Operations Research Chapter Introduction

Chapter 19

Operations Research

1 Scope of the Chapter

This chapter provides procedures for the numerical solution of certain integer programming and shortest path problems.

2 Available Modules

Module 19.1: nag_ip — Integer Programming

This module provides a procedure for solving

• 'zero-one', 'general', 'mixed' or 'all' integer linear programming problems using a branch and bound method.

Module 19.2: nag_short_path — Shortest Path Problems

This module provides a procedure for finding

• the shortest path through a directed or undirected acyclic network using Dijkstra's algorithm.

3 Background

3.1 Integer Programming Problems

General linear programming (LP) problems (see Dantzig [1]) are of the form:

find
$$x = (x_1, x_2, \dots, x_n)^T$$
 to maximize $F(x) = \sum_{j=1}^n c_j x_j$

subject to linear constraints which may have the forms:

$$\sum_{j=1}^{n} a_{ij}x_{j} = b_{i}, \qquad i = 1, 2, \dots, m_{1} \qquad \text{(equality)}$$

$$\sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i}, \qquad i = m_{1} + 1, \dots, m_{2} \qquad \text{(inequality)}$$

$$\sum_{j=1}^{n} a_{ij}x_{j} \geq b_{i}, \qquad i = m_{2} + 1, \dots, m \qquad \text{(inequality)}$$

$$x_{j} \geq l_{j}, \qquad j = 1, 2, \dots, n \qquad \text{(simple bound)}$$

$$x_{j} \leq u_{j}, \qquad j = 1, 2, \dots, n \qquad \text{(simple bound)}.$$

This chapter is concerned with *integer programming* (IP) problems in which some (or all) of the elements of the vector x are further constrained to be *integers*. For general LP problems where x takes only real (i.e., non-integer) values, refer to Chapter 9. Note that IP problems may or may not have a solution, which may or may not be unique.

Consider for example the following problem:

$$\begin{array}{ll} \text{minimize} & 3x_1 + 2x_2 \\ \text{subject to} & 4x_1 + 2x_2 \geq 5, \\ & 2x_2 \leq 5, \\ & x_1 - x_2 \leq 2, \\ \text{and} & x_1 \geq 0, x_2 \geq 0. \end{array}$$

[NP3506/4] 19.0.1

Chapter Introduction Operations Research

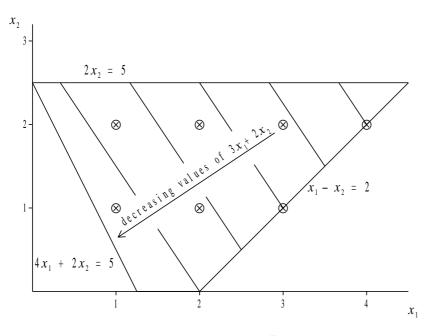


Figure 1.

The hatched area in Figure 1 is the *feasible region*, the region where all the constraints are satisfied, and the points within it which have integer co-ordinates are circled. The lines of hatching are in fact contours of decreasing values of the objective function $3x_1 + 2x_2$, and it is clear from Figure 1 that the optimum IP solution is at the point (1,1). For this problem the solution is unique.

However, there are other possible situations:

there may be more than one solution; e.g., if the objective function in the above problem were changed to $x_1 + x_2$, both (1,1) and (2,0) would be IP solutions;

the feasible region may contain no points with integer co-ordinates; e.g., if the bound constraint

$$3x_1 \le 2$$

were added to the above problem;

there may be no feasible region; e.g., if the linear constraint

$$x_1 + x_2 \le 1$$

were added to the above problem;

the objective function may have no finite minimum within the feasible region; this means that the feasible region is unbounded in the direction of decreasing values of the objective function, e.g., if the constraints

$$4x_1 + 2x_2 \ge 5$$
, $x_1 \ge 0$ and $x_2 \ge 0$

were deleted from the above problem.

Algorithms for IP problems are usually based on algorithms for general LP problems, together with some procedure for constructing additional constraints which exclude non-integer solutions (see Beale [2]).

[NP3506/4]

Operations Research Chapter Introduction

The Branch and Bound (B&B) method is a well-known and widely used technique for solving IP problems (see Beale [2] or Mitra [3]). It involves subdividing the optimum solution to the original LP problem into two mutually exclusive sub-problems by branching an integer variable that currently has a fractional optimal value. Each sub-problem can now be solved as an LP problem, using the objective function of the original problem. The process of branching continues until a solution for one of the sub-problems is feasible with respect to the integer problem. In order to prove the optimality of this solution, the rest of the sub-problems in the B&B tree must also be solved. Naturally, if a better integer feasible solution is found for any sub-problem, it should replace the one at hand. Computational efficiency is enhanced by discarding inferior sub-problems. These are problems in the B&B search tree whose LP solutions are lower than (in the case of maximization) the best integer solution at hand.

3.2 Shortest Path Problems

The shortest path problem is that of finding a path of minimum length between two distinct vertices n_s and n_e through a network. Suppose the vertices in the network are labelled by the integers 1, 2, ..., n. Let (i, j) denote an ordered pair of vertices in the network (where i is the origin vertex and j the destination vertex of the arc), x_{ij} the amount of flow in arc (i, j) and d_{ij} the length of the arc (i, j). The LP formulation of the problem is thus given as

minimize
$$\sum \sum d_{ij}x_{ij}$$
 subject to $Ax = b, \ 0 \le x \le 1,$ (1)

where

$$a_{ij} = \begin{cases} +1 & \text{if arc } j \text{ is directed away from vertex } i, \\ -1 & \text{if arc } j \text{ is directed towards vertex } i, \\ 0 & \text{otherwise} \end{cases}$$

and

$$b_i = \begin{cases} +1 & \text{for } i = n_s, \\ -1 & \text{for } i = n_e, \\ 0 & \text{otherwise.} \end{cases}$$

The above formulation only yields a meaningful solution if $x_{ij} = 0$ or 1; i.e., arc (i, j) forms part of the shortest route only if $x_{ij} = 1$. In fact since the optimal LP solution will (in theory) always yield $x_{ij} = 0$ or 1, (1) can also be solved as an IP problem. Note that the problem may also be solved directly (and more efficiently) using a variant of Dijkstra's algorithm (see Ahuja *et al* [4]).

4 References

- [1] Dantzig G B (1963) Linear Programming and Extensions Princeton University Press
- [2] Beale E M (1977) Integer Programming The State of the Art in Numerical Analysis (ed D A H Jacobs) Academic Press
- [3] Mitra G (1973) Investigation of some branch and bound strategies for the solution of mixed integer linear programs *Math. Programming* 4 155–170
- [4] Ahuja R K, Magnanti T L and Orhin J B (1993) Network Flows: Theory, Algorithms and Applications Prentice-Hall

[NP3506/4] 19.0.3