Time Series Analysis Module Contents

Module 29.2: nag_tsa_kalman

Kalman Filtering

nag _tsa kalman contains procedures for Kalman filters.

Contents
Introduction 29.2.3
Procedures
nag kalman_init 29.2.7

Provides an initial estimate of the Kalman filter state covariance matrix

nag kalman predict 29.2.9
Calculates a one step prediction for the square root covariance Kalman filter
nag Kalman STt _COV_VATttt it 29.2.13

Calculates a time-varying square root covariance Kalman filter

nag kalman_sqrt_COV_INVAT ...ttt i 29.2.17

Calculates a time-invariant square root covariance Kalman filter

Examples
Example 1: Time-varying square root covariance filter example 29.2.23
Example 2: Time-invariant square root covariance filter example 29.2.29
References 29.2.34

[NP3245/3/pdf] Module 29.2: nag tsa_kalman 29.2.1

Module Contents Time Series Analysis

29.2.2 Module 29.2: nag tsa_kalman [NP3245/3/pdf]

Time Series Analysis Module Introduction

Introduction

1 Theoretical Background

Kalman filtering can be used for estimating or filtering a multi-dimensional stochastic process X; on
which observations Y; are made (see, for example, Anderson and Moore [1] and Wei [4]).

The technique assumes that X; and Y; obey the linear system
Xit1 = A X + B;W;

Y, =CXi+V;

where X; is the state vector to be estimated, Y; is the measurement vector, W; is the state noise, V;
is the measurement noise, A; is the state transition matrix, B; is the noise coefficient matrix and C; is
the measurement coefficient matrix (where the subscript ¢ refers to the appropriate quantity at time).
The state noise and the measurement noise are assumed to be uncorrelated and have zero mean. This
implies that

E{W;} =0, E{V;}=0and E{W;V '} =0
and the covariance matrices are

where E denotes the expectation operator, @); and R; are symmetric positive definite matrices.

If the system matrices A;, B;, C; and the covariance matrices @);, R; are known then Kalman filtering
can be used to compute the minimum variance estimate of the stochastic variable X;.

The estimate of X; given observations Y; to Y;_; is denoted by Xﬂi,l with state covariance matrix FP;;_;

while the estimate of X; given observations Y7 to Y; is denoted by X;); with covariance matrix P;.
The update of the estimate, Xi+1|ia from time 7 to time ¢ + 1, is computed in two stages.

First, the update equations are:

Xi\i = Xiji—1 + Kir, Py = [I — K;C]Pyj; 1,

where the residual r; = Y; — C’if(ﬂi,l has an associated covariance matrix H; = C’iPZ-‘i,lC’iT + R;, and
the Kalman gain matrix K; = Pi‘i,lciTHfl.

The second stage is the one-step-ahead prediction equations given by:
prw = Ain'\m Piy1i = AiPi|iAzT + B;Q: B} .

These two stages can be combined to give the one step-ahead update-prediction equations:
Xiapi = AiXijior + AiKar.

The above equations thus provide a method for recursively calculating the estimates of the state vectors
X and X q); and their covariance matrices P;j; and Pji;); from their previous values. The initial

values Xijg and Py are required to start the recursion. For stationary systems Pj)o can be computed
from the equation

Pyjo = A1PygA] + B1Q1 BT

For Xl\o the value E{X} can be used if it is available.

[NP3245/3/pdf] Module 29.2: nag-tsa kalman 29.2.3

Module Introduction Time Series Analysis

2 Computational Background

To improve the stability of the computations the square root algorithm is used. One recursion of the
square root covariance filter algorithm can be summarized as follows (see Vanbegin et al. [2]):
R €S 0 H”? 0 0
U= ,
0 A4S B;QY? Gi Siy1 0

where U is an orthogonal transformation triangularizing the left-hand pre-array to produce the right-
1/2

hand post-array, S; is the lower triangular Cholesky factor of the state covariance matrix P q);, Q;

and Ril /% are the lower triangular Cholesky factors of the covariance matrices () and R, and H 12 s the
lower triangular Cholesky factor of the covariance matrix of the residuals.

The relationship between the Kalman gain matrix, K;, and G; is given by
-1
AK; = G, (HQ/Q) .

To improve the efficiency of the computations when the matrices A;, B; and C; do not vary with time
the system can be transformed to give a simpler structure; the transformed state vector is U* X where
U™ is the transformation that reduces the matrix pair (A, C') to lower observer Hessenberg form. That
is, the matrix U™ is computed such that the compound matrix

CU*T
U*AU*"
is a lower trapezoidal matrix. Further, the transformed matrix U* B is used in place of the untransformed

matrix B. These transformations need only be computed once at the start of a series. Note that the
covariance matrices (); and R; can be time varying.

3 Model Estimation Using the Kalman Filter

If the state space model contains unknown parameters, 6, these can be estimated using maximum
likelihood. For normal variates the log-likelihood given observations Y;, 2 = 1,2,...,t, is

t t
1 I~ 7,01
LY;0) =5 — 5 > In(det(H;)) — 3 ;r H 'y,

i=1
where k is a constant, Y = {Y1,...,Y:} and the other symbols have been defined earlier.

Optimal estimates for the unknown model parameters 6 can then be obtained by using a suitable
optimizer procedure to maximise the likelihood function.

4 Forecasting

Once a state space model has been constructed and the values XT|T,1 and Pri7_; at time ¢ = T have
been obtained, then the L-step-ahead forecasts can be computed by missing out the Kalman filter update
equations and setting Xy; = Xy;—1 and Py = Py;—1. This yields the following forecasts for the state
vector:

Xryyr = ArXrpr—y

Xryor = ArpArXproa
L-1

Xrypr = I Arss | Xrraa
j=0

29.24 Module 29.2: nag tsa_kalman [NP3245/3/pdf]

Time Series Analysis Module Introduction

and the forecasts, YT+L|T, can be obtained from

Yripnr = CrirXrypor
L-1

Yeeyr = Crp | [] Ares | Xor—r
i=0

For a time invariant system these forecasts take the simplified form:

. Lo
Xrypr = A Xpr—
N e
Yripr = CA"Xpiro1.
The forecast state covariance vector is

L-1
Pripe = A'Ppp_y (AY)" +3° A7BQBT (4)".

Jj=0

Missing data, Y;, can be dealt with in a similar way to that used for forecasting.

