
Quadrature Module Contents

Module 11.2: nag quad 1d inf

Numerical Integration over an Infinite Interval

This module provides procedures for computing the value of a one-dimensional definite
integral over a semi-infinite or infinite interval.

Contents

Introduction . 11.2.3

Procedures

nag quad 1d inf gen . 11.2.5
1-d quadrature, adaptive, semi-infinite or infinite interval

nag quad 1d inf wt trig . 11.2.9
1-d quadrature, adaptive, semi-infinite interval, weight function cos(ωx) or sin(ωx)

Examples

Example 1: Integration of a function over a semi-infinite interval . 11.2.15

Example 2: Computation of a cosine transform over a semi-infinite interval 11.2.17

Additional Examples . 11.2.19

References . 11.2.20

[NP3245/3/pdf] Module 11.2: nag quad 1d inf 11.2.1

Module Contents Quadrature

11.2.2 Module 11.2: nag quad 1d inf [NP3245/3/pdf]

Quadrature Module Introduction

Introduction
The procedures in this module are designed to estimate the value of a one-dimensional definite integral
of the form

∫ b

a

f(x) dx,

where the function f(x) is defined by the user and the limits of integration a and/or b are infinite.

This module also provides a procedure for integrands of the form

f(x) = w(x)g(x),

which contain a factor w(x), called the weight function. The weight function is of the form cos(ωx)
or sin(ωx) and the interval of integration is semi-infinite (lower limit finite). The procedure takes
full account of any peculiar behaviour attributable to the w(x) factor. For further details see the
Mathematical Background section of module nag quad 1d (11.1).

However, if f(x) is defined numerically at four or more points, and the portion of the integral lying
outside the range of the points supplied may be neglected, then the Gill–Miller finite difference method
nag quad 1d data in module nag quad 1d (11.1) should be used.

[NP3245/3/pdf] Module 11.2: nag quad 1d inf 11.2.3

Module Introduction Quadrature

11.2.4 Module 11.2: nag quad 1d inf [NP3245/3/pdf]

Quadrature nag quad 1d inf gen

Procedure: nag quad 1d inf gen

1 Description

nag quad 1d inf gen computes an approximation to the integral of a function f(x) over a semi-infinite
or infinite interval [a, b]:

I =
∫ b

a

f(x) dx.

The entire infinite integration interval is first transformed to (0,1] (see Section 6.1). An adaptive
algorithm, based on the Gauss 7-point and Kronrod 15-point rules, is then employed on the transformed
integral. See Section 6.1 for more details.

This procedure requires a vector valued user-supplied function to evaluate the integrand at an array
of points, and will therefore be more efficient if the evaluation can be performed in vector mode on a
vector-processing machine.

2 Usage

USE nag quad 1d inf

CALL nag quad 1d inf gen(f, a, inf limit, result [, optional arguments])

3 Arguments

3.1 Mandatory Arguments

f — function
f must return the values of the integrand f at a set of points.

function f(x)

real(kind=wp), intent(in) :: x(:)
Input: the points at which the integrand f must be evaluated.

real(kind=wp) :: f(SIZE(x))
Result: f(i) must contain the value of f at x(i), for i = 1, 2, . . . ,SIZE(x).

a — real(kind=wp), intent(in)
Input: the finite limit of the integration interval.
Note: a is not used if the interval is doubly infinite.

inf limit — character(len=1), intent(in)
Input: indicates the infinite limit of integration:

if inf limit = 'u' or 'U', the interval is [a,∞];
if inf limit = 'l' or 'L', the interval is [−∞, a];
if inf limit = 'b' or 'B', the interval is [−∞,∞].

Constraints: inf limit = 'u', 'U', 'l', 'L', 'b' or 'B' .

