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Chapter 29

Time Series Analysis

1 Scope of the Chapter

This chapter provides procedures for the analysis of time series data.

2 Available Modules

Module 29.1: nag tsa identify — Time series analysis

This module contains procedures for calculating the sample autocorrelations of a univariate time
series. Procedures are provided for

• calculating the autocorrelation function;

• calculating the partial autocorrelation function.

Module 29.2: nag tsa kalman — Kalman filtering

This module contains procedures for the Kalman filtering of time series data. The procedures are
based on the square-root algorithm. Facilities are provided for

• an initial estimate for the state covariance matrix;

• a prediction step of the square-root covariance Kalman filter;

• a combined update-prediction step, using the time-varying square-root covariance Kalman
filter;

• a combined update-prediction step, using the time-invariant square-root covariance Kalman
filter.

Module 29.3: nag tsa spectral — Time Series Spectral Analysis

This module contains procedures for calculating the smoothed sample spectrum of a univariate and
bivariate time series. Procedures are provided for

• calculating the smoothed sample spectrum of a univariate time series;

• calculating the smoothed sample spectrum of a univariate time series using autocovariances;

• calculating the smoothed sample cross spectrum of a bivariate time series;

• calculating the smoothed sample cross spectrum of a bivariate time series using
autocovariances;

• calculating the squared coherency, the cross amplitude, the gain and the phase spectra;

• calculating the noise spectrum and the impulse response function from a linear system.

3 Background

3.1 Introduction

Time series data, xt, for t = 1, 2, . . . , n, generally consist of both deterministic and stochastic components.
The deterministic component gives rise to trends, seasonal patterns and cycles, while the stochastic
component causes statistical fluctuations which have a short term correlation structure.
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A time series is stationary if the structure of the series depends only the relative position of the
observations; that is, the joint distribution of xt and xt+l depends only on l not on t. If we define
E(xt) = µt, var(xt) = E(xt − µt)

2, and cov(xt, xt−l) = γ(t, t − l) = E ((xt − µt)(xt−l − µt−l)), then a
series is second-order stationary if µt = µ for all t and γ(t, t− l) = γl for all t and l.

If the variance of the observations in the series is not constant across the range of observations it may
be useful to apply a variance stabilizing transformation to the series. A common situation is for the
variance to increase with the magnitude of the observations, and in this case typical transformations
used are the log or square root transformation.

There are two basic approaches to analysing time series, the time domain and the frequency domain.
In the time domain the relationship of an observation at time t to observations at previous time points
is examined and modelled using, for example, an ARMA model or Kalman filter model. In the case of
the frequency domain approach the sinusoidal components across the whole series are examined using
spectral analysis.

3.2 ARMA Time Series Models

A stationary time series may often be modelled as an auto-regressive moving average (ARMA) process.
For the univariate time series xt, for t = 1, 2, . . . , n, with mean µ, an ARMA(p, q) model is

wt = φ1wt−1 + · · ·+ φpwt−p + εt − θ1εt−1 − · · · − θqεt−q,

where the φ are the p auto-regressive parameters, the θ are the q moving average parameters, wt = xt−µ
and εt is an uncorrelated sequence of noise with zero mean and variance σ

2
ε .

If we define the back shift operator Bjxt = xt−j then the above equation can be written more compactly
as

φp(B)wt = θq(B)εt,

where the auto-regressive operator φp(B) is

φp(B) = 1− φ1B − φ2B
2 · · · − φpB

p,

and the moving average operator θq(B) is

θq(B) = 1− θ1B − θ2B
2 · · · − θqB

q.

For the process to be stationary the roots of the polynomial equation φp(z) = 0 must lie outside the
unit circle. A second important property is invertibility; this allows the process to be written as a pure
autoregressive process and avoids model multiplicities. For the process to be invertible we require that
the roots of the polynomial equation θq(z) = 0 lie outside the unit circle.

The advantage of an ARMAmodel over a pure AR model is that a complex series can often be represented
using an ARMA model with fewer parameters than would be needed by a suitable AR model.

A k-variate ARMA(p, q) can be represented using similar equations to those given above, except that wt

and εt are now vectors of length k and the φ and θ are now k × k matrices.

