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Solution of Initial-value Problems for Ordinary
Differential Equations by Runge–Kutta Methods

nag ivp ode rk contains a set of procedures for solving the initial-value problem for a
system of first-order ordinary differential equations. The procedures are based on Runge–
Kutta methods.
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Ordinary Differential Equations Module Introduction

Introduction
This module provides a set of procedures for solving the initial value problem for a system of first-order
ordinary differential equations. The procedures, based on Runge–Kutta methods, integrate

y′ = f(t, y), given the initial condition y(t0)

from the initial point t0 towards the end point te, where y is the vector of n solution components and t
is the independent variable.

Integration proceeds in a step by step fashion from the initial point t0 towards the end point te and
the approximate solution y is computed at points which depend on the particular integration procedure
selected. For each component yi, for i = 1, 2, . . . , n, the estimate of the error made at the points of
integration, i.e., the local error, is kept smaller than a user-specified accuracy.

The data related to initial conditions, t0 and y(t0), the end point te, and the accuracy required in the
process of computing the solution must be specified by a call to the setup procedure nag rk setup. This
must be followed by one or more calls to an integration procedure.

The module offers a choice between the following two integration procedures.

• nag rk interval enables you to specify explicitly the points at which the solution is required
across an interval.

• nag rk step computes the solution one step at a time. The size of each step is selected
automatically by the procedure.

You may specify which of these procedures you intend to use in the call to nag rk setup.

The difference between nag rk interval and nag rk step is the flexibility which nag rk step offers
you for performing different tasks between each integration step; for example, you may wish to locate a
root of a function of the solution in between each step. The flexibility which nag rk step offers makes
nag rk setup quite suitable for performing complicated tasks and solving difficult problems. Before
using this procedure, you are advised to think carefully about the nature of your problem, and the tasks
which you wish to perform.

There are two diagnostic procedures which can provide additional information about the integration
after a call to either nag rk interval or nag rk step.

• nag rk info provides details of the step size and the cost of the integration.

• nag rk global err provides information about global error assessment.

In addition there are two utility procedures which can only be used in conjunction with nag rk step.

• nag rk interp computes the solution by interpolation.

• nag rk reset end may be used to reset the end point of integration te in between calls to
nag rk step. This is more efficient than calling nag rk setup to reinitialise the integration.

nag rk interval uses nag rk step, nag rk reset end and nag rk interp to compute the solution at
user-specified points.
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Procedure: nag rk setup

1 Description

nag rk setup is a set up procedure which must be called prior to either of the two integration procedures
nag rk interval and nag rk step. It is used to specify the data defining the initial conditions, t0 and
y(t0), the end point te, the error control parameters and other options. It is also used to initialise the
communicating structure comm.

The integration procedures in this module use relative local error control, with tol being the desired
relative accuracy. An explanation of how the local error is controlled appears in Section 6.1.

There are optional arguments which specify the selection of a Runge–Kutta pair to be used for integration,
the choice of the integration procedure, whether or not global error assessment should take place, and
the setting of a trial initial step size. Advice on the choice of these optional arguments is provided in
Section 6.

2 Usage

USE nag ivp ode rk

CALL nag rk setup(t start, y start, t end, tol, thresh, comm [, optional arguments])

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

n ≥ 1 — the number of equations

3.1 Mandatory Arguments

t start — real(kind=wp), intent(in)
Input: the initial value of the independent variable, t0.

y start(n) — real(kind=wp), intent(in)
Input: the initial values yi(t0) of the solution yi, for i = 1, 2, . . . , n at t0.

t end — real(kind=wp), intent(in)
Input: the final value of the independent variable, te, at which the solution is required. t start
and t end together determine the direction of integration.
Constraints: t end must be distinguishable from t start for the method and precision of the
machine being used.

tol — real(kind=wp), intent(in)
Input: a relative error tolerance. See Section 6.1 and Section 6.4 for more details.
Constraints: 10 × EPSILON(1.0 wp) ≤ tol ≤ 0.01.

thresh(n) — real(kind=wp), intent(in)
Input: a vector of thresholds. See Section 6.1 and Section 6.2 for details of how this argument is
used for the control of local error.
Constraints: thresh ≥ SQRT(TINY(1.0 wp)).
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comm — type(nag rk comm wp), intent(out)
Output: this argument is the communicating structure, and is initialised to hold information
concerning how the user wants to perform the integration.
Note: to reduce the risk of corrupting the data accidentally, the components of this structure are
private.
The procedure allocates between 10n and 32n real(kind=wp) elements of storage to the structure.
If you wish to deallocate this storage when the integration is complete and the structure is no longer
required, you must call the procedure nag deallocate, as illustrated in Example 1. If comm was
used in a previous call to this procedure, the information generated by that call will be lost.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

method — integer, intent(in), optional
Input: the Runge–Kutta method to be used. See Section 6.3 for advice on the choice of this
argument.

If method = 1 then a 2(3) pair is used;
if method = 2 then a 4(5) pair is used;
if method = 3 then a 7(8) pair is used.

Default: method = 2.
Constraints: 1 ≤ method ≤ 3.

call step — logical, intent(in), optional
Input: determines whether integration is to be performed by a call to this procedure (see the Module
Introduction).

If call step = .false., then nag rk interval is to be used for the integration;
if call step = .true., then this procedure is to be used for integration.

Default: call step = .false..

global err — logical, intent(in), optional
Input: specifies whether a global error assessment is to be computed. See Section 6.4 for more
details.
Default: global err = .false., i.e., no global error assessment is to be computed.

h start — real(kind=wp), intent(in), optional
Input: a trial value for the size of the first step in the integration to be attempted. The absolute
value of h start is used with the direction being determined by t start and t end. If h start =
0.0 then the size of the first step is computed automatically. See Section 6.5 for more details.
Note: if h start > | t end − t start |, then h start is internally set to zero.
Default: h start = 0.0.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.
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4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

5 Examples of Usage

Complete examples of the use of this procedure appear in Examples 1, 2 and 3 of this module document.

6 Further Comments

6.1 Accuracy

Essentially, the integration procedures use relative local error control, with tol being the desired
relative accuracy. The magnitude of the local error in yi on any step will not be greater than tol
× max(ηi,thresh(i)) where ηi is an average magnitude of yi over the step. If thresh(i) is smaller than
the current value of ηi, this is a relative error control and tol indicates how many significant digits are
required in yi. If thresh(i) is larger than the current value of ηi, this is an absolute error control with
tolerance tol × thresh(i). Relative error control is the recommended mode of operation, but pure
relative error control (i.e., thresh(i) = 0.0) is not permitted.

