Random Number Generation Module Contents

Module 21.2: nag_rand_contin

Random Numbers from Continuous Distributions

nag rand_contin provides procedures for generating sequences of independent pseudo-
random numbers from continuous distributions.

Contents
Introduction 21.2.3
Procedures
nag rand uniform 21.2.5

Generates random numbers from a uniform distribution over (a, b)

nag rand NOTMALt 21.2.7
Generates random numbers from a Normal distribution with mean a and standard
deviation b

nag _rand MV_NOTMALuutttt ittt 21.2.9
Generates a vector of n random numbers from a multivariate Normal distribution with
mean vector a and covariance matrix C'

nag. rand_beta 21.2.13

Generates random numbers from a beta distribution with parameters a and b

NAG TANA NEE_EXP v vvvttee ettt ettt ettt 21.2.15

Generates random numbers from a (negative) exponential distribution with mean a

Nag rand_aMIMAuutn ettt e e e e 21.2.17

Generates random numbers from a gamma distribution with parameters a and b

Examples
Example 1: Generation of Repeatable and Non-repeatable Sequences of Random Numbers
from a Uniform Distributiono 21.2.19
Example 2: Generation of a Vector of Random Numbers from a Multivariate Normal
DiStributiono 21.2.21
Additional Examples 21.2.23
References 21.2.24

[NP3506/4] Module 21.2: nag.rand_contin 21.2.1

Module Contents Random Number Generation

21.2.2 Module 21.2: nag rand_contin [NP3506/4]

Random Number Generation Module Introduction

Introduction

1 Terminology

This module is concerned with the generation of sequences of random numbers from continuous
distributions.

Strictly speaking, the generated numbers are pseudo-random rather than true random numbers; however,
their statistical properties — independence, randomness, etc. — are similar to those of true random
numbers. In this module, the term ‘random’ will be used throughout, although strictly we mean ‘pseudo-
random’.

2 Continuous Distributions

This module provides procedures for the following continuous distributions: uniform, Normal (both
univariate and multivariate), negative exponential, beta, and gamma (see Dagpunar [7], Kendall and
Stuart [8], Knuth [9], Morgan [10] and Ripley [11] for further reading). The generated numbers are real.

The procedures are all functions, and may be scalar valued (returning one number per call), or array
valued (returning several numbers per call).

An array-valued call with a result of dimension r will return the same sequence of random numbers as
r consecutive scalar-valued calls, and will update the seed in the same way. For example, the following
code fragments will give the same results in the array v.

v(1l:r) = nag rand_uniform(seed, r) ! array-valued call
and
doi=1,r

v(i) = nag_rand_uniform(seed) ! scalar-valued call
end do

3 Initialization of the Seed

All the procedures in this module make use of an argument seed, which is a structure of type
nag_seed_wp. This must be initialized before use by calling the procedure nag _rand _seed_set. Both
the type and its initialization procedure are defined by the module nag_rand util (21.1), and described
in its module document. However, they are also accessible via the USE statement for this module.

[NP3506/4] Module 21.2: nag.rand_contin 21.2.3

Module Introduction Random Number Generation

21.2.4 Module 21.2: nag rand_contin [NP3506/4]

Random Number Generation nag rand uniform

Procedure: nag_rand_uniform

1 Description

nag rand uniform returns random numbers from a uniform distribution. It is a generic function and
the result may be either scalar or array valued depending on the presence of the argument r. The
distribution of the random numbers may be over the interval (0,1) or (a,b).

2 Usage

USE nag_rand_contin
[value =] nag_rand uniform(seed [, optional arguments])

The function result is a scalar, of type real(kind=wp), over (0, 1).
or
[value =] nag rand uniform(seed, a, b [, optional arguments])
The function result is a scalar, of type real(kind=wp), over (a,b).
or
[value =] nag rand uniform(seed, r [, optional arguments])
The function returns an array-valued result, of type real(kind=wp) and dimension (r), over (0, 1).
or

[value =] nag_rand uniform(seed, a, b, r [, optional arguments])

The function returns an array-valued result, of type real(kind=wp) and dimension (r), over (a,b).

