Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

Chapter Contents
Chapter Introduction
NAG Toolbox

# NAG Toolbox: nag_lapack_dpptrf (f07gd)

## Purpose

nag_lapack_dpptrf (f07gd) computes the Cholesky factorization of a real symmetric positive definite matrix, using packed storage.

## Syntax

[ap, info] = f07gd(uplo, n, ap)
[ap, info] = nag_lapack_dpptrf(uplo, n, ap)

## Description

nag_lapack_dpptrf (f07gd) forms the Cholesky factorization of a real symmetric positive definite matrix $A$ either as $A={U}^{\mathrm{T}}U$ if ${\mathbf{uplo}}=\text{'U'}$ or $A=L{L}^{\mathrm{T}}$ if ${\mathbf{uplo}}=\text{'L'}$, where $U$ is an upper triangular matrix and $L$ is lower triangular, using packed storage.

## References

Demmel J W (1989) On floating-point errors in Cholesky LAPACK Working Note No. 14 University of Tennessee, Knoxville http://www.netlib.org/lapack/lawnspdf/lawn14.pdf
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

## Parameters

### Compulsory Input Parameters

1:     $\mathrm{uplo}$ – string (length ≥ 1)
Specifies whether the upper or lower triangular part of $A$ is stored and how $A$ is to be factorized.
${\mathbf{uplo}}=\text{'U'}$
The upper triangular part of $A$ is stored and $A$ is factorized as ${U}^{\mathrm{T}}U$, where $U$ is upper triangular.
${\mathbf{uplo}}=\text{'L'}$
The lower triangular part of $A$ is stored and $A$ is factorized as $L{L}^{\mathrm{T}}$, where $L$ is lower triangular.
Constraint: ${\mathbf{uplo}}=\text{'U'}$ or $\text{'L'}$.
2:     $\mathrm{n}$int64int32nag_int scalar
$n$, the order of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.
3:     $\mathrm{ap}\left(:\right)$ – double array
The dimension of the array ap must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}×\left({\mathbf{n}}+1\right)/2\right)$
The $n$ by $n$ symmetric matrix $A$, packed by columns.
More precisely,
• if ${\mathbf{uplo}}=\text{'U'}$, the upper triangle of $A$ must be stored with element ${A}_{ij}$ in ${\mathbf{ap}}\left(i+j\left(j-1\right)/2\right)$ for $i\le j$;
• if ${\mathbf{uplo}}=\text{'L'}$, the lower triangle of $A$ must be stored with element ${A}_{ij}$ in ${\mathbf{ap}}\left(i+\left(2n-j\right)\left(j-1\right)/2\right)$ for $i\ge j$.

None.

### Output Parameters

1:     $\mathrm{ap}\left(:\right)$ – double array
The dimension of the array ap will be $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}×\left({\mathbf{n}}+1\right)/2\right)$
If ${\mathbf{info}}={\mathbf{0}}$, the factor $U$ or $L$ from the Cholesky factorization $A={U}^{\mathrm{T}}U$ or $A=L{L}^{\mathrm{T}}$, in the same storage format as $A$.
2:     $\mathrm{info}$int64int32nag_int scalar
${\mathbf{info}}=0$ unless the function detects an error (see Error Indicators and Warnings).

## Error Indicators and Warnings

${\mathbf{info}}<0$
If ${\mathbf{info}}=-i$, argument $i$ had an illegal value. An explanatory message is output, and execution of the program is terminated.
${\mathbf{info}}>0$
The leading minor of order $_$ is not positive definite and the factorization could not be completed. Hence $A$ itself is not positive definite. This may indicate an error in forming the matrix $A$. To factorize a symmetric matrix which is not positive definite, call nag_lapack_dsptrf (f07pd) instead.

## Accuracy

If ${\mathbf{uplo}}=\text{'U'}$, the computed factor $U$ is the exact factor of a perturbed matrix $A+E$, where
 $E≤cnεUTU ,$
$c\left(n\right)$ is a modest linear function of $n$, and $\epsilon$ is the machine precision.
If ${\mathbf{uplo}}=\text{'L'}$, a similar statement holds for the computed factor $L$. It follows that $\left|{e}_{ij}\right|\le c\left(n\right)\epsilon \sqrt{{a}_{ii}{a}_{jj}}$.

The total number of floating-point operations is approximately $\frac{1}{3}{n}^{3}$.
A call to nag_lapack_dpptrf (f07gd) may be followed by calls to the functions:
The complex analogue of this function is nag_lapack_zpptrf (f07gr).

## Example

This example computes the Cholesky factorization of the matrix $A$, where
 $A= 4.16 -3.12 0.56 -0.10 -3.12 5.03 -0.83 1.18 0.56 -0.83 0.76 0.34 -0.10 1.18 0.34 1.18 ,$
using packed storage.
```function f07gd_example

fprintf('f07gd example results\n\n');

% Symmetric matrix A, lower triangular part packed in ap
uplo = 'L';
n = int64(4);
ap = [4.16 -3.12  0.56 -0.10 ...
5.03 -0.83  1.18 ...
0.76  0.34 ...
1.18];

[L, info] = f07gd( ...
uplo, n, ap);

[ifail] = x04cc( ...
uplo, 'N', n, L, 'Cholesky factor L');

```
```f07gd example results

Cholesky factor L
1          2          3          4
1      2.0396
2     -1.5297     1.6401
3      0.2746    -0.2500     0.7887
4     -0.0490     0.6737     0.6617     0.5347
```