5 Kalman Filter and Time Series Models

Many commonly used time series models can be written as a state space model. Thus the Kalman filter
can be used in computing the likelihood when fitting the model, computing residuals for model checking
and finally for producing forecasts.

The auto-regressive moving average (ARMA) model is described in the Chapter Introduction. A
univariate ARMA(p, ¢) model can be cast into the following state space form:

Tt = A:ct,l —+ BEt
wy = C$t
where
o1 1 1 1
P2 1 -6 0
A = c. . R B = _92 CT = 0 s

dr_1 1 :
(b,’, O o0 --- 0 _97‘_1 0

where r = max(p, g + 1).

The representation for a k-variate ARMA(p, q) series (VARMA) is very similar to that given above,
except that now the state vector is of length kr and the ¢ and 6 are now k X k matrices and the 1 in A,
B and C are now identity matrices of order k. If p < r or ¢+ 1 < r then the appropriate ¢ or # matrices
are set to zero.

Since the compound matrix

C
A
is already in lower observer Hessenberg form (i.e., it is lower trapezoidal with zeros in the top right-

hand triangle) the invariant Kalman filter algorithm can be used directly without the need to generate
a transformation matrix U*.

The state space equations for the basic structural model as described in the Chapter Introduction are:

Tt AIt_l + wy
Yy = Cxp+ e

[NP3245/3/pdf] Module 29.2: nag-tsa kalman 29.2.5

Module Introduction

For s = 4 (quarterly data) the dummy variable form has

11
0 1 0 Z

A= ,owe=1],
11 -1 wi
0
0 1 0 0 0

Ty =

ot

Bt

VMt
Yt—1
Yt—2

Time

ct =

where the third element, ¢, in the state vector x; represents the current seasonal effect.

In the equivalent trigonometric seasonal model the parameters are

1 1
Uiz
0 1 0 0 G
A= 0 1 -1 | W= | Wit
Wf,t
0 -1 0 0
w2t
0 0 -1

29.2.6 Module 29.2: nag_tsa kalman

Series Analysis

\
SO = O

Q

H

|
SO = O

[NP3245/3/pdf]

Time Series Analysis nag kalman init

Procedure: nag_kalman_init

1 Description
For the state space model
Xiy1 = AiXs + BW;

where X; is the state vector of length n, W; is the state noise vector of length [, A; is the n by n
state transition matrix and B; is the n by [noise coefficient matrix, this procedure provides an initial

estimate of the state covariance matrix P;;_; = var(Xj;;_1), Pyjo by solving the Lyapunov equation
Py = AlPl‘OAlT + B1Q1 BT where Q; is the covariance matrix of the state noise.

2 Usage

USE nag_tsa_kalman

CALL nag kalman_ init(a, b, s [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.
n >0 — the dimension of the state vector

{ >0 — the dimension of the state noise vector

3.1 Mandatory Arguments

a(n,n) — real(kind=wp), intent(in)

Input: the initial state transition matrix, A;.

b(n,l) — real(kind=wp), intent(in)

Input: the initial noise coefficient matrix, Bj.

s(n,n) — real(kind=wp), intent(out)

Output: the lower triangular Cholesky factor of the initial estimate for the state covariance matrix,
PI‘O.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

q(l,1) — real(kind=wp), intent(inout), optional
Input: the initial state noise covariance matrix, Q1.
Output: the lower triangular Cholesky factor of Q1.
Default: if q is not present then it is assumed to be the identity matrix.

Constraints: q must be positive definite.

[NP3245/3/pdf] Module 29.2: nag-tsa kalman 29.2.7

nag kalman init Time Series Analysis

error — type(nag_error), intent(inout), optional
The NAG f190 error-handling argument. See the Essential Introduction, or the module document
nag-error_handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag_set_error before this
procedure is called.

4 Error Codes

Fatal errors (error%]level = 3):

error%code Description
301 An input argument has an invalid value.
302 An array argument has an invalid shape.
303 Array arguments have inconsistent shapes.
320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):
error%code Description
201 Cannot compute an initial estimate.

The system is not stationary since the absolute value of each eigenvalue of the
transition matrix, a, is not less than 1.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.

29.2.8 Module 29.2: nag tsa_kalman [NP3245/3/pdf]

Time Series Analysis nag kalman predict

Procedure: nag_kalman_predict

1 Description
For the state space model
Xiy1 = AiXs + BW;

Y,=CX;, +V;

where X; is the state vector, Y; is the measurement vector, W; is the state noise (with covariance matrix
Q:), V; is the measurement noise, A; is the state transition matrix, B; is the noise coefficient matrix and
C; is the measurement coefficient matrix, this procedure calculates a prediction step using a square root
covariance Kalman filter. The predicted state vector for time 7 given observations up to time i — 1 is
denoted by)A(Z-h-,l with associated state covariance matrix P;;_; = var(f(ﬂi,l). The procedure computes

S; from S;_1, where S; is the lower triangular Cholesky factor of FP;;_;, and optimally computes)A(Z-H“
and }A/;-H from Xi\i—l-

2 Usage

USE nag_tsa_kalman

CALL nag kalman predict(s, a, b [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

n >0 — the dimension of the state vector
m > 0 — the dimension of the observation vector

[>0 — the dimension of the state noise vector

3.1 Mandatory Arguments

s(n,n) — real(kind=wp), intent(inout)
Input: the lower triangular Cholesky factor, .S;, of the state covariance matrix.
Output: the prediction of the lower triangular Cholesky factor, S; 1, of the state covariance matrix.

Constraints: the diagonal elements of s must be non-negative.

a(n,n) — real(kind=wp), intent(in)

Input: the state transition matrix, A;.

b(n,l) — real(kind=wp), intent(in)

Input: the noise coefficient matrix, B;.

[NP3245/3/pdf] Module 29.2: nag-tsa kalman 29.2.9

nag kalman predict Time Series Analysis

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

qa(l,1) — real(kind=wp), intent(in), optional
Input: the lower triangular Cholesky factor of the state noise covariance matrix, @;.
Default: if q is not present then it is assumed to be the identity matrix.

Constraints: the diagonal elements of q must be non-negative.

x(n) — real(kind=wp), intent(inout), optional
Input: the estimated state vector, Xi\i—L

Output: the estimated state vector,)A(Z-H“.

c(m,n) — real(kind=wp), intent(in), optional
Input: the measurement coefficient matrix, C;.

Constraints: if c is present then arguments x and y must also be present.

y(m) — real(kind=wp), intent(out), optional
Output: the forecast observation vector, Y;.