[NP3245/3/pdf] Module 11.2: nag quad 1d inf 11.2.5

nag quad 1d inf gen Quadrature

result — real(kind=wp), intent(out)
Output: the approximation to the integral I.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

abs acc — real(kind=wp), intent(in), optional
Input: the absolute accuracy required.
Default: abs acc = SQRT(EPSILON(1.0 wp)).
Constraints: abs acc ≥ 0.0. Both rel acc and abs acc cannot be zero.

rel acc — real(kind=wp), intent(in), optional
Input: the relative accuracy required.
Default: rel acc = 10−4.
Constraints: rel acc ≥ 0.0. Both rel acc and abs acc cannot be zero.

abs err — real(kind=wp), intent(out), optional
Output: an estimate of the modulus of the absolute error, which should be an upper bound for
| I − result |.

max num subint — integer, intent(in), optional
Input: the maximum number of subintervals to be used in the subdivision strategy.
Default: max num subint = 500.
Constraints: max num subint ≥ 1.

num subint used — integer, intent(out), optional
Output: the final number of subintervals used in the subdivision strategy.

num fun eval — integer, intent(out), optional
Output: the actual number of integrand evaluations.

subint info(:, :) — real(kind=wp), pointer, optional
Output: details of the computation which may be examined in the event of a failure. This
array contains the end-points of the subinterval used by the procedure, along with the integral
contribution and error estimates over these subintervals. Specifically, for i = 1, 2, . . . , m, let ri

denote the approximation to the value of the integral over the subinterval [xi, xi+1] in the partition
of [a, b], and let ei be the corresponding absolute error estimate. Then∫ xi+1

xi

f(x) dx � ri and result =
m∑

i=1

ri,

unless this procedure terminates while testing for divergence of the integral. In this case result
(and abs err) are taken to be the values returned from the extrapolation process. The value of m
is returned in num subint used, and the values of xi, ri and ei are stored in the array subint info,
that is:

xi = subint info(i, 1), i �= m+ 1, xm+1 = b,
ri = subint info(i, 2),
ei = subint info(i, 3).

Note that this information applies to the integral transformed to (0,1] as described in Section 6.1,
not to the original integral.
Note: this array is allocated by nag quad 1d inf gen. It should be deallocated when no longer
required.

11.2.6 Module 11.2: nag quad 1d inf [NP3245/3/pdf]

Quadrature nag quad 1d inf gen

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 Maximum number of subdivisions allowed has been reached.

The accuracy requirements have not been achieved. Look at the integrand in order
to determine the integration difficulties. If the position of a local difficulty within
the interval can be determined (e.g., a singularity of the integrand or its derivative,
a peak, a discontinuity) you will probably gain from splitting up the interval at this
point and calling this procedure on the infinite interval and an appropriate integrator
on the finite subinterval. Alternatively, consider relaxing the accuracy requirements
specified by the optional arguments abs acc and rel acc, or increasing the value of
the optional argument max num subint.

202 Round-off error prevents the requested accuracy from being achieved.

The error may be under-estimated. Consider requesting less accuracy.

203 Extremely bad local integrand behaviour.

This causes a very strong subdivision around one (or more) points of the interval.
The same advice applies as in the case error%code = 201.

204 The requested accuracy cannot be achieved.

The extrapolation does not increase the accuracy satisfactorily; the result returned is
the best which can be obtained. The same advice applies as in the case error%code
= 201.

205 The integral is probably divergent, or slowly convergent.

Note that divergence can also occur with any other value of error%code when
error%level = 2.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Algorithmic Detail

This procedure is a modified version of the QUADPACK procedure QAGI (Piessens et al. [5]). The
entire infinite integration interval is first transformed to (0,1] using one of the identities:

∫ a

−∞
f(x) dx =

∫ 1

0

f

(
a − 1− t

t

)
1
t2

dt,

[NP3245/3/pdf] Module 11.2: nag quad 1d inf 11.2.7

nag quad 1d inf gen Quadrature

∫ ∞

a

f(x) dx =
∫ 1

0

f

(
a+

1− t

t

)
1
t2

dt,

∫ ∞

−∞
f(x) dx =

∫ ∞

0

(f(x) + f(−x)) dx =
∫ 1

0

[
f

(
1− t

t

)
+ f

(
−1 + t

t

)]
1
t2

dt,

where a represents a finite integration limit. An adaptive algorithm, based on the Gauss 7-point and
Kronrod 15-point rules, is then employed on the transformed integral. The algorithm, described by De
Doncker [1], incorporates a global acceptance criterion (as defined by Malcolm and Simpson [2]) together
with the ε-algorithm (Wynn [6]) to perform extrapolation. The local error estimation is described in
Piessens et al. [5].

This procedure is not suitable for integrands which decay slowly towards an infinite end-point, and
oscillate in sign over the entire interval. For this class of functions it may be possible to calculate the
integral by integrating between the zeros and invoking some extrapolation process.