6.2 Choice of Thresholds

An appropriate threshold depends on the general size of yi in the course of the integration. It is often
the case that a solution component yi is of no interest when it is smaller in magnitude than a certain
threshold. You can inform the code of this by setting thresh(i) to this threshold. In this way you avoid
the cost of computing unnecessary significant digits in yi. This matter is important whenever the initial
value y start(i) vanishes. For example, when one of the solution components might vanish, you should
not specify a very small threshold. In particular, this is not advised when yi = 0.0. Physical reasoning
may help you select suitable threshold values.

6.3 Choice of Runge–Kutta Method

The Runge–Kutta formulae pairs available are of orders 2(3), 4(5) and 7(8). As a rule, the smaller
the required relative accuracy, the higher the order of Runge–Kutta method to be used. For a relative
accuracy requirement, experience suggests:

required accuracy most efficient Runge–Kutta method

10−2 − 10−4 2(3)
10−3 − 10−6 4(5)
10−5 − 10 × EPSILON(1.0 wp) 7(8)

Making the required accuracy smaller will normally make the integration more expensive. However,
within the range of required accuracy appropriate to a given Runge–Kutta method, this increase in cost
is modest.

In the following situations a choice of Runge–Kutta method is not advised.

1. None of the methods are efficient when the system of ordinary differential equations is ‘stiff’. For a
mildly stiff problem, the 2(3) method may solve the system with an acceptable efficiency. However,
if the problem is moderately or very stiff, a code designed specifically for such a system will be
much more efficient.
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2. In the case when one of the solution components might vanish, with a very small threshold (see
above), the methods will have to work hard to compute the significant digits. In this situation you
are advised not to use the 2(3) method.

3. The 7(8) Runge–Kutta pair cannot be used in conjunction with the interpolation procedure
nag rk interp.

In general, for efficiency, the higher the order of method, the more smoothness is required in the behaviour
of the solution.

6.4 Local Error Control and Global Error Assessment

We define the true or global error as the difference between the numerical solution and the true solution
and local error as the error made in each step of computation. nag rk interval and nag rk step
are designed to control local error rather than the true (global) error. However, control of the local
error controls the true error indirectly. Roughly speaking, the solution computed by the code satisfies
the differential equation to within a fraction of the error tolerance. Furthermore, the closeness of the
numerical solution to the true solution depends on the stability of the problem. Most practical problems
are at least moderately stable, and the true error is then comparable to the error tolerance. The accuracy
of the numerical solution can be judged by the following two (indirect and direct) approaches.

1. You could reduce tol substantially, e.g.,, use 0.1 × tol, and solve the problem again. This
will usually result in a rather more accurate solution, and the true error of the first integration
can be estimated by comparison. The assessment of the true error by this approach is generally
satisfactory.

2. Alternatively, a global error assessment can be computed automatically if the argument global err
is set to .true.. The direct assessment of the global error at each step is performed by a primary
integration, that is computing a solution yi at the point ti with an internally computed step size,
and a secondary integration, that is computing a more accurate solution ŷi at the same point (ti)
by taking two (or more) steps. A comparison of these two results provides a mean for assessing
the quality of the solution in the primary integration. The primary integration is exactly that
computed when global err = .false..

Because both ways of assessing true errors cost significantly more than the cost of the integration itself,
such assessments should be used mostly for spot checks, selecting appropriate tolerances for local error
control, and exploratory computations.
When assessment of the global error is requested directly, this error assessment is updated at each step.
Its value can be obtained at any time by a call to procedure nag rk global err. The code monitors
the computation of the global error assessment and reports any doubts it has about the reliability of the
results. The assessment scheme requires some smoothness of f(t, y), and it can be deceived if f is not
sufficiently smooth. At very crude tolerances the numerical solution can become so inaccurate that it is
impossible to continue assessing the accuracy reliably. At very stringent tolerances the effects of finite
precision arithmetic can make it impossible to assess the accuracy reliably. The cost of direct global
error assessment is roughly twice the cost of the integration itself with method = 2 or 3, and three times
with method = 1.

6.5 Choice of the Initial Step Size

The first step of the integration is critical because it sets the scale of the problem. The integrator will
find a starting step size automatically if h start = 0.0 (the default). Automatic selection of the first
step is so effective that you should normally use it. Nevertheless, you might want to specify a trial value
for the first step to be certain that the code recognizes the scale on which phenomena occur near the
initial point. Also, automatic computation of the first step size involves some cost, so supplying a good
value for this step size will result in a less expensive start. If you are confident that you have a good
value, supply it in the optional argument h start.
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6.6 Resetting the End-point of the Integration Interval

If integration is taking place using this procedure, the value of t end may be reset during the
integration without the overhead associated with a complete restart; this can be achieved by a call
to nag rk reset end.
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Procedure: nag rk interval

1 Description

nag rk interval is a procedure for solving the initial value problem for a system of first-order ordinary
differential equations across an interval, using a Runge–Kutta method. This procedure is designed to
compute an approximate solution at user-specified points. A call must first be made to nag rk setup
to specify the problem and how it is to be solved. Thereafter you call nag rk interval repeatedly with
successive values of t want, the points at which you want the solution, in the range from t start to
t end (as specified in nag rk setup). In this manner this procedure returns the point at which it has
computed a solution, t got (usually t want), the solution there, y got, and its derivative, yp got. If
this procedure encounters some difficulty in taking a step towards t want, then it returns the point of
difficulty t got and derivative yp got computed there.

In the call to nag rk setup you can specify the first step size for nag rk interval to attempt.
Alternatively nag rk interval will compute an appropriate first step. Thereafter this procedure
estimates an appropriate step size for its next step. This value and other details of the integration
can be obtained after any call to this procedure by a call to the procedure nag rk info. The local error
is controlled at every step as specified in Section 6.1.

For more complicated tasks, you are referred to procedures nag rk step, nag rk interp and
nag rk reset end.

2 Usage

USE nag ivp ode rk

CALL nag rk interval(f, t want, t got, y got, yp got, comm [, optional arguments])

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

n ≥ 1 — the number of equations

3.1 Mandatory Arguments

f — function
The function f supplied by the user must evaluate the functions fi (that is the first derivatives y′

i)
for the given values of the arguments t and yi.

