
Quadrature Module Contents

Module 11.4: nag quad util

Numerical Integration Utilities

nag quad util provides utility procedures for computation involving integration of
functions, e.g., the computation of the weights and abscissae for Gaussian integration
rules.

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4.3

Procedures

nag quad gs wt absc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4.5
Calculation of weights and abscissae for Gaussian quadrature rules, general choice of
rule

Examples

Example 1: Abscissae and weights by Gauss–Legendre formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4.11

Additional Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4.13

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4.14

[NP3245/3/pdf] Module 11.4: nag quad util 11.4.1



Module Contents Quadrature

11.4.2 Module 11.4: nag quad util [NP3245/3/pdf]



Quadrature Module Introduction

Introduction
This module provides procedures which perform tasks in numerical integration. Currently, one procedure
is available which computes the weights (normal or adjusted) and abscissae for six different types of
Gaussian integration rules.

[NP3245/3/pdf] Module 11.4: nag quad util 11.4.3



Module Introduction Quadrature

11.4.4 Module 11.4: nag quad util [NP3245/3/pdf]



Quadrature nag quad gs wt absc

Procedure: nag quad gs wt absc

1 Description

nag quad gs wt absc computes the weights (normal or adjusted) and abscissae associated with six
different Gauss rules. These weights and abscissae may be used for the approximation of definite integrals
(see Stroud and Secrest [2], or pages 73–105 of Davis and Rabinowitz [1]).

2 Usage

USE nag quad util

CALL nag quad gs wt absc(rule, a, b, wt, x [, optional arguments])

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

n ≥ 1 — the number of Gaussian weights and abscissae

3.1 Mandatory Arguments

rule — integer, intent(in)
Input: indicates the quadrature rule to be used as specified in Section 6.1:

if rule = 0 for the Gauss–Legendre rule;
if rule = 1 for the Gauss–Jacobi rule with normal weights;
if rule = −1 for the Gauss–Jacobi rule with adjusted weights;
if rule = 2 for the Gauss–Exponential rule with normal weights;
if rule = −2 for the Gauss–Exponential rule with adjusted weights;
if rule = 3 for the Gauss–Laguerre rule with normal weights;
if rule = −3 for the Gauss–Laguerre rule with adjusted weights;
if rule = 4 for the Gauss–Hermite rule with normal weights;
if rule = −4 for the Gauss–Hermite rule with adjusted weights;
if rule = 5 for the Gauss–Rational rule with normal weights;
if rule = −5 for the Gauss–Rational rule with adjusted weights.

Constraints: −5 ≤ rule ≤ 5.

a — real(kind=wp), intent(in)
b — real(kind=wp), intent(in)

Input: the parameters a and b which occur in the quadrature formulae as specified in Section 6.1.
Constraints:

If rule = 0, ±1 or ±2, then a < b;
if rule = ±3, then b �= 0;
if rule = ±4, then b > 0;
if rule = ±5, then a + b �= 0.

[NP3245/3/pdf] Module 11.4: nag quad util 11.4.5



nag quad gs wt absc Quadrature

wt(n) — real(kind=wp), intent(out)
x(n) — real(kind=wp), intent(out)

Output: the n weights and abscissae of the Gauss rule.
Note: if rule = −2 or −4 and the optional argument c �= 0.0, then an odd number of weights and
abscissae, n, may raise an error condition (see error%code = 204 in Section 4).

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

c — real(kind=wp), intent(in), optional
d — real(kind=wp), intent(in), optional

Input: the parameters c and d which occur in some of the quadrature formulae (see Section 6.1).
For some rules c and d must not be too large (see Section 4).
Note:

If rule = 0, then c and d should not be present;
if rule = ±2, ±3 or ±4, then d should not be present.

Constraints:

if rule = ±1, then c > −1 and d > −1;
if rule = ±2, ±3 or ±4, then c > −1;
if rule = ±5, then c > −1 and d > c +1.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

303 Array arguments have inconsistent shapes.

305 Invalid absence of an optional argument.

Failures (error%level = 2):

error%code Description

201 Convergence not achieved.

nag sym tridiag eig all has failed to obtain convergence.

202 One or more of the weights are larger than HUGE(1.0 wp), the largest floating-point
number on this machine.

The overflowing weights are returned as HUGE(1.0 wp). Possible solutions are to
use a smaller value of n; or, if using adjusted weights, to change to normal weights.
To examine the values of the weights after this failure, you must supply the optional
argument error and initialise it using nag set error and set halt level to 3 (see the
Essential Introduction or the module nag error handling for handling error exits).

