraint: uplo='U' or 'L'.
2:     alda: – complex array
The first dimension of the array a must be at least max1,n.
The second dimension of the array a must be at least max1,n.
Details of the factorization of A, as returned by nag_lapack_zsytrf (f07nr).
3:     ipiv: int64int32nag_int array
The dimension of the array ipiv must be at least max1,n
Details of the interchanges and the block structure of D, as returned by nag_lapack_zsytrf (f07nr).
4:     bldb: – complex array
The first dimension of the array b must be at least max1,n.
The second dimension of the array b must be at least max1,nrhs_p.
The n by r right-hand side matrix B.

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the first dimension of the arrays a, b and the second dimension of the arrays a, ipiv.
n, the order of the matrix A.
Constraint: n0.
2:     nrhs_p int64int32nag_int scalar
Default: the second dimension of the array b.
r, the number of right-hand sides.
Constraint: nrhs_p0.

Output Parameters

1:     bldb: – complex array
The first dimension of the array b will be max1,n.
The second dimension of the array b will be max1,nrhs_p.
The n by r solution matrix X.
2:     info int64int32nag_int scalar
info=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

   info<0
If info=-i, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of equations A+Ex=b, where cn is a modest linear function of n, and ε is the machine precision
If x^ is the true solution, then the computed solution x satisfies a forward error bound of the form
x-x^ x cncondA,xε  
where condA,x=A-1Ax/xcondA=A-1AκA.
Note that condA,x can be much smaller than condA.
Forward and backward error bounds can be computed by calling nag_lapack_zsyrfs (f07nv), and an estimate for κA (=κ1A) can be obtained by calling nag_lapack_zsycon (f07nu).

Further Comments

The total number of real floating-point operations is approximately 8n2r.
This function may be followed by a call to nag_lapack_zsyrfs (f07nv) to refine the solution and return an error estimate.
The real analogue of this function is nag_lapack_dsytrs (f07me).

Example

This example solves the system of equations AX=B, where
A= -0.39-0.71i 5.14-0.64i -7.86-2.96i 3.80+0.92i 5.14-0.64i 8.86+1.81i -3.52+0.58i 5.32-1.59i -7.86-2.96i -3.52+0.58i -2.83-0.03i -1.54-2.86i 3.80+0.92i 5.32-1.59i -1.54-2.86i -0.56+0.12i  
and
B= -55.64+41.22i -19.09-35.97i -48.18+66.00i -12.08-27.02i -0.49-01.47i 6.95+20.49i -6.43+19.24i -4.59-35.53i .  
Here A is symmetric and must first be factorized by nag_lapack_zsytrf (f07nr).
function f07ns_example


fprintf('f07ns example results\n\n');

% Complex symmetrix matrix A, lower triangle stored.
uplo = 'L';
a = [-0.39 - 0.71i,  0    + 0i,     0    + 0i,     0    + 0i;
      5.14 - 0.64i,  8.86 + 1.81i,  0    + 0i,     0    + 0i;
     -7.86 - 2.96i, -3.52 + 0.58i, -2.83 - 0.03i,  0    + 0i;
      3.80 + 0.92i,  5.32 - 1.59i, -1.54 - 2.86i, -0.56 + 0.12i];

%Factorize A
[af, ipiv, info] = f07nr( ...
                          uplo, a);

% RHS
b = [ -55.64 + 41.22i, -19.09 - 35.97i;
      -48.18 + 66.00i, -12.08 - 27.02i;
       -0.49 -  1.47i,   6.95 + 20.49i;
       -6.43 + 19.24i,  -4.59 - 35.53i];

% Solve Ax=b
[x, info] = f07ns( ...
                   uplo, af, ipiv, b);

disp('Solution:');
disp(x);


f07ns example results

Solution:
   1.0000 - 1.0000i  -2.0000 - 1.0000i
  -2.0000 + 5.0000i   1.0000 - 3.0000i
   3.0000 - 2.0000i   3.0000 + 2.0000i
  -4.0000 + 3.0000i  -1.0000 + 1.0000i


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015