The specification of f is:

function f(t, y)

real(kind=wp), intent(in) :: t

Input: the current value of the independent variable, t.

real(kind=wp), intent(in) :: y(:)
Shape: y has shape (n).
Input: the current values of the dependent variables, yi, for i = 1, 2, . . . , n.
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real(kind=wp) :: f(SIZE(y))

Result: the values of the first derivatives, y′
i, for i = 1, 2, . . . , n.

t want — real(kind=wp), intent(in)
Input: the next value of the independent variable, t, where a solution is desired.
Constraints: t want must be closer to t end than the previous value of t got (or t start on
the first call to this procedure). Note that t want must not lie beyond t end in the direction of
integration.

t got — real(kind=wp), intent(out)
Output: the value of the independent variable, t, at which the solution has been computed. On
successful exit, t got = t want. If, however, error%level = 2, a solution has still been computed
at t got but t got �= t want.

y got(n) — real(kind=wp), intent(out)
Output: an approximation to the true solution at the value of t got. At each step of the integration
to t got, the local error has been controlled as specified in nag rk setup. The local error has still
been controlled even if error%level = 2.

yp got(n) — real(kind=wp), intent(out)
Output: an approximation to the first derivative of the true solution at t got.

comm — type(nag rk comm wp), intent(inout)
Input: information required by the procedure in order to perform the integration.
Output: information necessary for a subsequent call to any of the procedures in the module.

3.2 Optional Argument

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

306 Invalid sequence of calls.

For example, the last call to this procedure returned with an error and you are calling
it again with the same argument comm.
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Failures (error%level = 2):

error%code Description

201 It does not appear possible to achieve the accuracy specified by tol and thresh in
the call to nag rk setup.

You cannot continue integrating this problem. A larger value for method, if possible,
will permit greater accuracy. To increase method and/or continue with larger
values of tol and/or thresh, restart the integration from t got, y got by a call
to nag rk setup.

202 The global error assessment may not be reliable beyond the current integration point
t got.

This error can only occur if global err =.true. in the call to nag rk setup. It may
occur because either too little or too much accuracy has been requested or because f
is not smooth enough beyond t got for the current solution y got. The integration
cannot be continued. This error return does not mean that you cannot integrate
beyond t got, rather that you cannot do it with global err = .true.. However, it
may also indicate problems with the primary integration.

203 This procedure is being used inefficiently because the step size has been reduced
drastically many times to get answers at many points t want.

This return is possible only when method = 3 has been selected in the preceding call
of nag rk setup. The integration was interrupted, so t got �= t want. If you really
need the solution at this many points, you should change to method = 2 because it
is (much) more efficient in this situation. To change method, restart the integration
from t got, y got by a call to nag rk setup. If you wish to continue on towards
t want with method = 3, just call this procedure again without altering any of the
arguments other than error. The internal monitor of this kind of inefficiency will be
reset automatically so that the integration can proceed.

204 A considerable amount of work has been expended in the (primary) integration.

This is measured by counting the number of calls to the function f. At least 5000 calls
have been made since the last time this counter was reset. Calls to f in a secondary
integration for global error assessment are not counted in this total. The integration
was interrupted, so t got �= t want. If you wish to continue on towards t want, just
call this procedure again without altering any of the arguments other than error.
The counter measuring work will be reset to zero automatically.

205 It appears that this problem is ‘stiff’.

The methods implemented in this procedure can solve such problems, but they are
inefficient. The integration was interrupted so t got �= t want. If you want to
continue on towards t want, just call this procedure again without altering any
of the arguments other than error. The internal stiffness monitor will be reset
automatically.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

Assume that all relevant arguments have been declared correctly as described in Section 3, and that
input and input/output arguments have been appropriately initialized.
The following code fragment illustrates the use of this procedure:

...

CALL nag_rk_setup( t_start,y_start,t_end,tol,thresh,comm )

DO

t_want = ...

IF ( t_want > t_end ) EXIT
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CALL nag_rk_interval( f,t_want,t_got,y_got,yp_got,comm )

PRINT*, t_got, y_got

END DO

...

6 Further Comments

6.1 Accuracy

The accuracy of the solution is determined by the arguments tol and thresh in a previous call to
nag rk setup (see Section 6 of the procedure document for nag rk setup for further details and advice).
Note that only the local error at each step is controlled by these arguments. The error estimates obtained
are not strict bounds but are usually reliable over one step. Over a number of steps the overall error
may accumulate in various ways, depending on the properties of the differential system. If you wish to
assess the true error, you must set global err = .true. in the call to nag rk setup. This assessment
can be obtained after any call to nag rk interval by a call to the procedure nag rk global err.

If nag rk interval returns with error%code = 201 and the accuracy specified by tol and thresh is
really required, then you should consider whether there is a more fundamental difficulty. For example,
the solution may contain a singularity. In such a region the solution components will usually be of a
large magnitude. Successive output values of y got should be monitored (or the procedure nag rk step
should be used since this takes one integration step at a time) with the aim of trapping the solution
before the singularity. In any case numerical solution cannot be continued through a singularity, and
analytical treatment may be necessary.

Performance statistics are available after any return from this procedure by a call to the procedure
nag rk info (if error%level ≤ 2). If global err = .true. in the call to nag rk setup, global error
assessment is available after return from nag rk interval (if error%level≤ 2) by a call to the procedure
nag rk global err.

After a failure with error%code = 201 or 202 the diagnostic procedures nag rk info and
nag rk global err may be called only once.

If nag rk interval returns with error%code = 205, then it is advisable to change to another code more
suited to the solution of stiff problems.
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Procedure: nag rk info

1 Description

nag rk info provides details about an integration performed by either nag rk interval or nag rk step.

Note: all the output arguments of this procedure are optional. However, at least one output argument
must be present in every call statement.

2 Usage

USE nag ivp ode rk

CALL nag rk info(comm [, optional arguments])

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

The procedure derives the value of the following problem parameter from the argument comm.

n ≥ 1 — the number of equations

3.1 Mandatory Argument

comm — type(nag rk comm wp), intent(inout)
Input: information required by the procedure in order to provide details about the integration.
Output: information necessary for a subsequent call to any of the procedures in the module.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

num fun eval — integer, intent(out), optional
Output: the total number of evaluations of f used in the primary integration so far; this does not
include evaluations of f for the secondary integration specified by a prior call to nag rk setup with
global err = .true..

step cost — integer, intent(out), optional
Output: the cost in terms of the number of evaluations of f of a typical step with the method being
used for the integration.

waste — real(kind=wp), intent(out), optional
Output: the ratio of the number of attempted steps that failed to meet the local error requirement
to the total number of steps attempted so far in the integration. A ‘large’ fraction indicates that
the integrator is having trouble with the problem being solved. This can happen when the problem
is ‘stiff’ and also when the solution has discontinuities in a low order derivative.

num steps ok — integer, intent(out), optional
Output: the number of accepted steps.
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h next — real(kind=wp), intent(out), optional
Output: the step size the integrator plans to use for the next step.

y max(n) — real(kind=wp), intent(out), optional
Output: y max(i) contains the largest value of |yi| computed at any step in the integration so far.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

305 Invalid absence of an optional argument.

306 Invalid sequence of calls.

For example, without a previous call to one of the integrators nag rk interval or
nag rk step, the last call to the integrator returned with an error or a second call to
this procedure without an intermediate call to an integrator.