11.4.6 Module 11.4: nag quad util [NP3245/3/pdf]



Quadrature nag quad gs wt absc

203 One or more of the weights are too small to be distinguished from zero on this
machine.

The underflowing weights are returned as zero, which may be a usable approximation.
Possible solutions are to use a smaller value of n; or, if using normal weights, to change
to adjusted weights. To examine the values of the weights after this failure, you must
supply the optional argument error and initialise it using nag set error and set
halt level to 3 (see the Essential Introduction or the module nag error handling
for handling error exits).

204 Gauss–Exponential or Gauss–Hermite adjusted weights with n odd and c �= 0.0.

Theoretically, in these cases:

for c > 0.0, the central adjusted weight is infinite, and the exact function f(x)
is zero at the central abscissa;
for c < 0.0, the central adjusted weight is zero, and the exact function f(x) is
infinite at the central abscissa.

In either case, the contribution of the central abscissa to the summation is
indeterminate.

In practice, the central weight may not have overflowed or underflowed, if there is
sufficient rounding error in the value of the central abscissa.

If the soft fail option is used, the weights and abscissa returned may be usable; the
user must be particularly careful not to round the central abscissa to its true value
without simultaneously rounding the central weight to zero or ∞ as appropriate, or
the summation will suffer. It would be preferable to use normal weights, if possible.

It is important to remember that, when switching from normal weights to adjusted
weights or vice versa, redefinition of f(x) is involved.

Warnings (error%level = 1):

error%code Description

101 Optional argument present but not used

If rule = 0, c and d should not be present;
if rule = ±2 or ±3 or ±4, d should not be present.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Mathematical Background

This procedure computes the weights wi and abscissae xi for use in the summation

S =
n∑

i=1

wif(xi)

which approximates a definite integral (see Stroud and Secrest [2], or pages 73–105 of Davis and
Rabinowitz [1]). The following types are provided:

[NP3245/3/pdf] Module 11.4: nag quad util 11.4.7



nag quad gs wt absc Quadrature

1. Gauss–Legendre:

S �
∫ b

a

f(x) dx, exact for f(x) = P2n−1(x).

Constraint: b > a.

2. Gauss–Jacobi:

normal weights:

S �
∫ b

a

(b − x)c(x − a)df(x) dx, exact for f(x) = P2n−1(x),

adjusted weights:

S �
∫ b

a

f(x) dx, exact for f(x) = (b − x)c(x − a)dP2n−1(x).

Constraint: c > −1, d > −1, b > a.

3. Gauss–Exponential:

normal weights:

S �
∫ b

a

∣∣∣∣x − a+ b

2

∣∣∣∣
c

f(x) dx, exact for f(x) = P2n−1(x),

adjusted weights:

S �
∫ b

a

f(x) dx, exact for f(x) =
∣∣∣∣x − a+ b

2

∣∣∣∣
c

P2n−1(x).

Constraint: c > −1, b > a.

4. Gauss–Laguerre:

normal weights:

S �
∫ ∞

a

|x − a|ce−bxf(x) dx (b > 0),

�
∫ a

−∞
|x − a|ce−bxf(x) dx (b < 0), exact for f(x) = P2n−1(x),

adjusted weights:

S �
∫ ∞

a

f(x) dx (b > 0),

�
∫ a

−∞
f(x) dx (b < 0), exact for f(x) = |x − a|ce−bxP2n−1(x).

Constraint: c > −1, b �= 0.

5. Gauss–Hermite:

normal weights:

S �
∫ +∞

−∞
|x − a|ce−b(x−a)2f(x) dx, exact for f(x) = P2n−1(x),

adjusted weights:

S �
∫ +∞

−∞
f(x) dx, exact for f(x) = |x − a|ce−b(x−a)2P2n−1(x).

Constraint: c > −1, b > 0.

11.4.8 Module 11.4: nag quad util [NP3245/3/pdf]



Quadrature nag quad gs wt absc

6. Gauss–Rational:

normal weights:

S �
∫ ∞

a

|x − a|c
|x+ b|d f(x) dx (a+ b > 0),

�
∫ a

−∞

|x − a|c
|x+ b|d f(x) dx (a+ b < 0), exact for f(x) = P2n−1

(
1

x+ b

)
,

adjusted weights:

S �
∫ ∞

a

f(x) dx (a+ b > 0),

�
∫ a

−∞
f(x) dx (a+ b < 0), exact for f(x) =

|x − a|c
|x+ b|d P2n−1

(
1

x+ b

)
.