Constraints: if y is present then arguments x and ¢ must also be present.

p(n,n) — real(kind=wp), intent(out), optional

Output: the covariance matrix, P;11};, associated with the computed state vector, Xi+1\i-

error — type(nag_error), intent(inout), optional

The NAG f190 error-handling argument. See the Essential Introduction, or the module document
nag-error_handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag_set_error before this
procedure is called.

4 Error Codes

Fatal errors (error%]level = 3):

error%code Description
301 An input argument has an invalid value.
302 An array argument has an invalid shape.
303 Array arguments have inconsistent shapes.
305 Invalid absence of an optional argument.
320 The procedure was unable to allocate enough memory.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

29.2.10 Module 29.2: nag-tsa_kalman [NP3245/3/pdf]

Time Series Analysis nag kalman predict

6 Further Comments

6.1 Mathematical Background

The one step-ahead prediction equations are:

Xip1 = Ai Xy,
Yz‘+1 = Ci-i—le‘Jrl\i
Py = AP AT + BQBY.

The procedure can be used to provide estimates for missing data, Y;, and can also be used to obtain an
initial value Sy|o, via the steady-state solution of the equation Pj ; = AlPZ-‘i,lAlT + BlQiBlT, where
at steady-state Si+1|i5£1‘i = Piy1)i = Pyji-1 = Pyo-

6.2 Algorithmic Detail

The procedure performs one recursion of the square root covariance filter algorithm, summarized as
follows:

(AiS; Bl)U: (Siy1 0),

where U is an orthogonal transformation triangularizing the left-hand pre-array to produce the right-
hand post-array.

6.3 Accuracy

The use of the square root algorithm improves the stability of the computations as compared with the
direct coding of the Kalman filter. The accuracy will depend on the model.

[NP3245/3/pdf] Module 29.2: nag-tsa_kalman 29.2.11

nag kalman predict Time Series Analysis

29.2.12 Module 29.2: nag-tsa_kalman [NP3245/3/pdf]

Time Series Analysis nag kalman_sqrt_cov_var

Procedure: nag_kalman_sqrt_cov_var

1 Description
For the state space model
Xiy1 = AiXs + BW;

Y,=CX;, +V;

where X; is the state vector, Y; is the measurement vector, W; is the state noise (with covariance matrix
Q:), V; is the measurement noise (with covariance matrix R;), A4; is the state transition matrix, B; is
the noise coefficient matrix and C; is the measurement coefficient matrix, this procedure calculates a
combined update-prediction step using a time-varying square root covariance Kalman filter.

2 Usage

USE nag_tsa_kalman

CALL nag kalman sqrt_cov.var(s, a, b, c, r [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

n >0 — the dimension of the state vector

m > 0 — the dimension of the observation vector

{ >0 — the dimension of the state noise vector

3.1 Mandatory Arguments

s(n,n) — real(kind=wp), intent(inout)
Input: the lower triangular Cholesky factor, S;, of the state covariance matrix at time .
Output: the lower triangular Cholesky factor, S;;1, of the state covariance matrix at time ¢ 4 1.

Constraints: the diagonal elements of s must be non-negative.

a(n,n) — real(kind=wp), intent(in)

Input: the state transition matrix, A;.

b(n,l) — real(kind=wp), intent(in)

Input: the noise coefficient matrix, B;.

c(m,n) — real(kind=wp), intent(in)

Input: the measurement coefficient matrix, C;.
r(m,m) — real(kind=wp), intent(in)

Input: the lower triangular Cholesky factor of the measurement noise covariance matrix, R;.

Constraints: the diagonal elements of r must be non-negative.

[NP3245/3/pdf] Module 29.2: nag-tsa_kalman 29.2.13

nag kalman sqrt_cov_var Time Series Analysis

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.
q(l,1) — real(kind=wp), intent(in), optional

Input: the lower triangular Cholesky factor of the state noise covariance matrix, Q;.

Default: if q is not present then it is assumed to be the identity matrix.

Constraints: the diagonal elements of q must be non-negative.

h(m,m) — real(kind=wp), intent(out), optional

Output: the lower triangular Cholesky factor of the covariance matrix for the computed residuals,
H;.

p(n,n) — real(kind=wp), intent(out), optional
Output: the covariance matrix, P);, associated with the computed state vector, XHW.

k(n,m) — real(kind=wp), intent(out), optional
Output: the Kalman gain matrix, K;, premultiplied by the state transition matrix, A;; i.e., A; K;.

tol — real(kind=wp), intent(in), optional
Input: the tolerance used to test for singularity of the matrix H;. The inverse of the condition

number of the lower triangular matrix h is estimated. If this estimate is less than tol, then H; is
assumed to be singular.

Note: if 0.0 < tol < m? x EPSILON(1.0_wp) then the default value is used.
Default: tol = m? x EPSILON(1.0_wp).

x(n) — real(kind=wp), intent(inout), optional
Input: the estimated state vector, Xi\i—L
Output: the estimated state vector, Xi+1|i~
Constraints: if x is present then the argument y must also be present.

y(m) — real(kind=wp), intent(in), optional
Input: the observation vector, Y;.
Constraints: if y is present then argument x must also be present.

resid(m) — real(kind=wp), intent(out), optional
Output: the calculated residuals r;, r; = Y; — C’Z-X'W_l .
Constraints: if resid is present then the arguments x and y must also be present.

error — type(nag_error), intent(inout), optional

The NAG f190 error-handling argument. See the Essential Introduction, or the module document
nag_error_handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag_set_error before this
procedure is called.

4 Error Codes

Fatal errors (error%]level = 3):

error%code Description
301 An input argument has an invalid value.
302 An array argument has an invalid shape.
303 Array arguments have inconsistent shapes.

29.2.14 Module 29.2: nag-tsa_kalman [NP3245/3/pdf]

Time Series Analysis nag kalman_sqrt_cov_var

305 Invalid absence of an optional argument.

320 The procedure was unable to allocate enough memory.

Warnings (error%level = 1):
error%code Description
201 The Cholesky factor of matrix H; is singular.

The singularity of the Cholesky factor of matrix H; means that the procedure is not
able to return values for the either Kalman gain matrix K;, or the predicted state
vector Xy qj;-

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Mathematical Background

For models with time-varying A, B and C' where (A, C) is already in Hessenberg form, the procedure
nag_kalman_sqrt_cov_invar should be used with call_type = 'N' or 'n'.