5 Examples of Usage

Complete examples of the use of this procedure appear in Examples 1, 2 and 3 of this module document.

6 Further Comments

When a secondary integration has taken place, that is when global error assessment has been specified
using global err = .true. in a previous call to nag rk setup, then the approximate extra number
of evaluations of f required is given by 2 × num steps ok × step cost for method = 2 or 3 and 3 ×
num steps ok × step cost for method = 1.
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Procedure: nag rk global err

1 Description

nag rk global err provides details about global error assessment computed during an integration.

After a call to nag rk interval or nag rk step, this procedure can be called for information about
error assessment if this assessment was specified in the setup procedure nag rk setup. After computing
an approximate solution y in the primary integration, a more accurate ‘true’ solution ŷ is computed in
a secondary integration. The error is computed as specified in nag rk setup for local error control. At
each step in the primary integration, an average magnitude ηi of component yi is computed, and the
estimate of the relative global error in the component is

|yi − ŷi|
max(ηi, thresh(i))

.

It is difficult to estimate reliably the global error at a single point. For this reason the root-mean-square
of the estimated relative global error in each solution component is computed. This average is taken
over all steps from the beginning of the integration through to the current integration point. If all has
gone well, the average errors reported will be comparable to the required accuracy (i.e., tol in procedure
nag rk setup). The maximum error seen in any component in the integration so far and the point where
the maximum error first occurred are also reported.

Note: all the output arguments of this procedure are optional. However, at least one output argument
must be present in every call statement.

2 Usage

USE nag ivp ode rk

CALL nag rk global err(comm [, optional arguments])

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

The procedure derives the value of the following problem parameter from the argument comm.

n ≥ 1 — the number of equations

3.1 Mandatory Argument

comm — type(nag rk comm wp), intent(inout)
Input: information required by the procedure in order to evaluate the global error.
Output: information necessary for a subsequent call to any of the procedures in the module.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

err max — real(kind=wp), intent(out), optional
Output: the new maximum approximate relative global error observed over all solution components
and all steps.
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t err max — real(kind=wp), intent(out), optional
Output: the first value of the independent variable where an approximate relative true error attains
the maximum value, err max.

rms err(n) — real(kind=wp), intent(out), optional
Output: rms err(i) contains the root-mean-square of the relative global error in the primary
integration for the ith solution component, for i = 1, 2, . . . , n. The average is taken over all steps
from the beginning of the integration to the current integration point.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

305 Invalid absence of an optional argument.

306 Invalid sequence of calls.

For example, without a previous call to one of the integrators nag rk interval or
nag rk step, the last call to the integrator returned with an error, the last call to the
integrator did not take any successful step or a second call to this procedure without
an intermediate call to an integrator.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.

6 Further Comments

If the integration has proceeded well and the problem is smooth enough, stable and not too difficult then
the values returned in the arguments rms err and err max should be comparable to the value of tol
specified in the previous call to nag rk setup.
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Procedure: nag rk step

1 Description

nag rk step is a procedure for solving the initial value problem for a system of first-order ordinary
differential equations one step at a time, using a Runge–Kutta method. It is designed to be used
in complex tasks when solving systems of ordinary differential equations. You must first call this
nag rk setup with call step = .true. to specify the problem and how it is to be solved. Thereafter
you call nag rk step repeatedly to take one integration step at a time from t start in the direction of
t end (as specified in nag rk setup), with the size of each step being selected internally. In this manner
nag rk step returns an approximation to the solution and its derivative at successive points. Between
steps you may perform complex tasks, such as locating a root of a function of the solution. If nag rk step
encounters some difficulty in taking a step, the integration is not advanced and the procedure returns
with the same solution as returned on the previous successful step. nag rk step tries to advance the
integration as far as possible subject to passing the test on the local error and not going beyond t end.
In the call to nag rk setup you can specify the first step size for nag rk step to attempt. Alternatively
nag rk step will compute an appropriate first step. Thereafter nag rk step estimates an appropriate
step size for its next step. This value and other details of the integration can be obtained after any call
to nag rk step by a call to the procedure nag rk info. The local error is controlled at every step as
specified in nag rk setup. If you wish to assess the global error, you must set global err = .true. in
the call to nag rk setup. This assessment can be obtained after any call to nag rk step by a call to
the procedure nag rk global err.

2 Usage

USE nag ivp ode rk

CALL nag rk step(f, t now, y now, yp now, comm [, optional arguments])

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

n ≥ 1 — the number of equations

3.1 Mandatory Arguments

f — function
The function f, supplied by the user must evaluate the functions fi (that is the first derivatives y′

i)
for the given values of the arguments t and yi.

The specification of f is:
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function f(t, y)

real(kind=wp), intent(in) :: t

Input: the current value of the independent variable, t.

real(kind=wp), intent(in) :: y(:)
Shape: y has shape (n).
Input: the current values of the dependent variables, yi, for i = 1, 2, . . . , n.

real(kind=wp) :: f(SIZE(y))

Result: the values of the first derivatives, y′
i, for i = 1, 2, . . . , n.

t now — real(kind=wp), intent(out)
Output: the value of the independent variable, t, where a solution has been computed.

y now(n) — real(kind=wp), intent(out)
Output: an approximation to the solution at t now. The local error of the step to t now was no
greater than permitted by the specified tolerances (see nag rk setup).

yp now(n) — real(kind=wp), intent(out)
Output: an approximation to the derivative of the solution at t now.

comm — type(nag rk comm wp), intent(inout)
Input: information required by the procedure in order to perform the integration.
Output: information necessary for a subsequent call to any of the procedures in the module.

3.2 Optional Argument

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

306 Invalid sequence of calls.

For example the last call to this procedure returned with an error and you are calling
it again with the same argument comm.
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Failures (error%level = 2):

error%code Description

201 It does not appear possible to achieve the accuracy specified by tol and thresh in
the call to nag rk setup.

You cannot continue integrating this problem. A larger value for method, if possible,
will permit greater accuracy. To increase method and/or continue with larger
values of tol and/or thresh, restart the integration from t now, y now by a call
to nag rk setup.