3 Arguments

3.1 Mandatory Arguments

seed — type(nag_seed_wp), intent(inout)
Input: the seed for generating random numbers (see the Module Introduction).
Output: an updated value of the seed.

a — real(kind=wp), intent(in)
b — real(kind=wp), intent(in)
Input: the end-points of the interval which defines the uniform distribution.
Default: a = 0.0 and b = 1.0.
Constraints: a # b; a and b must both be included in the argument list, or both omitted.

r — integer, intent(in)
Input: the number of random numbers to be generated, if an array-valued result is required.

Note: this argument must be omitted if a scalar result is required. For r < 0 an empty array will
be returned.

3.2 Optional Argument

error — type(nag_error), intent(inout), optional
The NAG 190 error-handling argument. See the Essential Introduction, or the module document
nag_error_handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag_set_error before this
procedure is called.

[NP3506/4] Module 21.2: nag.rand_contin 21.2.5

nag _rand_uniform Random Number Generation

4 Error Codes

Fatal errors (error%level = 3):
error%code Description

301 An input argument has an invalid value.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Mathematical Background

Let = be a uniformly distributed variate lying in the range a to b. The probability density function
(PDF) of z is defined by

1
:7|b | a<x<h.
—a

f(x)

This procedure returns z; = a 4+ (b — a)u;, where u; is a uniform (0,1) random number.

21.2.6 Module 21.2: nag rand_contin [NP3506/4]

Random Number Generation

Procedure: nag_rand_normal

1 Description

nag_rand _normal

nag rand normal returns random numbers from a Normal distribution with mean a and standard
deviation b. By default, it uses the method of Brent [5] but provides a facility for the method of
Box—Muller (Box and Muller [4]), if required. It is a generic function: the result may be either scalar
or array valued depending on the presence of the argument r. For greater efficiency, the Box—Muller

method should be used on vector machines.

2 Usage

USE nag_rand_contin
[value =] nag_rand normal(seed [, optional arguments])

The function result is a scalar of type real(kind=wp).
or

[value =] nag rand normal(seed, r [, optional arguments])

The function returns an array-valued result of type real(kind=wp) and dimension (r).

3 Arguments
3.1 Mandatory Arguments

seed — type(nag_seed_wp), intent(inout)
Input: the seed for generating random numbers (see the Module Introduction).

Output: an updated value of the seed.

r — integer, intent(in)

Input: the number of random numbers to be generated, if an array-valued result is required.

Note: this argument must be omitted if a scalar result is required. For r < 0 an empty array will

be returned.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below

may differ from the order in which they occur in the argument list.

a — real(kind=wp), intent(in), optional

b — real(kind=wp), intent(in), optional
Input: the mean a and standard deviation b of the Normal distribution.
Default: a = 0.0 and b = 1.0.
Constraints: b > 0.0.

brent — logical, intent(in), optional
Input: the method to be used.
If brent = .true., Brent’s method is used;
if brent = .false., Box—Muller’s method is used.
Default: brent = .true..

Note: the random numbers from the two methods are not the same.

[NP3506/4] Module 21.2: nag.rand_contin

21.2.7

nag_rand normal Random Number Generation

error — type(nag_error), intent(inout), optional

The NAG f190 error-handling argument. See the Essential Introduction, or the module document
nag_error_handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag_set_error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):
error%code Description

301 An input argument has an invalid value.

5 Examples of Usage

Assume that all relevant arguments have been declared correctly as described in Section 3, and that
input and input/output arguments have been appropriately initialized. This first example illustrates
how a call to this procedure returns a scalar result.

x = nag_rand_normal (seed)

This second example illustrates how a call to this procedure returns an array-valued result from Box—
Muller’s method.

v(1l:r) = nag_rand_normal(seed,r,brent=.false.)

6 Further Comments

6.1 Mathematical Background

Let = be a random variable from a Normal distribution with mean a and standard deviation b. The
probability density function (PDF) of x is defined by

@) = ;= e (“Qb))

where b > 0.

6.2 Algorithmic Detail

The Box—Muller method consists of first generating a pair of uniform (0,1) random numbers (u; and
ug, say) and then using trigonometric functions to transform the w; to a pair of independent standard
Normal deviates:

21 = (=2Inu1)? cos(2muy) and o = (—2Inuy)'/? sin(2mus).

One of the x; is then used for = (i.e., z = a + bx;) and the other is stored for subsequent generation of a
new x.

Since the Box—Muller method only uses transformations, a vector of deviates can be computed in parallel
on a vector processing machine, thus making it very efficient. On scalar machines Brent’s method, which
uses a rejection technique, will be more efficient. For details of Brent’s method see Brent [5].