The Cholesky factors of the covariance matrices can be computed using nag_sym_lin fac.
Note that the model
Xi+1 = AX,+ Wi, var(Wi) = ;
Yi = CXi+V, var(V;)=R;
can be specified either with the argument q = Ql/ 2 and B set to the identity matrix or with B = Ql/ 2
and the argument q not present.

If W; and V; are independent multivariate Normal variates then the log-likelihood for observations
i=1,2,...,tis given by

t t
1 1
L) =r -3 > In(det(H;)) — 5 > orlH
i=1 i=1
where £ is a constant and H; is the covariance matrix for the residuals, r; = Y; — Ci)A(m-,l.

6.2 Algorithmic Detail

The procedure performs one recursion of the square root covariance filter algorithm, summarized as
follows:

R ¢S 0 €7 0 0

U= ,
0 A4S BQ? Gi Siy1 O
where U is an orthogonal transformation triangularizing the left-hand pre-array to produce the right-

hand post-array, S; is the lower triangular Cholesky factor of the state covariance matrix Py, Qi/ 2

and Ril /% are the lower triangular Cholesky factors of the covariance matrices () and R, and H 12 s the
lower triangular Cholesky factor of the covariance matrix of the residuals (see Vanbegin et al. [2]).

The relationship between the Kalman gain matrix, K;, and G; is given by
-1
AK; = G, (HQ/Q) .

The algorithm requires %n3 +n? (gm + l) +n (%l2 + m2) operations and is backward stable (Verhaegen
and Van Dooren [3]).

[NP3245/3/pdf] Module 29.2: nag-tsa_kalman 29.2.15

nag kalman sqrt_cov_var Time Series Analysis

6.3 Accuracy

The use of the square root algorithm improves the stability of the computations as compared with the
direct coding of the Kalman filter. The accuracy will depend on the model.

29.2.16 Module 29.2: nag-tsa_kalman [NP3245/3/pdf]

Time Series Analysis nag kalman sqrt_cov_invar

Procedure: nag_kalman_sqrt_cov_invar

1 Description

For the state space model

Xit1 = AX; + BW;

Y; = CX; + Vi
where X; is the state vector, Y; is the measurement vector, W; is the state noise (with covariance matrix
Q:), Vi is the measurement noise (with covariance matrix R;), A is the state transition matrix, B is

the noise coefficient matrix and C is the measurement coefficient matrix, this procedure calculates a
combined update-prediction step using a time-invariant square root covariance Kalman filter.

2 Usage

USE nag-tsa_kalman

CALL nag kalman sqrt_cov_invar(st, at, bt, ct, r [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

n >0 — the dimension of the state vector

m > 0 — the dimension of the observation vector

[>0 — the dimension of the state noise vector

3.1 Mandatory Arguments

st(n,n) — real(kind=wp), intent(inout)

Input:
If call_type = 'N', 'n', 'F' or 'f', the lower triangular Cholesky factor, S;, of the state
covariance matrix;
if call_type = 'S' or 's', the lower triangular Cholesky factor, S}, of the transformed state
covariance matrix.

Output:
If call type = 'N' or 'n', the lower triangular Cholesky factor, S;11, of the state covariance
matrix;
if call type = 'F', 'f', 'S' or 's', the lower triangular Cholesky factor, S, of the
transformed state covariance matrix.

Constraints: the diagonal elements of st must be non-negative.

at(n,n) — real(kind=wp), intent(inout)
Input:
If call type = 'N', 'n', 'F' or 'f', the state transition matrix, A;
if call type = 'S' or 's', the transformed matrix, U* AU*T.

Output:
If call_type = 'F' or 'f', the transformed matrix, U* AU*7;
if call type = 'N', 'n', 'S' or 's', unchanged on exit.

[NP3245/3/pdf] Module 29.2: nag-tsa_kalman 29.2.17

nag kalman sqrt_cov_invar Time Series Analysis

bt(n,l) — real(kind=wp), intent(inout)
Input:
If call type = 'N', 'n', 'F' or 'f', the noise coefficient matrix, B;
if call type = 'S' or 's', the transformed matrix, U* B.
Output:
If call_type = 'F' or 'f', the transformed matrix, U* B;

if call type = 'N', 'n', 'S' or 's', unchanged on exit.

ct(m,n) — real(kind=wp), intent(inout)
Input:
If call type = 'N', 'n', 'F' or 'f', the measurement coefficient matrix, C;

if call_ type = 'S’ or 's', the transformed matrix, CU*".

Output:
If call_type = 'F' or 'f', the transformed matrix, CU*7;

if call type = 'N', 'n', 'S' or 's', unchanged on exit.

r(m, m) — real(kind=wp), intent(in)
Input: the lower triangular Cholesky factor of the measurement noise covariance matrix, R;.

Constraints: the diagonal elements of r must be non-negative.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

q(l,1) — real(kind=wp), intent(in), optional
Input: the lower triangular Cholesky factor of the state noise covariance matrix, Q;.
Note: if q is not present then it is assumed to be the identity matrix.

Constraints: the diagonal elements of q must be non-negative.

h(m,m) — real(kind=wp), intent(out), optional
Output: the lower triangular Cholesky factor of the covariance matrix for the computed residuals,
H;.

kt(n,m) — real(kind=wp), intent(out), optional

Output: the Kalman gain matrix, K;, premultiplied by the state transformed transition matrix,
U*AK;.

u(n,n) — real(kind=wp), intent(out), optional
Output: the transformation matrix, U*.

Constraints: if call_type = 'N' or 'n' then u must not be present.

u_s(n,n) — real(kind=wp), intent(in), optional
Input: the user-specified transformation matrix, U™.

Constraints: if call_ type = 'N' or 'n' then u_s must not be present, and if call_ type = 'S' or
's' then u_s must be present.

p(n,n) — real(kind=wp), intent(out), optional

Output: the covariance matrix, P;11};, associated with the computed state vector, Xi+1\i-

29.2.18 Module 29.2: nag-tsa_kalman [NP3245/3/pdf]

Time Series Analysis nag kalman sqrt_cov_invar

tol — real(kind=wp), intent(in), optional
Input: the tolerance used to test for singularity of the matrix, H;. The inverse of the condition
number of the lower triangular matrix h is estimated. If this estimate is less than tol, then H; is
assumed to be singular.
Note: if 0.0 < tol < m? x EPSILON(1.0_wp) then the default value is used.