202 The global error assessment may not be reliable beyond the current integration point
t now.

This error can only occur if global err = .true. in the call to nag rk setup. It may
occur because either too little or too much accuracy has been requested or because f
is not smooth enough beyond t now for the current solution y now. The integration
cannot be continued. This return does not mean that you cannot integrate beyond
t now, rather that you cannot do it with global err = .true.. However, it may
also indicate problems with the primary integration.

203 This procedure is being used inefficiently because the step size has been reduced
drastically many times to get answers at many points t end.

If you really need the solution at this many points, you should use nag rk interp
to get the answers inexpensively. If you need to change from method = 3 to do this,
restart the integration from t now, y now by a call to nag rk setup. If you wish
to continue as before, call nag rk step again. The internal monitor of this kind of
inefficiency will be reset automatically so that the integration can proceed.

204 A considerable amount of work has been expended in the (primary) integration.

This is measured by counting the number of calls to the procedure f. At least 5000
calls have been made since the last time this counter was reset. Calls to f in a
secondary integration for global error assessment (when global err = .true. in the
initialization call to nag rk setup) are not counted in this total. The integration was
interrupted. If you wish to continue on towards t end, just call nag rk step again.
The counter measuring work will be reset to zero automatically.

205 It appears that this problem is ‘stiff’.

The methods implemented in this procedure can solve such problems, but they are
inefficient. The integration was interrupted. If you want to continue on towards
t end, just call this procedure again. The internal stiffness monitor will be reset
automatically.

5 Examples of Usage

Complete examples of the use of this procedure appear in Examples 2 and 3 of this module document.

Assume that all relevant arguments have been declared correctly as described in Section 3, and that
input and input/output arguments have been appropriately initialized.
The following code fragment illustrates the use of this procedure:

...

CALL nag_rk_setup( t_start,y_start,t_end,tol,thresh,comm,call_step=.TRUE. )

DO

CALL nag_rk_step( f,t_now,y_now,yp_now,comm )

PRINT*, t_now, y_now

...

IF (t_now == t_end) EXIT

END DO

...
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6 Further Comments

If you want answers at specific points there are two ways to proceed.

1. The more efficient way is to step beyond the point where a solution is desired, and then call
nag rk interp to get an answer there. Within the span of the current step, you can get all the
answers you want at very little cost by repeated calls to nag rk interp. This is very valuable
when you want to find ‘special events’, e.g.,, where a particular solution component vanishes. You
cannot proceed in this way with method = 3.

2. The other way to get an answer at a specific point is to set t end to this value and integrate to
t end. This procedure will not step beyond t end, so when a step would carry it beyond, it will
reduce the step size so as to produce an answer at t end exactly. After getting an answer there
(t now = t end), you can reset t end to the next point where you want an answer and repeat.
t end could be reset by a call to nag rk setup, but you should not do this. You should instead
use nag rk reset end because it is both easier to use and much more efficient. This way of getting
answers at specific points can be used with any of the available methods, but it is the only way
with method = 3. This can be inefficient. Should this be the case, the code will bring the matter
to your attention.

6.1 Accuracy

The accuracy of the solution is determined by the arguments tol and thresh in a previous call to
nag rk setup (see Section 6 of the procedure document for nag rk setup for further details and advice).
Note that only the local error at each step is controlled by these arguments. The error estimates obtained
are not strict bounds but are usually reliable over one step. Over a number of steps the overall error
may accumulate in various ways, depending on the properties of the differential system.

If nag rk step returns with error%code = 201 and the accuracy specified by tol and thresh is really
required, then you should consider whether there is a more fundamental difficulty. For example, the
solution may contain a singularity. In such a region the solution components will usually be of a large
magnitude. Successive output values of y now should be monitored with the aim of trapping the solution
before the singularity. In any case numerical solution cannot be continued through a singularity, and
analytical treatment may be necessary.

Performance statistics are available after return from this procedure (if error%level ≤ 2) by a call
to the procedure nag rk info. If global err = .true. in the call to nag rk setup, global error
assessment is available after any return from nag rk step (if error%level≤ 2) by a call to the procedure
nag rk global err.

After a failure with error%code = 201 or 202 the diagnostic procedures nag rk info and
nag rk global err may be called only once.

If this procedure returns with error%code = 205, then it is advisable to change to another code more
suited to the solution of stiff problems.
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Procedure: nag rk interp

1 Description

nag rk interp is a procedure to compute an approximate solution of a system of ordinary differential
equations using interpolation anywhere within an integration step taken by nag rk step. The procedure
is only capable of performing the interpolation for method = 1 and 2. The accuracy of the computed
values will be similar to that computed by nag rk step.

Note: all the output arguments of this procedure are optional. However, at least one output argument
must be present in every call statement.

2 Usage

USE nag ivp ode rk

CALL nag rk interp(f, t want, comm [, optional arguments])

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

1 ≤ l ≤ n — the number of required components of the solution
1 ≤ m ≤ n — the number of required components of the first derivative

The parameter n is obtained from the argument comm.

3.1 Mandatory Arguments

f — function
The function f, supplied by the user must evaluate the functions fi (that is the first derivatives y′

i)
for the given values of the arguments t and yi.

The specification of f is:

function f(t, y)

real(kind=wp), intent(in) :: t

Input: the current value of the independent variable, t.

real(kind=wp), intent(in) :: y(:)
Shape: y has shape (n).
Input: the current values of the dependent variables, yi, for i = 1, 2, . . . , n.

real(kind=wp) :: f(SIZE(y))

Result: the values of the first derivatives, y′
i, for i = 1, 2, . . . , n.

t want — real(kind=wp), intent(in)
Input: the value of the independent variable, t, where a solution is required.
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comm — type(nag rk comm wp), intent(inout)
Input: information required by the procedure in order to perform the interpolation.
Output: information necessary for a subsequent call to any of the procedures in the module.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

y want(l) — real(kind=wp), intent(out), optional
Output: an approximation to the first l components of the solution at t want.

yp want(m) — real(kind=wp), intent(out), optional
Output: an approximation to the first m components of the first derivative at t want.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

305 Invalid absence of an optional argument.

306 Invalid sequence of calls.

For example, without a previous call to the integrator nag rk step, the last call to
the integrator returned with an error, or the last call to the integrator nag rk step
was being used with method = 3.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.