Seasonal, SARMA(p, q, P,Q, s), models also allow for correlation at lags which are multiples of seasonal
period s. In this case the model can be written as

ΦP (B
s)φp(B)wt = ΘQ(B

s)θq(B)εt,

where the seasonal auto-regressive operator ΦP (B) is

ΦP (B
s) = 1− Φ1B

s − Φ2B
2s · · · − ΦPB

Ps,

and the seasonal moving average operator ΘQ(B
s) is

ΘQ(B
s) = 1−Θ1B

s −Θ2B
2s · · · −ΘQB

Qs.

For the SARMA process to be stationary the roots of the polynomial equation ΦP (z)φp(z) = 0 must
lie outside the unit circle, while for the process to be invertible the roots of the polynomial equation
ΘQ(z)θq(B) = 0 must lie outside the unit circle.
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3.3 ARIMA Time Series Models

In many cases while a time series wt may be non-stationary the differenced series wt − wt−1 may be
stationary. Single differencing will remove linear trends, higher order and seasonal differencing may
remove more complex trends and cycles.

If the time series wt (t = 1, 2, . . . , n) is non-stationary and the differenced series follows an ARMA(p, q)
then the series is termed an ARIMA(p, d, q) and can be written as

φp(B)(1−B)dwt = θq(B)εt,

where (1−B)
d
is the dth-order differencing operator, i.e.,

(1−B)wt = wt − wt−1, (1−B)2wt = wt − 2wt−1 + wt−2, etc.

In the case of a seasonal series it can be reduced to a SARMA(p, q, P,Q, s) by using seasonal differencing,
with the model being written as follows:

ΦP (B
s)φp(B)(1−Bs)D(1−B)dwt = ΘQ(B

s)θq(B)εt,

where (1−Bs)D is the Dth-order seasonal differencing operator, i.e.,

(1−Bs)wt = wt − wt−s, (1−Bs)2wt = wt − 2wt−s + wt−2s, etc.

3.4 Structural Models

Structural models represent a time series directly in terms of trend, seasonal and irregular components
and thus offer an alternative to ARIMA models.

The basic structural model for the univariate time series yt, for t = 1, 2, . . . , T has the form

yt = µt + γt + εt

where µt, γt and εt are respectively the trend, seasonal and irregular components.
The equations for the process generating the trend are

level: µt = µt−1 + βt−1 + ηt, t = 1, 2, . . . , T

and

slope: βt = βt−1 + ζt, t = 1, 2, . . . , T

where ηt and ζt are normally distributed white noise processes with zero means and variances σ
2
η and

σ2
ζ , respectively. The effect of ηt is to allow the level of the trend to shift up and down, while ζt allows
the slope to change.

If the seasonal components were deterministic then, at time t, they would have to satisfy

s−1
∑

j=0

γt−j = 0

where s is the number of ‘seasons’ in the ‘year’. The introduction of a random component, ωt = N(0, σ2
ω)

on the right-hand side,

s−1
∑

j=0

γt−j = ωt,

allows the seasonal effect to change over time, but still ensures that the sum of any s consecutive seasonal
components has an expected value of zero. A recursive formula for the seasonal components is

γt =

s−1
∑

j=1

γt−j + ωt.
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The above is called the dummy variable form of seasonality.

An alternative way of modelling seasonality is by a set of trigonometric terms at the seasonal frequencies,
λj = 2πj/s, for j = 1, 2, . . . , s/2. The lowest frequency, 2π/s, is known as the fundamental frequency
while the remaining frequencies are harmonics. If, as above, a random component is added to allow
the season effects to change over time but still have an expected value of zero, the following recursive
formula for the seasonal effect at time t is obtained:

γt =

s−1
∑

j=1

γj,t

where

γj,t = γj,t−1 cosλj + γ∗j,t−1 sinλj + ωj,t
γ∗j,t = −γj,t−1 sinλj + γ∗j,t−1 cosλj + ω∗j,t

}

j = 1, 2, . . . , s/2,

where ωj,t and ω∗j,t are zero mean white noise processes which are uncorrelated and have a common

variance σ2
j . Assigning different variances to each harmonic allows them to evolve at varying rates.