21.2.8 Module 21.2: nag rand_contin [NP3506/4]

Random Number Generation nag rand mv_normal

Procedure: nag_rand_mv_normal

1 Description

nag rand mv_normal returns a vector of n random numbers 2T = (:vl,:vg, . 7:En) from a multivariate

Normal distribution with mean vector a and covariance matrix C. The covariance matrix C or its
Cholesky decomposition must be supplied.

2 Usage

USE nag_rand_contin
[value =] nag rand mv normal(seed, a [, optional arguments])

The function returns an array of random numbers of type real(kind=wp) and of dimension(n).

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

n — the dimension of the multivariate Normal distribution

3.1 Mandatory Arguments

seed — type(nag_seed_wp), intent(inout)
Input: the seed for generating random numbers (see the Module Introduction).

Output: an updated value of the seed.

a(n) — real(kind=wp), intent(in)

Input: the vector of means of the multivariate distribution.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

c(n,n) — real(kind=wp), intent(in), optional
Input: the covariance matrix of the multivariate distribution. Only the upper triangle needs to be
supplied.

Constraints: C' must be symmetric positive definite and ¢ must be supplied if chol is not present.

chol((n(n+1))/2) — real(kind=wp), intent(inout), optional
Input: the Cholesky decomposition of the covariance matrix of the multivariate distribution, in
packed storage. This decomposition may be obtained either from a previous call to this procedure
with ¢ present, or from a call to nag_sym_lin fac (using packed storage with uplo = '1') from
the module nag_sym_lin_sys (5.2).

Output: the Cholesky decomposition of ¢, in packed storage, if c is present.

Constraints: chol must be supplied, if ¢ is not present.

[NP3506/4] Module 21.2: nag.rand_contin 21.2.9

nag_rand mv_normal Random Number Generation

rel_tol — real(kind=wp), intent(in), optional

Input: the maximum error in any element of C' relative to the largest element of C. rel_tol is
used in calculating the Cholesky decomposition of C'.

Note: if rel_tol is less than EPSILON(1.0_wp), then EPSILON(1.0_wp) is used instead.
Default: rel_tol = max(EPSILON(1.0_wp),0.1/n).
Constraints: 0.0 < rel_ tol < 0.1/n.

error — type(nag_error), intent(inout), optional

The NAG f190 error-handling argument. See the Essential Introduction, or the module document
nag_error_handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag_set_error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description
301 An input argument has an invalid value.
302 An array argument has an invalid shape.
303 Array arguments have inconsistent shapes.
305 Invalid absence of an optional argument.
320 The procedure was unable to allocate enough memory.

Warnings (error%level = 1):
error%code Description
101 Optional argument is present but not needed.

rel_tol is present when c is not present.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.

6 Further Comments

6.1 Mathematical Background

Let X;, ¢ = 1,...,n, be a vector of n variables with mean a and covariance matrix C. Suppose x;,
i =1,...,n, are the realization of the X;. If C is non-singular or positive definite, the joint probability
density function (PDF) of the elements of x is

f(x1, @9, .. xn) = 2m) 2| C |72 exp (—i(z— a)'C Yz —a)).

6.2 Algorithmic Detail

For any given positive definite matrix C, there exists a lower triangular matrix L such that C' = LLT.
This procedure calculates L and returns 2 = a + Lz given that z7 = (21,22,...,2,) is a vector of
independent standard normal random numbers. If both ¢ and chol are specified, then this procedure
returns the Cholesky matrix L in chol. However, if c is not given, then chol must be supplied and must
contain the Cholesky matrix L.

21.2.10 Module 21.2: nag.rand_contin [NP3506/4]

Random Number Generation nag rand mv_normal

6.3 Scaling

It is recommended that the diagonal elements of C should not differ too widely in order of magnitude.
This may be achieved by scaling the variables, if necessary. The actual matrix decomposed is
C + E = LL", where F is a diagonal matrix with small positive diagonal elements. This ensures
that when C' is singular or nearly singular, the Cholesky factor L corresponds to a positive definite
covariance matrix that agrees with C' within a tolerance determined by rel_tol.

6.4 Accuracy

The maximum absolute error in LL? and hence in the covariance matrix of the resulting vectors is
less than (nxrel_tol+4(n + 3)XEPSILON(1.0_wp)/2) times the maximum element of C. Under normal
circumstances, the above will be small compared to sampling error.

