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Chapter 28

Multivariate Analysis

1 Scope of the Chapter

This chapter provides procedures for studying multivariate data.

2 Available Modules

Module 28.1: nag fac analysis — Factor analysis and principal component analysis

This module contains a procedure for computing principal component analysis from an n by m
data matrix.

Module 28.2: nag canon analysis — Canonical Analysis

This module contains a procedure for computing canonical variate analysis for data on m variables
from g groups.

Module 28.3: nag mv rotation — Rotations

This module contains a procedure for computing orthogonal factor rotations.

3 Background

3.1 Introduction

Let the n by p data matrix consist of p variables, x1, x2, . . . , xp, observed on n objects or individuals.
Variable-directed methods in multivariate analysis seek to examine the relationships between the p
variables with the aim of reducing the dimensionality of the problem as compared with individual-
directed methods which look the relationships between the individuals forming the data matrix. There are
different variable-directed methods depending on the structure of the problem. Principal component

analysis and factor analysis examine the relationships between all the variables. If the individuals
are classified into groups then canonical variate analysis examines the between-group structure. All
three methods are based on an eigenvalue decomposition or a singular value decomposition (SVD) of an
appropriate matrix.

The above methods may reduce the dimensionality of the data from the original p variables to a smaller
number, k, of derived variables that adequately represent the data. In general these k derived variables
will be unique only up to an orthogonal rotation. Therefore it may be useful to see if there are any
suitable rotations of these variables that lead to a simple interpretation of the new variables in terms of
the original variables.

3.2 Principal Component Analysis

Principal component analysis finds new variables which are linear combinations of the p observed variables
so that they have maximum variation and are orthogonal (uncorrelated).

Let S be the p by p variance-covariance matrix of the n by p data matrix. A vector a1 (with aT
1 a1

= 1) of length p is found to maximise the variance aT
1 Sa1. The resulting variable z1 =

p
∑

i=1

a1ixi is

known as the first principal component and gives the linear combination of the variables that has the
maximum variance. Further principal components can be derived such that each has maximum variance
given that it is orthogonal to the previous components. Thus the original p correlated variables can
be transformed to p orthogonal variables with decreasing variance. In practice the original variables
will often be adequately represented by k < p principal components in that the total variance of the k
principal components represents a high proportion of the variance of the original p variables.
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It can be shown that the vectors ai, for i = 1, 2, . . . , p are the eigenvectors of the matrix S and associated
with each eigenvector is the eigenvalue, γ2

i . An alternative way of approaching the problem is to consider
the singular value decomposition of the scaled, mean-centred data matrix, Xs, (where the scaling is used
to give results for the variance-covariance matrix rather than the sum of squares matrix). Computing
the SVD of Xs gives

Xs = UΓAT

where A is the matrix containing the vectors ai and Γ is the diagonal matrix containing the γi. The
ratio γ2

i /Σγ
2

i gives the proportion of variance explained by the ith principal component and is useful
in selecting the number of principal components required to adequately represent the data. The values
of the principal component variables for the individuals are known as the principal component scores
and are given by U . These can be standardised so that the variance of these scores for each principal
component is 1.0 or equal to the corresponding eigenvalue.

3.3 Factor Analysis

In some ways factor analysis is similar to principal component analysis but there are important differences
in the underlying model.

Let the p variables have variance-covariance matrix Σ. The aim of factor analysis is to account for the
covariances in these p variables in terms of k < p hypothetical variables or factors, f1, f2, . . . , fk, while
the variances are accounted for by unique components in addition to the factors. The factors are assumed
to be independent and to have unit variance. The relationship between the observed variables and the
factors is given by the model

xi =

k
∑

j=1

λijfj + ei i = 1, 2, . . . , p

where λij , for i = 1, 2, . . . , p, j = 1, 2, . . . , k, are the factor loadings and ei, for i = 1, 2, . . . , p, are
independent random variables with variances ψi which represent the unique component of the variation
of each of the p variables. The proportion of variation for each variable accounted for by the factors is
known as the communality.

The model for the variance-covariance matrix, Σ, can then be written as

Σ = ΛΛT +Ψ

where Λ is the matrix of the factor loadings, λij , and Ψ is a diagonal matrix of the unique variances ψi.

For a given Ψ the matrix Λ can be computed from the SVD of

XsΨ
−1/2

where Xs is the scaled, mean-centred data matrix. Thus Ψ can be seen as representing a variable
weighting such that the higher the unique component variation the less weight the variable has in
determining the common factors. Ψ can be estimated in several ways either fixed or iterating with the
estimates of Λ. The simplest estimate of Ψ is given by the inverse of the diagonal elements of S−1, where
S is the sample variance-covariance matrix. This is known as principal factor analysis.

3.4 Canonical Variate Analysis

If the individuals can be classified into one of g groups then the total variation can be seen as the
combination of between-group variation and within-group variation. The best discrimination between
groups will be obtained by maximizing the ratio of the between-group variation to the within-group
variation. Canonical variate analysis finds the linear combinations of the p variables which maximize this
ratio. These variables are known as canonical variates. As the canonical variates provide discrimination
between the groups the method is also known as canonical discrimination.

The canonical variates can be calculated from the eigenvectors of the ratio of the between-group sum of
squares and cross-products matrix, B, to the within-group sums of squares and cross-products matrix,
W . Alternatively they can be computed from the p by (g − 1) matrix

V = QT
xQg
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where Qg is an orthogonal matrix that defines the contrasts between groups, and Qx is the first p
columns of the orthogonal matrix Q from the QR decomposition of the data matrix with the variable
means subtracted, Xs,

Xs = QxR.

The within-group and between-group sums of squares and cross-products matrices can be written as

W = RT (I − V V T )R and B = RT (V V T )R.

Computing the SVD of V as

V = Ux∆U
T
g

gives the canonical correlations as the non-zero elements (δi > 0) of the diagonal matrix ∆. The largest
δi is called the first canonical correlation and associated with it is the first canonical variate.

The eigenvalues, γ2

i , of the matrix W
−1B are given by

γ2

i =
δ2i

1− δ2i

and the value of πi = γ2

i /Σγ
2

i gives the proportion of variation explained by the ith canonical variate.
The values of the πi give an indication as to how many canonical variates are needed to adequately
describe the data, i.e., the dimensionality of the problem. The number of dimensions can be investigated
by means of a test on the smaller canonical correlations.

The canonical variate loadings and the relationship between the original variables and the canonical
variates are calculated from the matrix Ux.

3.5 Rotations

Given a representation of p variables in k < p dimensions, rotations can be used to simplify the
relationship between the original variables and the variables chosen to define the k dimensions.

The most common type of rotations used are orthogonal rotations. If Λ is the p by k loading matrix
from a variable-directed multivariate method, then the rotations are selected such that the elements,
λ∗ij , of the rotated loading matrix, Λ∗, are either relatively large or small. The rotations may be found
by minimizing the criterion

k
∑

j=1

p
∑

i=1

(λ∗ij)
4
−

γ

p

k
∑

j=1

(

p
∑

i=1

(λ∗ij)
2

)2

where the constant, γ, gives a family of rotations, with γ = 1 giving varimax rotations and γ = 0
giving quartimax rotations.
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