6 Further Comments

This procedure cannot be used in conjunction with nag rk interval.
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Procedure: nag rk reset end

1 Description

nag rk reset end is used to reset the final value of the independent variable, te, when the integration is
already underway in a step by step manner using nag rk step. It can also be used to extend or reduce
the range of integration. The new value must be beyond the current value of the independent variable
(as returned in t now by nag rk step) in the current direction of integration. It is much more efficient to
use this procedure for this purpose than to use nag rk setup, which involves the overhead of a complete
restart of the integration.

If you want to change the direction of integration then you must restart by a call to nag rk setup.

2 Usage

USE nag ivp ode rk

CALL nag rk reset end(t end new, comm [, optional arguments])

3 Arguments

3.1 Mandatory Arguments

t end new — real(kind=wp), intent(in)
Input: the new value of the independent variable, te.
Constraints: sign(t end new − t now) = sign(t end − t start), where t start and t end are
as supplied in the previous call to nag rk setup and t now is returned by the preceding call to
nag rk step. Note that t end new must be distinguishable from t now for the method and the
precision of the machine being used.

comm — type(nag rk comm wp), intent(inout)
Input: information required by the procedure in order to reset the integration end point.
Output: information necessary for a subsequent call to any of the procedures in the module.

3.2 Optional Argument

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

306 Invalid sequence of calls.

For example, without a previous call to the integrator nag rk step or the last call to
the integrator returned with an error.
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5 Examples of Usage

A complete example of the use of this procedure appears in Example 3 of this module document.

6 Further Comments

This procedure cannot be used in conjunction with nag rk interval.
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Derived Type: nag rk comm wp

Note. The names of derived types containing real/complex components are precision dependent. For double precision the
name of this type is nag rk comm dp. For single precision the name is nag rk comm sp. Please read the Users’ Note for your
implementation to check which precisions are available.

1 Description

A structure of the type nag rk comm wp is used to communicate information between the various
procedures contained in this module.

Some procedures in the module allocate storage to the pointer components of the structure. For details
of the amount of storage allocated see the description of the argument comm in the procedure documents
for nag rk setup and nag rk interp.

If you wish to deallocate the storage when the integration is complete and the structure is no longer
required, you must call the generic deallocation procedure nag deallocate, which is described in the
module document nag lib support (1.1).

The components of this type are private.

2 Type Definition

type nag rk comm wp
private
.
.
.

end type nag rk comm wp

3 Components

In order to reduce the risk of accidental data corruption the components of this type are private and
may not be accessed directly.
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Example 1: Integration over an interval

We solve the equation

y′′ = −y

over the range [0, 2π], with initial conditions y(0) = 0, y′(0) = 1. This is reposed as

y′
1 = y2, y′

2 = −y1

with initial conditions y1(0) = 0.0 and y2(0) = 1.0. We use relative error control with threshold values of
10−8 for each solution component and compute the solution at intervals of length π/4 across the range.
We use the default Runge–Kutta method (i.e., method = 2) with tol = 10−3 and tol = 10−4 in turn
so that we may compare the solutions.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

MODULE ivp_ode_rk_ex01_mod

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

CONTAINS

FUNCTION f(t,y)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC SIZE

! .. Scalar Arguments ..

REAL (wp), INTENT (IN) :: t

! .. Array Arguments ..

REAL (wp), INTENT (IN) :: y(:)

! .. Function Return Value ..

REAL (wp) :: f(SIZE(y))

! .. Executable Statements ..

f(1) = y(2)

f(2) = -y(1)

END FUNCTION f

END MODULE ivp_ode_rk_ex01_mod

PROGRAM nag_ivp_ode_rk_ex01

! Example Program Text for nag_ivp_ode_rk

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_ivp_ode_rk, ONLY : nag_rk_comm_wp => nag_rk_comm_dp, &

nag_rk_setup, nag_rk_interval, nag_rk_info, nag_deallocate

USE nag_math_constants, ONLY : nag_pi

USE nag_examples_io, ONLY : nag_std_out
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USE ivp_ode_rk_ex01_mod, ONLY : wp, f

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Parameters ..

INTEGER, PARAMETER :: n = 2

! .. Local Scalars ..

INTEGER :: i, j, nout, num_fun_eval

REAL (wp) :: pi, tinc, tol, t_end, t_got, t_start, t_want

TYPE (nag_rk_comm_wp) :: comm

! .. Local Arrays ..

REAL (wp) :: thresh(n), yp_got(n), y_got(n), y_start(n)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_ivp_ode_rk_ex01’

pi = nag_pi(0.0_wp)

t_start = 0.0_wp

t_end = 2.0_wp*pi

y_start = (/ 0.0_wp, 1.0_wp/)

thresh = 1.0E-10_wp

nout = 8

tinc = (t_end-t_start)/nout

DO i = 1, 2

IF (i==1) tol = 1.0E-3_wp

IF (i==2) tol = 1.0E-4_wp

CALL nag_rk_setup(t_start,y_start,t_end,tol,thresh,comm)

WRITE (nag_std_out,’(/1X,A,1PE8.1)’) ’Calculation with tol = ’, tol

WRITE (nag_std_out,*) ’ t y1 y2’

WRITE (nag_std_out,’(1x,F6.3,2(4X,F9.5))’) t_start, y_start(:)

DO j = nout - 1, 0, -1

t_want = t_end - j*tinc

CALL nag_rk_interval(f,t_want,t_got,y_got,yp_got,comm)

WRITE (nag_std_out,’(1X,F6.3,2(4X,F9.5))’) t_got, y_got(:)

END DO

CALL nag_rk_info(comm,num_fun_eval=num_fun_eval)

WRITE (nag_std_out,’(1X,A,I10)’) &

’The cost of integration in evaluations of f = ’, num_fun_eval

END DO

CALL nag_deallocate(comm) ! Free structure allocated by NAG fl90

END PROGRAM nag_ivp_ode_rk_ex01

2 Program Data

None.
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3 Program Results
Example Program Results for nag_ivp_ode_rk_ex01

Calculation with tol = 1.0E-03

t y1 y2

0.000 0.00000 1.00000

0.785 0.70711 0.70710

1.571 0.99996 -0.00008

2.356 0.70696 -0.70715

3.142 -0.00022 -0.99991

3.927 -0.70723 -0.70679

4.712 -0.99986 0.00034

5.498 -0.70675 0.70725

6.283 0.00037 0.99984

The cost of integration in evaluations of f = 68

Calculation with tol = 1.0E-04

t y1 y2

0.000 0.00000 1.00000

0.785 0.70711 0.70710

1.571 1.00000 -0.00001

2.356 0.70710 -0.70711

3.142 -0.00001 -0.99999

3.927 -0.70711 -0.70709

4.712 -0.99998 0.00002

5.498 -0.70707 0.70711

6.283 0.00003 0.99998

The cost of integration in evaluations of f = 102
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Example 2: Interpolation across an interval
with global error assessment