6.5 Timing

The time taken by the procedure is proportional to n?.

[NP3506/4] Module 21.2: nag.rand_contin 21.2.11

nag_rand mv_normal Random Number Generation

21.2.12 Module 21.2: nag.rand_contin [NP3506/4]

Random Number Generation nag rand_beta

Procedure: nag_rand_beta

1 Description

nag _rand_beta returns random numbers from a beta distribution with parameters a and b. It is a generic
function and the result may be either scalar or array valued depending on the presence of the argument
T.

2 Usage

USE nag_rand_contin
[value =] nag rand beta(seed, a, b [, optional arguments])

The function result is a scalar of type real(kind=wp).
or

[value =] nag rand beta(seed, a, b, r [, optional arguments])

The function returns an array-valued result of type real(kind=wp) and dimension (7).

3 Arguments
3.1 Mandatory Arguments

seed — type(nag_seed_wp), intent(inout)
Input: the seed for generating random numbers (see the Module Introduction).

Output: an updated value of the seed.

a — real(kind=wp), intent(in)

b — real(kind=wp), intent(in)
Input: the parameters a and b of the beta distribution.
Constraints: a > 0.0 and b > 0.0.

r — integer, intent(in)
Input: the number of random numbers to be generated, if an array-valued result is required.

Note: this argument must be omitted if a scalar result is required. For r < 0 an empty array will
be returned.

3.2 Optional Argument

error — type(nag_error), intent(inout), optional

The NAG f190 error-handling argument. See the Essential Introduction, or the module document
nag_error_handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag_set_error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):
error%code Description

301 An input argument has an invalid value.

[NP3506/4] Module 21.2: nag.rand_contin 21.2.13

nag rand_beta Random Number Generation

5 Examples of Usage

Assume that all relevant arguments have been declared correctly as described in Section 3, and that
input and input/output arguments have been appropriately initialized. This first example illustrates
how a call to this procedure returns a scalar result.

x = nag_rand_beta(seed,a,b)

This second example illustrates how a call to this procedure returns an array-valued result.

v(1l:r) = nag_rand_beta(seed,a,b,r)

6 Further Comments

6.1 Mathematical Background

Let x be a beta-distributed random variable with parameters a and b. The probability density function
(PDF) of z is defined by

flz) = mgﬂal(lx)bl 0<z<l1; a,b>0.

6.2 Algorithmic Detail

This procedure uses four different but alternative algorithms depending on the values of « = max(a,b)
and $ = min(a,b).

The four algorithms used are as follows.

e For o« < 0.5 Johnk’s algorithm is used (see Dagpunar [7]); this generates the beta variate as
ut’®/(ur'* + ui/"), where uy and uy are uniformly distributed random variates.

e For B > 1 the algorithm BB given in Cheng [6] is used. This involves the generation of an
observation from a beta distribution of the second kind by the envelope rejection method using a
log-logistic target distribution and then transforming it to a beta variate.

e For @ > 1 and 8 < 1 the switching algorithm given in Atkinson [2] is used. The two target
distributions used are fi(z) = f2° and fo(z) = a(1 — 2)?~!, along with the approximation to the
switching parameter of t = (1 — 8)/(a+1 - 3).

e In all other cases Cheng’s BC algorithm (see Cheng [6]) is used with modifications suggested in
Dagpunar [7]. This algorithm is similar to BB, which is used when 8 > 1, but it is tuned for small
values of a and b.

21.2.14 Module 21.2: nag.rand_contin [NP3506/4]

Random Number Generation nag rand neg_exp

Procedure: nag_rand_neg_exp

1 Description

nag_rand neg_exp returns random numbers from a (negative) exponential distribution with mean a. It
is a generic function: the result may be either scalar or array valued depending on the presence of the
argument r.

2 Usage

USE nag_rand_contin
[value =] nag_rand neg exp(seed, a [, optional arguments])

The function result is a scalar of type real(kind=wp).
or

[value =] nag rand neg exp(seed, a, r [, optional arguments])

The function returns an array-valued result of type real(kind=wp) and dimension (7).

3 Arguments
3.1 Mandatory Arguments

seed — type(nag_seed_wp), intent(inout)
Input: the seed for generating random numbers (see the Module Introduction).