Default: tol = m? x EPSILON(1.0_wp).

call_type — character(len=1), intent(in), optional
Input: specifies how to transform the input matrices.

If call type = 'F' or 'f' then this indicates the ‘first call’ with a given matrix pair (A, C).
When the argument u_s is not present the transformation matrix U™ is computed internally,
otherwise U™ is set to u_s.
If call_type = 'S' or 's' then this indicates a ‘subsequent call’ with the matrix pair (A, C).
It is assumed that the input matrices are in Hessenberg form and the transformation matrix
U* is supplied in the optional argument u_s.
If call type = 'N' or 'n' then the original system is already in Hessenberg form (U* = I)
and the optional argument u_s must not be present.

Note: when using call_type = 'N' or 'n' it must be used for both the first call and also subsequent
calls.

Default: call_type = 'N'.

xt(n) — real(kind=wp), intent(inout), optional

Input:
If call type = 'N', 'n', 'F' or 'f', the estimate of the state vector,)A(ih-,l;
if call type = 'S' or 's', the estimated transformed state vector, U*X“i_l.
Output:

If call type = 'N' or 'n', the estimate of the state vector, Xi+1\i;

if call type = 'F', 'f', 'S' or 's', the estimated transformed state vector, U*Xi+1|i~

Constraints: if xt is present then the argument y must also be present.

x(n) — real(kind=wp), intent(out), optional
Output: the estimated untransformed state vector, Xi+1\i; this is obtained by premultiplying the
vector xt by U*T.
Constraints: if x is present then the argument xt must also be present.

Note: if call_type = 'N' or 'n' then x is set to xt.

y(m) — real(kind=wp), intent(in), optional
Input: the observation vector, Y;.

Constraints: if y is present then argument xt must also be present.

resid(m) — real(kind=wp), intent(out), optional
Output: the calculated residuals r;, r; = Y; — C)A(i“,l .
Note: the residual is independent of the reference frame.

Constraints: if resid is present then the arguments xt and y must also be present.

[NP3245/3/pdf] Module 29.2: nag-tsa_kalman 29.2.19

nag kalman sqrt_cov_invar Time Series Analysis

error — type(nag_error), intent(inout), optional

The NAG f190 error-handling argument. See the Essential Introduction, or the module document
nag-error_handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag_set_error before this
procedure is called.

4 Error Codes

Fatal errors (error%]level = 3):

error%code Description
301 An input argument has an invalid value.
302 An array argument has an invalid shape.
303 Array arguments have inconsistent shapes.
304 Invalid presence of an optional argument.
305 Invalid absence of an optional argument.
320 The procedure was unable to allocate enough memory.

Warnings (error%level = 1):
error%code Description
201 The Cholesky factor of matrix H; is singular.

The singularity of the Cholesky factor of matrix H; means that the procedure is not
able to return values for either the Kalman gain matrix K; or the predicted state
vector Xy q);-

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.

6 Further Comments

6.1 Mathematical Background

For models with time-varying A, B and C where (A,C) is already in Hessenberg form, this
procedure should be used with call_type = 'N' or 'n'. For more general time-varying models
nag kalman_sqrt_cov_var can be used.

The Cholesky factors of the covariance matrices can be computed using nag_sym_lin fac.
Note that the model
XiJrl = AXZ + Wi, V&I‘(Wi) = s
Y = CX;+Vi, var(V;)=R;
can be specified either with the argument q = Ql/ 2 and B set to the identity matrix or with B = Ql/ 2
and the argument q not present.

If W; and V; are independent multivariate Normal variates then the log-likelihood for observations
i=1,2,...,tis given by

t t
1 1 T -1
L) =k— 3 i:E 1 In(det(H;)) — B izg 1 r; Hp "ri,

29.2.20 Module 29.2: nag-tsa_kalman [NP3245/3/pdf]

Time Series Analysis nag kalman sqrt_cov_invar

where k is a constant and H; is the covariance matrix for the residuals, r; = Y; — CXj);_.

(Note: Since Y; — C’Xﬂi,l =Y; — (CU*") Ai*|i717 the residuals r; are the same for both the transformed
and original model.)

The initial estimate of the transformed state vector can be computed from the estimate of the original
state vector X, say, by premultiplying it by the matrix U™ as returned by calling this procedure with

call_type = 'F'; that is, Xi"lo = U*Xuo-

The estimate of the transformed state vector X ; 1), can be computed from the previous value Xz*‘ i—1 by

Ai*Jrl\i = (U*AU*T)X;MA + (U AK;)r;.

6.2 Algorithmic Detail

The procedure performs one recursion of the square root covariance filter algorithm, summarized as
follows:

R* 0 s, €7 0 0
U =
0 BQ3/2 AS; G; Sit1 O

where U is an orthogonal transformation triangularizing the left-hand pre-array to produce the right-
hand post-array and S; is the lower triangular Cholesky factor of the state covariance matrix Py,

Q; /% and Ri1 /% are the lower triangular Cholesky factors of the covariance matrices ¢) and R and H /2 g
the lower triangular Cholesky factor of the covariance matrix of the residuals (see Vanbegin et al. [2]).
The triangularization is carried out via Householder transformations exploiting the zero pattern of the
pre-array. The relationship between the Kalman gain matrix K; and G; is given by

AK; = G, (Hj“)*l.

In order to exploit the invariant parts of the model to simplify the computation of U the results for the
transformed state space U* X are computed, where U* is the transformation that reduces the matrix pair
(A, C) to lower observer Hessenberg form. That is, the matrix U* is computed such that the compound
matrix

CU*T
U*AU*T

is a lower trapezoidal matrix. Further, the transformed matrix U* B is used in place of the untransformed
matrix B. These transformations need only be computed once at the start of a series, and the procedure
will, optionally, compute them. This procedure returns the product of the matrices U*AU*T and
U*K;, U*AK;, the Cholesky factor of the updated transformed state covariance matrix S7,_; (where
U* Py U™ = 871 S7])) and the matrix H1-1/2, valid for both transformed and original models, which
is used in the computation of the likelihood for the model. Note that the covariance matrices Q; and R;
can be time-varying.

The algorithm requires %n3+n2 (%m + l) +2nm2+§m3 operations and is backward stable (see Verhaegen
and Van Dooren [3]). The transformation to lower observer Hessenberg form requires O((n + m)n?)
operations.

6.3 Accuracy

The use of the square root algorithm improves the stability of the computations as compared with the
direct coding of the Kalman filter. The accuracy will depend on the model.