However, it is usually desirable to let var(ω∗
j,t) = var(ωj,t) = σ2

j = σ2
ω, for j = 1, 2, . . . , s/2. When s is

even and j = s/2, the sine term vanishes giving γj,t = γj,t−1 cosλj + ωj,t. For even s the number of
parameters, γj and γ

∗
j , is therefore always s− 1, which is the same as the number of coefficients in the

seasonal dummy form. Provided that the full set of trigonometric terms is included, the trigonometric
and dummy variable approach should give identical results. However, the advantage of the trigonometric
approach is that it allows unimportant frequency components to be dropped and thus enables more
compact models to be constructed.

3.5 State Space Models

A general class of time series models is the state space model. This comprises two equations, the state
equation that models the unobserved stochastic state vector, Xt,

Xt+1 = AtXt +BtWt

and the measurement equation,

Yt = CtXt + Vt

for the observed Yt. Wt is the state noise, Vt is the measurement noise, At is the state transition matrix,
Bt is the noise coefficient matrix, and Ct is the measurement coefficient matrix. The state noise and the
measurement noise are assumed to be uncorrelated and have zero mean, and the covariance matrices are

cov(Wt) = Qt and cov(Vt) = Rt.

With state space models the primary objective of the analysis is to estimate the value of the state vector,
Xt, given the observed Y1 . . . Yt and to forecast Xt+1. This is achieved as a recursive operation using the
Kalman Filter . The current estimate of Xt given observations Y1 . . . Yt−1, denoted by X̂t|t−1, is updated

by the Yt observation to give the estimate X̂t|t. This operation can be seen as being within a Bayesian
framework.

Both the ARMA and the structural models described above can be written as state space models. The
matrices At and Bt are then functions of the parameters of the model.

3.6 Model Identification

Model identification is the stage in the modelling process in which the form of the model that is thought
to be suitable is selected. Identification can either be conceptual, based on theoretical knowledge of the
system, or empirical, making use of data observed on the system. Because of the generality of state space
models any direct model identification would have to be, in the first instance, conceptual. For ARIMA
models empirical identification is possible. The basic tools for ARIMA model identification are data
plot, the autocorrelation function (acf) and the partial autocorrelation function (pacf). A simple plot of
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the series will indicate if the data has to be differenced or transformed in order to produce a stationary
series. Given a stationary series the autocorrelation function is the correlation of observations l apart
for l = 1, 2, . . ., that is an estimate of ρl = γl/γ0. For pure MA processes of order q the autocorrelations
should be zero for l > q. The partial autocorrelation is a measure of the correlation between observations
l apart having removed the effect of the correlation due to the intervening observations. For a pure AR
process of order p the partial autocorrelations should be zero for l > p. Thus examination of plots of
the acf and pacf should indicate if a MA or AR model is suitable or if a more complex ARMA model is
needed.

3.7 Model Fitting

Given a specified form of a model in terms of unknown parameters, θi, φi, etc., the model can be fitted
by estimating the parameters using maximum likelihood. If the model is written as a state space model
the likelihood can be computed by making use of a Kalman filter. The Kalman filter computes an
estimate of the state vector Xt and its covariance matrix Pt given observations Y1 . . . Yt and values of
the model parameters. As a by-product one-step-ahead residuals, rt and their covariance matrix, Ht are
also computed; from these the log-likelihood for the unknown parameters can be computed as

κ−
1

2

t
∑

i=1

ln(det(Hi))−
1

2

t
∑

i=1

rTi H
−1
i ri,

where κ is a constant. This likelihood can then be maximized using a non-linear optimizer.

3.8 Model Checking

In addition to testing the significance of the estimated parameters by using likelihood ratio tests or
z-test, the fit of the model can be checked by examining the one-step-ahead residuals. These residuals
should be independently and identically distributed Normal variates. The independence can be checked
by computing the acf of the residuals, and the Normality can be checked using graphical methods.

3.9 Forecasting

Given a fitted state-space model, forecasts can be computed by using

X̂t+i|t = At+i−1X̂t+i−1|i i = 1, 2, . . . ,

where X̂t+i|t is the estimate of the state vector Xt+i given observation up to time t. The covariance
matrix, Pt+i|t, of the forecasts can be computed from

Pt+i|t = At+i−1Pt+i−1|tA
T
t+i−1|t +BiQiB

T
i ,

where Pt+1|t is the state covariance matrix at t+1 for observations up to time t and is computed by the

Kalman filter along with X̂t+1|t.