Output: an updated value of the seed.

a — real(kind=wp), intent(in)
Input: the parameter a of the distribution.
Note: if a is negative, its absolute value is used.
Constraints: a # 0.0.

r — integer, intent(in)
Input: the number of random numbers to be generated, if an array-valued result is required.

Note: this argument must be omitted if a scalar result is required. For r < 0 an empty array will
be returned.

3.2 Optional Argument

error — type(nag_error), intent(inout), optional

The NAG f190 error-handling argument. See the Essential Introduction, or the module document
nag_error_handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag_set_error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):
error%code Description

301 An input argument has an invalid value.

[NP3506/4] Module 21.2: nag.rand_contin 21.2.15

nag_rand neg_exp Random Number Generation

5 Examples of Usage

Assume that all relevant arguments have been declared correctly as described in Section 3, and that
input and input/output arguments have been appropriately initialized. This first example illustrates
how a call to this procedure returns a scalar result.

x = nag_rand_neg_exp(seed,a)
This second example illustrates how a call to this procedure returns an array-valued result.

v(1l:r) = nag_rand_neg_exp(seed,a,r)

6 Further Comments

6.1 Mathematical Background

Let x be a random variable from an exponential distribution with parameter a. The PDF of x is defined
as

flz) = éexp(—x/a) x> 0.

This procedure returns the sequence of values —aln(y), where y is a random number from a uniform
distribution over (0,1).

21.2.16 Module 21.2: nag.rand_contin [NP3506/4]

Random Number Generation nag_rand_gamma

Procedure: nag_rand_gamma

1 Description

nag rand gamma returns random numbers from a gamma distribution with parameters a and b. It is
a generic function: the result may be either scalar or array valued depending on the presence of the
argument r.

2 Usage

USE nag_rand_contin
[value =] nag rand gamma(seed, a, b [, optional arguments])

The function result is a scalar of type real(kind=wp).
or

[value =] nag rand gamma(seed, a, b, r [, optional arguments])

The function returns an array-valued result of type real(kind=wp) and dimension (r).

3 Arguments
3.1 Mandatory Arguments

seed — type(nag_seed_wp), intent(inout)
Input: the seed for generating random numbers (see the Module Introduction).

Output: an updated value of the seed.

a — real(kind=wp), intent(in)

b — real(kind=wp), intent(in)
Input: the parameters a and b of the gamma distribution.
Constraints: a > 0.0 and b > 0.0.

r — integer, intent(in)
Input: the number of random numbers to be generated, if a vector-valued result is required.

Note: this argument must be omitted if a scalar result is required. For r < 0 an empty array will
be returned.

3.2 Optional Argument

error — type(nag_error), intent(inout), optional

The NAG f190 error-handling argument. See the Essential Introduction, or the module document
nag_error_handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag_set_error before this
procedure is called.

[NP3506/4] Module 21.2: nag.rand_contin 21.2.17

nag_rand_gamma Random Number Generation

4 Error Codes

Fatal errors (error%level = 3):
error%code Description

301 An input argument has an invalid value.

5 Examples of Usage

Assume that all relevant arguments have been declared correctly as described in Section 3, and that
input and input/output arguments have been appropriately initialized. This first example illustrates
how a call to this procedure returns a scalar result.

x = nag_rand_gamma(seed,a,b)
This second example illustrates how a call to this procedure returns an array-valued result.

v(1l:r)= nag_rand_gamma(seed,a,b,r)

6 Further Comments

6.1 Mathematical Background
Let = be a gamma-distributed variable. The probability density function (PDF) of x is defined by

1

= T (a) 2! exp(—z/b) 0<a2<1; a,b>0.

f(z)

6.2 Algorithmic Detail

This procedure uses one of the following three algorithms to generate random numbers depending upon
the value of a.

e For a < 1 a switching algorithm described in Dagpunar [7] (called G6) is used. The target
distributions are fi(z) = caz® 1/t and fo(z) = (1 — ¢)e" @ where ¢ = t(t + ae™"), and
the switching parameter, ¢, is taken as 1 — a. This is similar to Ahrens and Dieter’s GS algorithm
(Ahrens and Dieter [1]) in which ¢ = 1.

e For a = 1 the gamma distribution reduces to the exponential distribution and so the method based
on the logarithmic transformation of a uniform random variate is used.

e For a > 1 the algorithm given in Best [3] is used; this is based on using a Student’s t-distribution
with two degrees of freedom as the target distribution in an envelope rejection method.