We solve the equation

y′′ = −y

over the range [0, 2π], with initial conditions y(0) = 0, y′(0) = 1. This is reposed as

y′
1 = y2, y′

2 = −y1

with initial conditions y1(0) = 0.0 and y2(0) = 1.0. We use relative error control with threshold values
of 10−8 for each solution component. nag rk step is used to integrate the problem one step at a time
and nag rk interp is used to compute the first component of the solution and its derivative at intervals
of length π/8 across the range whenever these points lie in one of those integration steps. We use the
default Runge–Kutta method (method = 2) with tol = 10−3 and tol = 10−4 in turn so that we may
compare the solutions. With each value of the above tolerances a global error assessment is performed
and is reported using nag rk global err.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

MODULE ivp_ode_rk_ex02_mod

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

CONTAINS

FUNCTION f(t,y)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC SIZE

! .. Scalar Arguments ..

REAL (wp), INTENT (IN) :: t

! .. Array Arguments ..

REAL (wp), INTENT (IN) :: y(:)

! .. Function Return Value ..

REAL (wp) :: f(SIZE(y))

! .. Executable Statements ..

f(1) = y(2)

f(2) = -y(1)

END FUNCTION f

END MODULE ivp_ode_rk_ex02_mod

PROGRAM nag_ivp_ode_rk_ex02

! Example Program Text for nag_ivp_ode_rk

! NAG fl90, Release 3. NAG Copyright 1997.
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! .. Use Statements ..

USE nag_ivp_ode_rk, ONLY : nag_rk_comm_wp => nag_rk_comm_dp, &

nag_rk_setup, nag_rk_step, nag_rk_info, nag_rk_interp, &

nag_rk_global_err, nag_deallocate, nag_error, nag_set_error

USE nag_math_constants, ONLY : nag_pi

USE nag_examples_io, ONLY : nag_std_out

USE ivp_ode_rk_ex02_mod, ONLY : wp, f

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Parameters ..

INTEGER, PARAMETER :: n = 2

! .. Local Scalars ..

INTEGER :: i, j, nout, num_fun_eval

REAL (wp) :: err_max, pi, tinc, tol, t_end, t_err_max, t_now, t_start, &

t_want

LOGICAL :: call_step, global_err

TYPE (nag_rk_comm_wp) :: comm

TYPE (nag_error) :: error_rec

! .. Local Arrays ..

REAL (wp) :: rms_err(n), thresh(n), yp_now(n), yp_want(1), y_now(n), &

y_start(n), y_want(1)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_ivp_ode_rk_ex02’

CALL nag_set_error(error_rec)

pi = nag_pi(0.0_wp)

t_start = 0.0_wp

t_end = 2.0_wp*pi

y_start = (/ 0.0_wp, 1.0_wp/)

thresh = 1.0E-8_wp

call_step = .TRUE.

global_err = .TRUE.

nout = 16

tinc = (t_end-t_start)/nout

DO i = 1, 2

IF (i==1) tol = 1.0E-3_wp

IF (i==2) tol = 1.0E-4_wp

CALL nag_rk_setup(t_start,y_start,t_end,tol,thresh,comm, &

call_step=call_step,global_err=global_err)

WRITE (nag_std_out,’(/1X,A,1PE8.1)’) ’Calculation with tol = ’, tol

WRITE (nag_std_out,*) ’ t y1 y2’

WRITE (nag_std_out,’(1X,F7.4,2(3X,F7.4))’) t_start, y_start(:)

j = nout - 1

t_want = t_end - j*tinc

inner: DO

CALL nag_rk_step(f,t_now,y_now,yp_now,comm,error=error_rec)

IF (error_rec%code==0) THEN

interp: DO

IF (t_want>t_now) EXIT interp
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CALL nag_rk_interp(f,t_want,comm,y_want=y_want,yp_want=yp_want)

WRITE (nag_std_out,’(1X,F7.4,2(3X,F7.4))’) t_want, y_want(1), &

yp_want(1)

j = j - 1

t_want = t_end - j*tinc

END DO interp

IF (t_now>=t_end) EXIT inner

END IF

END DO inner

CALL nag_rk_global_err(comm,rms_err=rms_err,err_max=err_max, &

t_err_max=t_err_max)

WRITE (nag_std_out,*)

WRITE (nag_std_out,’(1X,A/1X,2(2X,E9.2))’) &

’Componentwise error assessment:’, rms_err(:)

WRITE (nag_std_out,’(1X,A,E9.2,A,F7.4)’) &

’Worst global error observed was ’, err_max, &

’ - it occurred at t = ’, t_err_max

CALL nag_rk_info(comm,num_fun_eval=num_fun_eval)

WRITE (nag_std_out,*)

WRITE (nag_std_out,’(1X,A,I10)’) &

’The cost of integration in evaluations of f = ’, num_fun_eval

END DO

CALL nag_deallocate(comm) ! Free structure allocated by NAG fl90

END PROGRAM nag_ivp_ode_rk_ex02

2 Program Data

None.

3 Program Results
Example Program Results for nag_ivp_ode_rk_ex02

Calculation with tol = 1.0E-03

t y1 y2

0.0000 0.0000 1.0000

0.3927 0.3827 0.9239

0.7854 0.7071 0.7071

1.1781 0.9239 0.3826

1.5708 1.0000 -0.0001

1.9635 0.9238 -0.3828

2.3562 0.7070 -0.7073

2.7489 0.3825 -0.9240

3.1416 -0.0002 -0.9999

3.5343 -0.3829 -0.9238

3.9270 -0.7072 -0.7069

4.3197 -0.9239 -0.3823

4.7124 -0.9999 0.0004

5.1051 -0.9236 0.3830

5.4978 -0.7068 0.7073

5.8905 -0.3823 0.9239
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6.2832 0.0004 0.9998

Componentwise error assessment:

0.44E-03 0.31E-03

Worst global error observed was 0.90E-03 - it occurred at t = 6.2832

The cost of integration in evaluations of f = 152

Calculation with tol = 1.0E-04

t y1 y2

0.0000 0.0000 1.0000

0.3927 0.3827 0.9239

0.7854 0.7071 0.7071

1.1781 0.9239 0.3827

1.5708 1.0000 0.0000

1.9635 0.9239 -0.3827

2.3562 0.7071 -0.7071

2.7489 0.3827 -0.9239

3.1416 0.0000 -1.0000

3.5343 -0.3827 -0.9239

3.9270 -0.7071 -0.7071

4.3197 -0.9239 -0.3827

4.7124 -1.0000 0.0000

5.1051 -0.9238 0.3827

5.4978 -0.7071 0.7071

5.8905 -0.3826 0.9239

6.2832 0.0000 1.0000

Componentwise error assessment:

0.49E-04 0.17E-04

Worst global error observed was 0.13E-03 - it occurred at t = 6.2832

The cost of integration in evaluations of f = 231
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Example 3: Resetting the end point of integration

We integrate a two body problem. The equations for the coordinates (x(t), y(t)) of one body as functions
of time t in a suitable frame of reference are

x′′ = −x/r3, y′′ = −y/r3, r =
√

x2 + y2.