3.10 Univariate Spectral Analysis

In describing a time series using spectral analysis the fundamental components are taken to be sinusoidal
waves of the form R cos(ωt + φ), which for a given angular frequency ω, 0 ≤ ω ≤ π, is specified by its
amplitude R > 0 and phase φ, 0 ≤ φ < 2π. Thus in a time series of n observations it is not possible to
distinguish more than n/2 independent sinusoidal components. The frequency range 0 ≤ ω ≤ π is limited
to a shortest wavelength of two sampling units because any wave of higher frequency is indistinguishable
upon sampling (or is aliased with) a wave within this range. Spectral analysis follows the idea that for
a series made up of a finite number of sine waves the amplitude of any component at frequency ω is
given to order 1/n by

R2 =

(

1

n2

)

∣

∣

∣

∣

∣

n
∑

t=1

xte
iωt

∣

∣

∣

∣

∣

2

.
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For a series x1, x2, . . . , xn the sample spectrum is defined as

f∗(ω) =

(

1

2nπ

)

∣

∣

∣

∣

∣

n
∑

t=1

xte
iωt

∣

∣

∣

∣

∣

2

,

the scaling factor now being chosen in order that

2

∫ π

0

f∗(ω)dω = σ2
x,

i.e., the spectrum indicates how the sample variance (σ2
x) of the series is distributed over components in

the frequency range 0 ≤ ω ≤ π.

It may be demonstrated that f∗(ω) is equivalently defined in terms of the sample autocorrelation function
(acf) rk of the series as

f∗(ω) =

(

1

2π

)

(

c0 + 2
n−1
∑

k=1

ck cos kω

)

,

where ck = σ2
xrk are the sample autocovariance coefficients.

If the series xt does contain a deterministic sinusoidal component of amplitude R, this will be revealed in
the sample spectrum as a sharp peak of approximate width π/n and height (n/2π)R2. This is called the
discrete part of the spectrum, the variance R2 associated with this component being in effect concentrated
at a single frequency.

If the series xt has no deterministic components, i.e., is purely stochastic being stationary with acf rk,
then with increasing sample size the expected value of f ∗(ω) converges to the theoretical spectrum −
the continuous part

f(ω) =

(

1

2π

)

(

γ0 + 2

∞
∑

k=1

γk cos(ωk)

)

,

where γk are the theoretical autocovariances.

The sample spectrum does not however converge to this value but at each frequency point fluctuates
about the theoretical spectrum with an exponential distribution, being independent at frequencies
separated by an interval of 2π/n or more. Various devices are therefore employed to smooth the sample
spectrum and reduce its variability. Much of the strength of spectral analysis derives from the fact
that the error limits are multiplicative so that features may still show up as significant in a part of the
spectrum which has a generally low level, whereas they are completely masked by other components in
the original series. The spectrum can help to distinguish deterministic cyclical components from the
stochastic quasi-cycle components which produce a broader peak in the spectrum. (The deterministic
components can be removed by regression and the remaining part represented by an ARIMA model).

A large discrete component in a spectrum can distort the continuous part over a large frequency range
surrounding the corresponding peak. This may be alleviated at the cost of slightly broadening the peak
by tapering a portion of the data at each end of the series with weights which decay smoothly to zero.
It is usual to correct for the mean of the series and for any linear trend by simple regression, since they
would similarly distort the spectrum.
The smoothed estimate of the spectrum can be calculated from autocovariances or from the unsmoothed
sample spectrum.

3.11 Cross-spectral Analysis

The relationship between two time series may be investigated in terms of their sinusoidal components at
different frequencies. At frequency ω a component of yt of the form

Ry(ω) cos(ωt)− φy(ω)
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has its amplitude Ry(ω) and phase lag φy(ω) estimated by

Ry(ω)e
iφy(ω) =

1

n

n
∑

t=1

yte
iωt

and similarly for xt. In the univariate analysis only the amplitude was important − in the cross analysis
the phase is important.