21.2.18 Module 21.2: nag.rand_contin [NP3506/4]

Random Number Generation Ezxzample 1

Example 1: Generation of Repeatable and Non-repeatable
Sequences of Random Numbers from a Uniform Distribution

This example program shows how nag rand seed_set and nag rand uniform may be used to
give repeatable and non-repeatable sequences of random numbers from a uniform distribution.
nag rand uniform is called both as an array-valued function and as a scalar-valued function.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_rand_contin_ex01

! Example Program Text for nag_rand_contin
! NAG £190, Release 4. NAG Copyright 2000.

! .. Use Statements

USE nag_examples_io, ONLY : nag_std_out

USE nag_rand_contin, ONLY : nag_rand_uniform, nag_rand_seed_set, &
nag_seed_wp => nag_seed_dp

! .. Implicit None Statement

IMPLICIT NONE

! .. Intrinsic Functions

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: r =5

INTEGER, PARAMETER :: wp = KIND(1.0DO)

CHARACTER (*), PARAMETER :: fmt = ’(1X,8F8.4)°

! .. Local Scalars ..

INTEGER :: i, k

TYPE (nag_seed_wp) :: seed

! .. Local Arrays ..

REAL (wp) :: x(x), y(r), z(x)

! .. Executable Statements

WRITE (nag_std_out,*) ’Example Program Results for nag_rand_contin_ex01’
WRITE (nag_std_out,*)

! repeatable sequence of random numbers
WRITE (nag_std_out,*) &
’repeatable sequence of random numbers from a uniform distribution’
WRITE (nag_std_out,*) ’using array-valued function’
k=0
CALL nag_rand_seed_set(seed, k)
x = nag_rand_uniform(seed,r)
WRITE (nag_std_out,fmt) x
WRITE (nag_std_out,*)
WRITE (nag_std_out,*) ’the same sequence using scalar-valued function’
k=0
CALL nag_rand_seed_set(seed,k)
DOi=1,r
y(i) = nag_rand_uniform(seed)

END DO
WRITE (nag_std_out,fmt) y

[NP3506/4] Module 21.2: nag.rand_contin 21.2.19

Example 1

WRITE (nag_std_out,*)
! non-repeatable sequence of random numbers

WRITE (nag_std_out,*) ’non-repeatable sequence of random &
&numbers from a uniform distribution’

CALL nag_rand_seed_set(seed)

z = nag_rand_uniform(seed,r)
WRITE (nag_std_out,fmt) =z

END PROGRAM nag_rand_contin_ex01

2 Program Data

None.

3 Program Results

Example Program Results for nag_rand_contin_ex01

repeatable sequence of random numbers from a uniform distribution
using array-valued function

0.7951 0.2257 0.3713 0.2250 0.8787

the same sequence using scalar-valued function
0.7951 0.2257 0.3713 0.2250 0.8787

non-repeatable sequence of random numbers from a uniform distribution
0.4829 0.3082 0.1763 0.6258 0.9510

21.2.20 Module 21.2: nag rand_contin

Random Number Generation

[NP3506,/4]

Random Number Generation Ezample 2

Example 2: Generation of a Vector of Random Numbers
from a Multivariate Normal Distribution

This example illustrates the use of nag_rand mv_normal for generating a vector of random numbers from
a bivariate Normal distribution with means p; = 1.0, ps = 2.0; variances o117 = 2.0, 092 = 3.0; and
covariances 012 = 097 = 1.0. The Cholesky decomposition of the given covariance matrix is calculated
in the first call and it is used in other subsequent calls.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_rand_contin_ex02

! Example Program Text for nag_rand_contin
! NAG £190, Release 4. NAG Copyright 2000.

! .. Use Statements

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_write_mat, ONLY : nag_write_tri_mat

USE nag_rand_contin, ONLY : nag_rand_mv_normal, nag_rand_seed_set, &
nag_seed_wp => nag_seed_dp

! .. Implicit None Statement

IMPLICIT NONE

! .. Intrinsic Functions

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0DO)

CHARACTER (), PARAMETER :: fmt = ’(/1x,a/(1X, 2F5.1))’

! .. Local Scalars ..