Constraint: c > −1, d > c+ 1, a+ b �= 0.

In the above formulae, P2n−1(x) stands for any polynomial of degree 2n− 1 or less in x.

6.2 Algorithmic Detail

The method used is to calculate the abscissae, using nag sym tridiag eig all to find the eigenvalues
of the appropriate tridiagonal matrix (see Golub and Welsch [3]). The weights are then determined by
the formula:

wi =


n−1∑

j=0

P ∗
j (xi)2




−1

where P ∗
j (x) is the jth orthogonal polynomial with respect to the weight function over the appropriate

interval.

6.3 Accuracy

The accuracy depends mainly on n, with increasing loss of accuracy for larger values of n. Typically,
one or two decimal digits may be lost from machine accuracy with n � 20, and three or four decimal
digits may be lost for n � 100.

6.4 Timing

The major portion of the time is taken up by nag sym tridiag eig all during the calculation of the
abscissae, where the time is roughly proportional to n3.

[NP3245/3/pdf] Module 11.4: nag quad util 11.4.9



nag quad gs wt absc Quadrature

11.4.10 Module 11.4: nag quad util [NP3245/3/pdf]



Quadrature Example 1

Example 1: Abscissae and weights by Gauss–Legendre
formula

Generates abscissae and weights using the Gauss–Legendre 7-point formula.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_quad_util_ex01

! Example Program Text for nag_quad_util

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_out

USE nag_quad_util, ONLY : nag_quad_gs_wt_absc

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: n = 7

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: j, rule

REAL (wp) :: a, b

! .. Local Arrays ..

REAL (wp) :: wt(n), x(n)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_quad_util_ex01’

a = -1.0_wp

b = 1.0_wp

rule = 0

CALL nag_quad_gs_wt_absc(rule,a,b,wt,x)

WRITE (nag_std_out,*)

WRITE (nag_std_out,’(1X,A,I3,A)’) ’Legendre formula,’, n, ’ points’

WRITE (nag_std_out,*)

WRITE (nag_std_out,’(6X,A,8X,A)’) ’Abscissae’, ’Weights’

WRITE (nag_std_out,*)

WRITE (nag_std_out,’(2F15.5)’) (x(j),wt(j),j=1,n)

END PROGRAM nag_quad_util_ex01

2 Program Data

None.

3 Program Results
Example Program Results for nag_quad_util_ex01

Legendre formula, 7 points

Abscissae Weights

-0.94911 0.12948

-0.74153 0.27971

-0.40585 0.38183

[NP3245/3/pdf] Module 11.4: nag quad util 11.4.11



Example 1 Quadrature

0.00000 0.41796

0.40585 0.38183

0.74153 0.27971

0.94911 0.12948

11.4.12 Module 11.4: nag quad util [NP3245/3/pdf]



Quadrature Additional Examples

Additional Examples
Not all example programs supplied with NAG fl90 appear in full in this module document. The following
additional examples, associated with this module, are available.

nag quad util ex02

Generates abscissae with both weights and adjusted weights using the Gauss–Jacobi 7-point
formula.

nag quad util ex03

Generates abscissae with both weights and adjusted weights using the Gauss–Exponential 7-point
formula.

nag quad util ex04

Generates abscissae with both weights and adjusted weights using the Gauss–Laguerre 7-point
formula.

nag quad util ex05

Generates abscissae with both weights and adjusted weights using the Gauss–Hermite 7-point
formula.

nag quad util ex06

Generates abscissae with both weights and adjusted weights using the Gauss–Rational 7-point
formula.

[NP3245/3/pdf] Module 11.4: nag quad util 11.4.13



References Quadrature

References

[1] Davis P J and Rabinowitz P (1975) Methods of Numerical Integration Academic Press

[2] Stroud A H and Secrest D (1966) Gaussian Quadrature Formulas Prentice-Hall

[3] Golub G H and Welsch J H (1969) Calculation of Gauss quadrature rulesMath. Comput. 23 221–230

11.4.14 Module 11.4: nag quad util [NP3245/3/pdf]