The initial conditions

x(0) = 1− α, x′(0) = 0, y(0) = 0, y′(0) =

√
1 + α

1− α
,

lead to elliptic motion with 0 < α < 1. We select α = 0.7 and reduce the two second-order differential
equations to the following system of first-order differential equations:

y′
1 = y3, y′

2 = y4, y′
3 = −y1/r3, y′

4 = −y2/r3

over the range [0, 6π]. We use relative error control with threshold values of 10−10 for each solution
component and compute the solution at intervals of length π across the range using nag rk reset end
to reset the end of the integration range. We use a high-order Runge–Kutta method (method = 3) with
tol = 10−4 and tol = 4.0× 10−5 in turn so that we may compare the solutions.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

MODULE ivp_ode_rk_ex03_mod

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

CONTAINS

FUNCTION f(t,y)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC SIZE, SQRT

! .. Scalar Arguments ..

REAL (wp), INTENT (IN) :: t

! .. Array Arguments ..

REAL (wp), INTENT (IN) :: y(:)

! .. Function Return Value ..

REAL (wp) :: f(SIZE(y))

! .. Local Scalars ..

REAL (wp) :: r3

! .. Executable Statements ..

r3 = (SQRT(y(1)**2+y(2)**2))**3

f(1) = y(3)

f(2) = y(4)

f(3) = -y(1)/r3

f(4) = -y(2)/r3

END FUNCTION f
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END MODULE ivp_ode_rk_ex03_mod

PROGRAM nag_ivp_ode_rk_ex03

! Example Program Text for nag_ivp_ode_rk

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_ivp_ode_rk, ONLY : nag_rk_comm_wp => nag_rk_comm_dp, &

nag_rk_setup, nag_rk_step, nag_rk_info, nag_rk_reset_end, &

nag_deallocate

USE nag_math_constants, ONLY : nag_pi

USE nag_examples_io, ONLY : nag_std_out

USE ivp_ode_rk_ex03_mod, ONLY : wp, f

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC SQRT

! .. Parameters ..

INTEGER, PARAMETER :: n = 4

! .. Local Scalars ..

INTEGER :: i, j, method, nout, num_fun_eval

REAL (wp) :: alpha, pi, tinc, tol, t_end, t_final, t_now, t_start

LOGICAL :: call_step

TYPE (nag_rk_comm_wp) :: comm

! .. Local Arrays ..

REAL (wp) :: thresh(n), yp_now(n), y_now(n), y_start(n)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_ivp_ode_rk_ex03’

pi = nag_pi(0.0_wp)

alpha = 0.7_wp

t_end = 2.0_wp*pi

t_final = 6.0_wp*pi

thresh = 1.0E-10_wp

t_start = 0.0_wp

y_start = (/ 1.0_wp - alpha, 0.0_wp, 0.0_wp, SQRT((1.0_wp+alpha)/(1.0_wp &

-alpha)) /)

method = 3

call_step = .TRUE.

nout = 6

tinc = t_final/nout

DO i = 1, 2

IF (i==1) tol = 1.0E-4_wp

IF (i==2) tol = 4.0E-5_wp

j = nout - 1

t_end = t_final - j*tinc

CALL nag_rk_setup(t_start,y_start,t_end,tol,thresh,comm,method=method, &

call_step=call_step)

WRITE (nag_std_out,’(/1X,A,1PE8.1)’) ’Calculation with tol = ’, tol

WRITE (nag_std_out,*) &

’ t y1 y2 y3 y4’

WRITE (nag_std_out,’(1X,F6.3,4(4X,F7.4))’) t_start, y_start(:)

inner: DO
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CALL nag_rk_step(f,t_now,y_now,yp_now,comm)

IF (t_now>=t_end) THEN

WRITE (nag_std_out,’(1X,F6.3,4(4X,F7.4))’) t_now, y_now(:)

IF (t_now>=t_final) EXIT inner

j = j - 1

t_end = t_final - j*tinc

CALL nag_rk_reset_end(t_end,comm)

END IF

END DO inner

CALL nag_rk_info(comm,num_fun_eval=num_fun_eval)

WRITE (nag_std_out,’(1X,A,I10)’) &

’The cost of integration in evaluations of f = ’, num_fun_eval

END DO

CALL nag_deallocate(comm) ! Free structure allocated by NAG fl90

END PROGRAM nag_ivp_ode_rk_ex03

2 Program Data

None.

3 Program Results
Example Program Results for nag_ivp_ode_rk_ex03

Calculation with tol = 1.0E-04

t y1 y2 y3 y4

0.000 0.3000 0.0000 0.0000 2.3805

3.142 -1.7000 0.0000 0.0000 -0.4201

6.283 0.3000 0.0000 0.0001 2.3805

9.425 -1.7000 0.0000 0.0000 -0.4201

12.566 0.3000 -0.0003 0.0016 2.3805

15.708 -1.7001 0.0001 -0.0001 -0.4201

18.850 0.3000 -0.0010 0.0045 2.3805

The cost of integration in evaluations of f = 571

Calculation with tol = 4.0E-05

t y1 y2 y3 y4

0.000 0.3000 0.0000 0.0000 2.3805

3.142 -1.7000 0.0000 0.0000 -0.4201

6.283 0.3000 0.0000 0.0001 2.3805

9.425 -1.7000 0.0000 0.0000 -0.4201

12.566 0.3000 -0.0002 0.0008 2.3805

15.708 -1.7000 0.0001 0.0000 -0.4201

18.850 0.3000 -0.0005 0.0021 2.3805

The cost of integration in evaluations of f = 670
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