The sample cross-spectrum is defined by

f∗xy(ω) =
1

2πn

(

n
∑

t=1

yte
iωt

)(

n
∑

t=1

xte
−iωt

)

.

It may be demonstrated that this is equivalently defined in terms of the sample cross-covariance function
(CCF), rxy(k), of the series as

f∗xy(ω) =
1

2π

(n−1)
∑

−(n−1)

cxy(k)e
iωk

where cxy(k) = sxsyrxy(k) is the cross-covariance function.

The cross-spectrum is specified by its real part or cospectrum cf ∗(ω) and imaginary part or quadrature
spectrum qf∗(ω), but for the purpose of interpretation the cross-amplitude spectrum and phase spectrum
are useful:

A∗(ω) = |f∗xy(ω)|, φ
∗(ω) = f∗xy(ω).

If the series xt and yt contain deterministic sinusoidal components of amplitudes Ry, Rx and phases
φy, φx at frequency ω, then A

∗(ω) will have a peak of approximate width π/n and height (n/2π)RyRx at
that frequency, with corresponding phase φ∗(ω) = φy −φx. This supplies no information that cannot be
obtained from the two series separately. The statistical relationship between the series is better revealed
when the series are purely stochastic and jointly stationary, in which case the expected value of f ∗xy(ω)
converges with increasing sample size to the theoretical cross-spectrum

fxy(ω) =
1

2π

∞
∑

−∞

γxy(k)e
iωk

where γxy(k) = cov(xt, yt+k). The sample spectrum, as in the univariate case, does not, however,
converge to the theoretical spectrum without some form of smoothing which either implicitly (using a
lag window) or explicitly (using a frequency window) averages the sample spectrum f ∗xy(ω) over wider

bands of frequency to obtain a smoothed estimate f̂xy(ω).

If there is no statistical relationship between the series at a given frequency, then fxy(ω) = 0, and the

smoothed estimate f̂xy(ω), will be close to 0. This is assessed by the squared coherency between the
series:

Ŵ (ω) =
|f̂xy(ω)|

2

f̂xx(ω)f̂yy(ω)

where f̂xx(ω) is the corresponding smoothed univariate spectrum estimate for xt, and similarly for yt.
The coherency can be treated as a squared multiple correlation. It is similarly invariant in theory not
only to simple scaling of xt and yt, but also to filtering of the two series, and provides a useful test
statistic for the relationship between autocorrelated series. Note that without smoothing,

|f∗xy(ω)|
2 = f∗xx(ω)f

∗
yy(ω),

so the coherency is 1 at all frequencies, just as a correlation is 1 for a sample of size 1. Thus smoothing
is essential for cross-spectrum analysis.
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If yt is believed to be related to xt by a linear lagged relationship i.e.,

yt = v0xt + v1xt−1 + v2xt−2 + · · ·+ nt,

then the theoretical cross-spectrum is

fxy(ω) = V (ω)fxx(ω)

where

V (ω) = G(ω)eiφ(ω) =
∞
∑

k=0

vke
ikω

is called the frequency response of the relationship.

Thus if xt were a sinusoidal wave at frequency ω (and nt were absent), yt would be similar but multiplied
in amplitude by G(ω) and shifted in phase by φ(ω). Furthermore, the theoretical univariate spectrum

fyy(ω) = G(ω)2fxx(ω) + fn(ω)

where nt, with spectrum fn(ω), is assumed independent of the input xt.

Cross-spectral analysis thus furnishes estimates of the gain

Ĝ(ω) = |f̂xy(ω)|/f̂xx(ω)

and the phase

φ̂(ω) = (f̂xy(ω))

From these representations of the estimated frequency response V̂ (ω), parametric transfer function (TF)
models may be recognised and selected. The noise spectrum may also be estimated as

f̂y|x(ω) = f̂yy(ω)
(

1− Ŵ (ω)
)

– a formula which reflects the fact that in essence a regression is being performed of the sinusoidal
components of yt on those of xt over each frequency band.

Interpretation of the frequency response may be aided by extracting from V̂ (ω) estimates of the impulse
response function (IRF) v̂k. It is assumed that there is no anticipatory response between yt and xt,
i.e., no coefficients vk with k = −1,−2 are needed (their presence might indicate feedback between the
series).
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