[NP3245/3/pdf] Module 29.2: nag-tsa_kalman 29.2.21

nag kalman sqrt_cov_invar Time Series Analysis

29.2.22 Module 29.2: nag-tsa_kalman [NP3245/3/pdf]

Time Series Analysis Ezxample 1

Example 1: Time-varying square root covariance
filter example

The example program first inputs the number of updates to be computed and the problem sizes. The
initial state vector and state covariance matrix are input followed by the model matrices A;, B;, C;, R;
and optionally @;. The Cholesky factors of the covariance matrices can be computed if required. The
model matrices can be input at each update or only once at the first step. At each update the observed
values are input and the residuals are computed and printed and the estimate of the state vector,)A(Z-h-,l,
and the deviance are updated. The deviance is —2 x log-likelihood ignoring the constant. After the
final update the state covariance matrix is computed from S and printed along with final estimate of the
state vector and the value of the deviance.

The data is for a two-dimensional time series to which a VARMA(1,1) has been fitted. For the
specification of a VARMA model as a state space model see the Chapter Introduction. The estimate
for Syjo is obtained by using nag kalman predict to obtain the steady-state solution of the prediction
equation.

The mean of each series is input before the first update and subtracted from the observations before the
measurement update is computed.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_tsa_kalman_ex01

! Example Program Text nag_tsa_kalman
! NAG £190, Release 3. NAG Copyright 1997.

! .. Use Statements ..
USE nag_tsa_kalman, ONLY : nag_kalman_sqrt_cov_var, nag_kalman_predict
USE nag_tri_lin_sys, ONLY : nag_tri_lin_sol
USE nag_examples_io, ONLY : nag_std_in, nag_std_out
USE nag_sym_lin_sys, ONLY : nag_key_pos, nag_sym_lin_fac

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC ABS, DOT_PRODUCT, EPSILON, KIND, LOG, MAXVAL, SQRT

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0DO)

REAL (wp), PARAMETER :: zero = 0.0_wp

! .. Local Scalars ..

INTEGER :: i, j, 1, m, n, ncall, step

REAL (wp) :: dev

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: a(:,:), b(:,:), c(:,:), h(:,:), p(:,:), &

q(:,:), r(:,:), resid(:), s(:,:), s_last(:,:), x(:), y(:), ymean(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_tsa_kalman_ex01’

READ (nag_std_in,*) ! Skip heading in data file
READ (nag_std_in,*) ncall, n, m, 1

ALLOCATE (a(m,n),b(n,1l),c(m,n),h(m,m),p(n,n),q(1,1),r(m,m),s(n,n),x(@), &
y(m) ,resid(m) ,ymean(m) ,s_last(n,n)) ! Allocate storage

READ (nag_std_in,*) x

READ (nag_std_in,*) ymean
READ (nag_std_in,*) (a(i,:),i=1,n)

[NP3245/3/pdf] Module 29.2: nag-tsa_kalman 29.2.23

Example 1 Time Series Analysis

READ (nag_std_in,*) (b(i,:),i=1,n)
READ (nag_std_in,*) (c(i,:),i=1,m)
READ (nag_std_in,*) (r(i,:),i=1,m)
READ (nag_std_in,*) (q(i,:),i=1,1)
CALL nag_sym_lin_fac(nag_key_pos,’1l’,q)

! Obtain initial estimate for S via steady solution
! of the prediction equation.

s = zero
j=o0
DO
s_last = s
j=itt
CALL nag_kalman_predict(s,a,b,q=q)
IF (MAXVAL(ABS(s-s_last))<0.1_wp*SQRT(EPSILON(1.0_wp))) EXIT
IF (j==50) THEN
WRITE (nag_std_out,*) ’nag_kalman_predict failed to obtain &
4initial estimate for s via steady’
WRITE (nag_std_out,*) &

’state solution of the prediction equation in 50 iterations’

DEALLOCATE (a,b,c,h,p,q,r,s,s_last,x,y,resid, &
ymean) ! Deallocate storage

STOP

END IF
END DO
dev = zero
WRITE (nag_std_out,*)
WRITE (nag_std_out,*) ’ step Residuals’
! Loop through data
DO step = 1, ncall

READ (nag_std_in,*) y

y =y - ymean

! Perform time and measurement update

IF (step==ncall) THEN

CALL nag_kalman_sqrt_cov_var(s,a,b,c,r,q=q,h=h,resid=resid,y=y,x=x, &
p=p)

ELSE
CALL nag_kalman_sqrt_cov_var(s,a,b,c,r,q=q,h=h,resid=resid,y=y,x=x)

END IF
WRITE (nag_std_out,’(i4,4f12.4)°’) step, resid

! Update loglikelihood
CALL nag_tri_lin_sol(’1l’,h,resid)

dev = dev + DOT_PRODUCT(resid,resid)

29.2.24 Module 29.2: nag-tsa_kalman [NP3245/3/pdf]

Time Series Analysis

DOi=1,m

dev
END DO

END DO

WRITE (nag_std_out,*)
WRITE (nag_std_out,*) ’ Final X(i+1[i) °
WRITE (nag_std_out,’(4f12.4)°) x

WRITE (nag_std_out,*)
WRITE (nag_std_out,*) ’ Final Value of P’

DO i =

1, n

dev + 2.0_wp*LOG(h(i,1i))

WRITE (nag_std_out,’(4£12.4)’) p(i,1:1i)

END DO

WRITE (nag_std_out,*)
WRITE (nag_std_out,’(A,e13.4)’) °’ Deviance = ’, dev

DEALLOCATE (a,b,c,h,p,q,r,s,s_last,x,y,resid,ymean)

END PROGRAM nag_tsa_kalman_exO1

2 Program Data

Example Program Data for nag_tsa_kalman_ex01

48 4 2

.000
.404
.607
.000
.000
.000
.000
.000
.543
.134
.000
.000
.000
.000
.598
.560

ONOOOHFH OOOKFHr OO0OO0OO0OK»™Oo

|
[y

.490
.620
.200
.230
.210
.860
.090
.180
.620
.490
.170
.850
.350
.240
.440
.580
.040
.400
.260

|
O, P, N W OO O O~

|
o

N ONDNDNO

[NP3245/3/pdf]