INTEGER :: i, k, n, nw, T

TYPE (nag_seed_wp) :: seed

! .. Local Arrays

REAL (wp), ALLOCATABLE :: a(:), c(:,:), chol(:), x(:,:)

! .. Executable Statements

WRITE (nag_std_out,*) ’Example Program Results for nag_rand_contin_ex02’

READ (nag_std_in,*) skip heading in data file
READ (nag_std_in,*) n number of variables
READ (nag_std_in,*) r ! number of random number sequences

nw = (nx(n+1))/2
ALLOCATE (a(n),c(n,n),chol(nw),x(r,n)) ! Allocate storage

READ (nag_std_in,*) a | mean vector
READ (nag_std_in,*) (c(i,i:),i=1,n) ! covariance matrix

k=0

CALL nag_rand_seed_set(seed,k)

x(1,:) = nag_rand_mv_normal(seed,a,c=c,rel_tol=0.01_wp,chol=chol)

DOi=2,r
x(i,:) = nag_rand_mv_normal(seed,a,chol=chol)

END DO

WRITE (nag_std_out,fmt) ’Mean Vector’, a

[NP3506/4] Module 21.2: nag.rand_contin 21.2.21

FEzample 2

CALL nag_write_tri_mat(’u’,c,title=’Covariance Matrix’)

Random Number Generation

WRITE (nag_std_out,’(/1x,a/(1X, 2F8.4))’) ’Random Number Sequence’, &

(x(i,:),i=1,r)
DEALLOCATE (a,c,chol,x) ! Deallocate storage

END PROGRAM nag_rand_contin_ex02

2 Program Data

Example Program Data for nag_rand_contin_ex02

2 : number of variables
: number of random number sequences
: End of mean vector (A)

N = O

o O
w = N
o O O

: End of covariance matrix (C)

3 Program Results
Example Program Results for nag_rand_contin_ex02

Mean Vector
1.0 2.0
Covariance Matrix
2.0000 1.0000
3.0000

Random Number Sequence
1.7697 4.4481
3.2678 3.0583
3.1769 2.3651

-0.1055 1.8395
1.2933 -0.1850

21.2.22 Module 21.2: nag rand_contin

[NP3506,/4]

Random Number Generation Additional Examples

Additional Examples

Not all example programs supplied with NAG fl90 appear in full in this module document. The following
additional examples, associated with this module, are available.

nag-rand_contin_ex03

Generation of real random numbers from a uniform distribution with end-points (a,b) or (0,1),
using both scalar-valued and array-valued function calls.

nag_rand_contin_ex04

Generation of real random numbers from a negative exponential distribution with known
parameter, using both scalar-valued and array-valued function calls.

nag_rand_contin_ex05

Generation of real random numbers from a beta distribution with known parameters, using both
scalar-valued and array-valued function calls.

nag_rand_contin_ex06

Generation of real random numbers from a gamma distribution with known parameters, using
both scalar-valued and array-valued function calls.

nag_rand_contin_ex07

Generation of real random numbers from a Normal distribution with known parameters using both
Brent and Box—Muller methods, and scalar-valued function calls.

nag-rand_contin_ex08

Generation of real random numbers from a Normal distribution with known parameters, using
both Brent and Box—Muller methods, and array-valued function calls.

[NP3506/4] Module 21.2: nag.rand_contin 21.2.23

References Random Number Generation

References

[1] Ahrens J H and Dieter U (1989) A convenient sampling method with bounded computation times
for Poisson distributions Amer. J. Math. Management Sci. 1-13

[2] Atkinson A C (1979) A family of switching algorithms for the computer generation of beta random
variates Biometrika 66 141-5

[3] Best D J (1978) Letter to the Editor Appl. Statist. 29 181

[4] Box G E P and Muller M E (1958) A note on the generation of random normal deviates Ann. Math.
Statist. 29 610-611

[5] Brent R P (1974) Algorithm 488 Comm. ACM 704

[6] Cheng R C H (1978) Generating beta variates with nonintegral shape parameters Comm. ACM 21
317-322

[7] Dagpunar J (1988) Principles of Random Variate Generation Oxford University Press

[8] Kendall M G and Stuart A (1976) The Advanced Theory of Statistics (Volume 3) Griffin (3rd
Edition)

[9] Knuth D E (1981) The Art of Computer Programming (Volume 2) Addison-Wesley (2nd Edition)
[10] Morgan B J T (1984) Elements of Simulation Chapman and Hall
[11] Ripley B D (1987) Stochastic Simulation Wiley

21.2.24 Module 21.2: nag.rand_contin [NP3506/4]