2

o

.000
.991
.033
.543
.000
.000
.000
.000
.125
.026
.000
.000
.000
.000
.560
.330

|
o N

OO OO, OO Ok OO OO0

.340
.3560
.960
.540
.620
.970
.550
.810
.750
.760
10.880
10.010
11.620
10.360
6.400
6.240
7.930
4

3

AR BB DO DOD N

.040
.730

o O O~

.000

.000
.000
.000
.000

.000
.000

O O = O

.000

.000
.000
.000
.000

.000
.000

: ncall, n, m, 1

: x(1:n)
: ymean(1:m)

: a(l:n,1:n)

: b(l:n,1:1)
: c(1:m,1:n)
: r(1:m,1:m)
: q(1:1,1:1)

¢ first y(1:m)

Module 29.2: nag _tsa kalman

! Deallocate storage

Ezxample 1

29.2.25

Ezample 1

.340
.090
.000
.780
.110
.450
.650
.290
.090
.320
.500
.890
.580
.210
.250
.930
.380
.870
.810
.680
.070
.290
.840
.550
.320
.970
.760
.000
.350

00 NN NNNNNOOOONDOOOE WNOO P E WD oo w

.600
.350
.810
.270
.680
.650
.080
.250
.140
.750
.300
.630
.800
.080
.060
.940
.650
.940
.760
.890
.850
.010
.500
.020
.380
.150
.370
.730
.140

: last (ncall) y(1:m)

3 Program Results

Example Program Results for nag_tsa_kalman_exO1

step
1

© 00 N O Ol WN

e
= O

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

29.2.26

Residuals
-5.8940 -0
-1.4710 -1

5.1658 0
-1.3280 0
1.3652 -1
-0.2337 -2
-0.8685 -1
-0.4624 -1
-0.7510 -1
-1.3526 -1
-0.6707 4
-1.7389 0
-1.6376 2
-0.6137 0
0.9067 -2
-0.8255 -0
-0.7494 1
-2.2922 -3
1.8812 -1
-0.7112 -0
1.6747 -1
-0.6619 0
0.3271 1
-0.8165 -0
-0.2759 -1
-1.9383 -1
-0.3131 3

.6510
.0407
. 0447
.4580
.5066
.4192
.7065
.1519
.4218
.3335
.8593
.4138
. 7549
.5463
.8093
.9365
.0247
.8441
.7085
.2849
.2400
.0609
.0074
.56325
. 0489
.1186
.58565

Module 29.2: nag_tsa kalman

Time Series Analysis

[NP3245/3/pdf]

Time Series Analysis

28 1.3726 -0.1289
29 1.4153 8.9545
30 0.3672 -0.4126
31 -2.3659 -1.2823
32 -1.0130 -1.7306
33 3.2472 -3.0836
34 -1.1501 -1.1623
35 0.6855 -1.2751
36 2.3432 0.2570
37 -1.6892 0.3565
38 1.3871 3.0138
39 3.3840 2.1312
40 -0.5118 -4.7670
41 0.8569 2.3741
42 0.9558 -1.2209
43 0.6778 2.1993
44 0.4304 1.1393
45 1.4987 -1.2255
46 0.5361 0.1237
a7 0.2649 2.4582
48 2.0095 2.5623
Final X(i+1[i)
3.6698 2.5888
Final Value of P
2.5980
0.5600 5.3300
1.4807 0.9703
0.3627 0.2136
Deviance = 0.2229E+03

[NP3245/3/pdf]

0.0000

0.9253
0.2236

0.0000

0.0542

Module 29.2: nag_tsa kalman

Ezxample 1

29.2.27

Example 1 Time Series Analysis

29.2.28 Module 29.2: nag-tsa_kalman [NP3245/3/pdf]

Time Series Analysis Ezxample 2

Example 2: Time-invariant square root covariance
filter example

The example program first inputs the number of updates to be computed and the problem sizes. The
initial state vector and the Cholesky factor of the state covariance matrix are input followed by the
model matrices A, B, C, RY? and optionally Ql/ 2 (the Cholesky factors of the covariance matrices being
input). Since the matrix pair (A, C) is already in condensed form U* = I and the default value of
call_type can be used. At each update the observed values are input and the residuals are computed
and printed and the estimate of the state vector, Xﬂi,l, and the deviance are updated. The deviance
is —2xlog-likelihood ignoring the constant. After the final update the estimate of the state vector is
computed and the state covariance matrix is computed from S and these are printed along with the value
of the deviance.

The data is for a two-dimensional time series to which a VARMA(1,1) has been fitted. For the
specification of a VARMA model as a state space model see the Chapter Introduction. The means
of the two series are included as additional states that do not change over time. The estimate for Syo is
obtained by using nag kalman init.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_tsa_kalman_ex02

! Example Program Text nag_tsa_kalman
! NAG £190, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_tsa_kalman, ONLY : nag_kalman_sqrt_cov_invar, nag_kalman_init

USE nag_tri_lin_sys, ONLY : nag_tri_lin_sol

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC DOT_PRODUCT, KIND, LOG

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0DO)

REAL (wp), PARAMETER :: zero = 0.0_wp

! .. Local Scalars ..

INTEGER :: i, 1, m, n, ncall, step

REAL (wp) :: dev

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: a(:,:), b(:,:), c(:,:), h(:,:), p(:,:), &
q(:,:), r(:,:), resid(:), s(:,:), x(:), xt(:), y(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_tsa_kalman_ex02’

READ (nag_std_in,*) ! Skip heading in data file
READ (nag_std_in,*) ncall, n, m, 1

ALLOCATE (a(m,n),b(n,l),c(m,n),h(m,m),p(n,n),q(1,1),r(m,m),s(n,n),x(n), &
xt(n),y(m) ,resid(m)) ! Allocate storage

READ (nag_std_in,*) xt

READ (nag_std_in,*) (a(i,:),i=1,n)
READ (nag_std_in,*) (b(i,:),i=1,n)
READ (nag_std_in,*) (c(i,:),i=1,m)
READ (nag_std_in,*) (r(i,:),i=1,m)
READ (nag_std_in,*) (q(i,:),i=1,1)

[NP3245/3/pdf] Module 29.2: nag-tsa_kalman 29.2.29

Example 2 Time Series Analysis

s = zero
CALL nag_kalman_init(a(l:n-m,1:n-m),b(1:n-m,1:1),s(1:n-m,1:n-m),q=q)
dev = zero

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’ step Residuals’

! Loop through data

DO step = 1, ncall
READ (nag_std_in,*) y

! Perform time and measurement update
IF (step==1) THEN

CALL nag_kalman_sqrt_cov_invar(s,a,b,c,r,q=q,h=h,resid=resid,y=y, &
xt=xt)

ELSE

CALL nag_kalman_sqrt_cov_invar(s,a,b,c,r,q=q,h=h,resid=resid,y=y, &
X=X,Xt=xt,p=p)

END IF
WRITE (nag_std_out,’(i4,4f10.4)°’) step, resid

! Update loglikelihood
CALL nag_tri_lin_sol(’1l’,h,resid)

dev = dev + DOT_PRODUCT (resid,resid)

DOi=1,n
dev = dev + 2.0_wp*L0G(h(i,1))
END DO
END DO

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’ Final X(i+1[i) °
WRITE (nag_std_out,’(10£10.4)°) x

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’ Final Value of P’

D0Oi=1,n
WRITE (nag_std_out,’(10£f10.4)’) p(i,1:i)

END DO

WRITE (nag_std_out,*)

WRITE (nag_std_out,’(A,e10.4)’) ’ Deviance = ’, dev

DEALLOCATE (a,b,c,h,p,q,r,s,x,xt,y,resid) ! Deallocate storage

END PROGRAM nag_tsa_kalman_ex02

2 Program Data

Example Program Data for nag_tsa_kalman_ex02
48 6 2 2 : ncall, n, m, 1

0.000 0.000 0.000 0.000 4.404 7.991 : xt(l:n)

0.607 -0.033 1.000 0.000 0.000 0.000
0.000 0.543 0.000 1.000 0.000 0.000

29.2.30 Module 29.2: nag-tsa_kalman [NP3245/3/pdf]

Time Series Analysis

.000
.000
.000
.000
.000
.000
.543
.134
.000
.000
.000
.000
.000
.000
.598
.560

ONOOOH OOO0OOOHFr OO OO

|
[y

.490
.620
.200
.230
.210
.860
.090
.180
.620
.490
.170
.850
.350
.240
. 440
.580
.040
.400
.260
.340
.090
.000
.780
.110
.450
.650
.290
.090
.320
.500
.890
.580
.210
.250
.930
.380
.870
.810
.680
.070
.290
.840
.550
.320
.970

|
O, P, NWHd» Lo OO~

|
o

N NANANANO O OONS OO, WNOOR R WS DO WNONDNDNO

[NP3245/3/pdf]

OO OO FHrH OO0OO0OO0OO0OHr OO0 OO

N N N NN R e R I

.000
.000
.000
.000
.000
.000
.125
.026
.000
.000
.000
.000
.000
.000
.560
.330

.340
.350
.960
.540
.620
.970
.550
.810
.750
.760
.880
.010
.620
.360
.400
.240
.930
.040
.730
.600
.350
.810
.270
.680
.650
.080
.250
.140
.750
.300
.630
.800
.080
.060
.940
.650
.940
.760
.890
.850
.010
.500
.020
.380
.150

o O O o

.000
.000
.000
.000

.000
.000

O O O o

.000
.000
.000
.000

.000
.000

o = OO

.000
.000
.000
.000

.000
.000

= O O O

.000
.000
.000
.000 :

.000
.000 :

Module 29.2: nag_tsa kalman

a(1:n,1:n)

: b(1:n,1:1)

c(1:m,1:n)

: r(1:m,1:m)
:q(1:1,1:1)

: first y(1:m)

Ezxample 2

29.2.31

Ezxample 2

7.760 8.
7.000 10.
8.350 12.

370
730
140

: last (ncall) y(1:m)

3 Program Results

Example Program Results for nag_tsa_kalman_ex02

step

1 -5.8940
2 -1.4710
3 5.1658
4 -1.3280
5 1.3652
6 -0.2337
7 -0.8685
8 -0.4624
9 -0.7510
10 -1.3526
11 -0.6707
12 -1.7389
13 -1.6376
14 -0.6137
15 0.9067
16 -0.8255
17 -0.7494
18 -2.2922
19 1.8812
20 -0.7112
21 1.6747
22 -0.6619
23 0.3271
24 -0.8165
256 -0.2759
26 -1.9383
27 -0.3131
28 1.3726
29 1.4153
30 0.3672
31 -2.3659
32 -1.0130
33 3.2472
34 -1.1501
35 0.6855
36 2.3432
37 -1.6892
38 1.3871
39 3.3840
40 -0.5118
41 0.8569
42 0.9558
43 0.6778
44 0.4304
45 1.4987
46 0.5361
47 0.2649
48 2.0095

Residuals

.6510
. 0407
. 0447
.4580
.5066
.4192
.7065
.1519
.4218
.3335
.8593
.4138
. 7549
.5463
.8093
.9355
.0247
.8441
.7085
.2849
.2400

0.0609

.0074
.5325
. 0489
.1186
.58565
.1289
.9545
.4126
.2823
.7306
.0836
.1623
.2751
.2570
.3565
.0138
.1312
.7670
.3741
.2209

2.1993

Final X(i+1[i)

3.6698

2.5888

Final Value of P

29.2.32

.1393
.22565
.1237
.4582
.5623

0.0000 4.4040 7.9910

Module 29.2: nag_tsa kalman

Time Series Analysis

[NP3245/3/pdf]

Time Series Analysis

.5980
.5600
.4807
.3627
.0000
.0000

O O O = ON

Deviance = 0.2229E+03

[NP3245/3/pdf]

5.3300
0.9703
0.2136
0.0000
0.0000

0.9253
0.2236
0.0000
0.0000

0.0542
0.0000 0.0000
0.0000 0.0000 0.0000

Module 29.2: nag_tsa kalman

Ezxample 2

29.2.33

References Time Series Analysis

References

[1] Anderson B D O and Moore J B (1979) Optimal Filtering Prentice Hall, Englewood Cliffs, New
Jersey

[2] Vanbegin M, Van Dooren P and Verhaegen M H G (1989) Algorithm 675: FORTRAN subroutines for
computing the square root covariance filter and square root information filter in dense or Hessenberg
forms. ACM Trans. Math. Software 15 243-256.

[3] Verhaegen M H G and Van Dooren P (1986) Numerical aspects of different Kalman filter
implementations IEEE Trans. Auto. Contr. AC-31 907-917

[4] Wei W W S (1990) Time Series Analysis: Univariate and Multivariate Methods Addison-Wesley

29.2.34 Module 29.2: nag-tsa_kalman [NP3245/3/pdf]