6.2 Accuracy

The procedure cannot guarantee, but in practice usually achieves, the following accuracy:

| I − result | ≤ tol,

where

tol = max (abs acc, rel acc× | I |)

and abs acc and rel acc are the specified absolute and relative accuracies, or their default values. The
optional output argument abs err normally satisfies

| I − result | ≤ abs err ≤ tol.

11.2.8 Module 11.2: nag quad 1d inf [NP3245/3/pdf]

Quadrature nag quad 1d inf wt trig

Procedure: nag quad 1d inf wt trig

1 Description

nag quad 1d inf wt trig computes an approximation to the integral (Fourier transform)

I =
∫ ∞

a

w(x) g(x) dx,

where w(x) = sin(ωx) or cos(ωx) for a given value of ω.

It is an adaptive procedure and over successive intervals

Ck = [a+ (k − 1)c, a+ kc], k = 1, 2, . . . , n

integration is performed by the same algorithm as is used by nag quad 1d wt trig. The intervals Ck

are of constant length c which depends on the value of ω. See Section 6.1 for more details.

If ω = 0 and trig wt = 'c', this procedure uses the same algorithm as the procedure
nag quad 1d inf gen (with rel acc = 0.0).

In contrast to the other procedures in this chapter, this procedure works with a specified absolute
accuracy. See Section 6.1 for more details.

This procedure requires a vector valued user-supplied function to evaluate g at an array of points, and
will therefore be more efficient if the evaluation can be performed in vector mode on a vector-processing
machine.

2 Usage

USE nag quad 1d inf

CALL nag quad 1d inf wt trig(g, a, omega, trig wt, result [, optional arguments])

3 Arguments

3.1 Mandatory Arguments

g — function
g must return the values of the function g at a set of points.

function g(x)

real(kind=wp), intent(in) :: x(:)
Input: the points at which g must be evaluated.

real(kind=wp) :: g(SIZE(x))
Result: g(i) must contain the value of g at x(i), for i = 1, 2, . . . ,SIZE(x).

a — real(kind=wp), intent(in)
Input: the lower limit of integration, a.

omega — real(kind=wp), intent(in)
Input: the parameter ω in the weight function of the transform.

[NP3245/3/pdf] Module 11.2: nag quad 1d inf 11.2.9

nag quad 1d inf wt trig Quadrature

trig wt — character(len=1), intent(in)
Input: indicates which transform to be computed.

If trig wt = 'c' or 'C', w(x) = cos(ωx);
if trig wt = 's' or 'S', w(x) = sin(ωx).

Constraints: trig wt = 'c', 'C', 's' or 'S'.

result — real(kind=wp), intent(out)
Output: the approximation to the integral I.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

abs acc — real(kind=wp), intent(in), optional
Input: the absolute accuracy required.
Default: abs acc = SQRT(EPSILON(1.0 wp)).
Constraints: abs acc ≥ 0.0.

abs err — real(kind=wp), intent(out), optional
Output: an estimate of the modulus of the absolute error, which should be an upper bound for
| I − result |.

max num intvl — integer, intent(in), optional
Input: an upper bound on the number of intervals Ck needed for integration.
Default: max num intvl = 100.
Constraints: max num intvl ≥ 3.

max num subint — integer, intent(in), optional
Input: maximum number of subintervals allowed over each Ck.
Default: max num subint = 500.
Constraints: max num subint ≥ 1.

num intvl used — integer, intent(out), optional
Output: the total number of intervals Ck used for the integration; n.

num subint used — integer, intent(out), optional
Output: the final maximum number of subintervals actually used for integrating over any of the
intervals Ck.

num fun eval — integer, intent(out), optional
Output: the actual number of integrand evaluations.

intvl info(:, :) — real(kind=wp), pointer, optional
Output: details of the computation which may be examined in the event of a failure.
The elements intvl info(k, 1) and intvl info(k, 2), respectively, contain the values of the
integral and its corresponding error estimate contribution over the interval Ck, for k =
1, 2, . . . ,num intvl used.
Note: this array is allocated by nag quad 1d inf wt trig. It should be deallocated when no longer
required.

11.2.10 Module 11.2: nag quad 1d inf [NP3245/3/pdf]

Quadrature nag quad 1d inf wt trig

intvl error code(:) — integer, pointer, optional
Output: intvl error code(k) contains the error flag corresponding to intvl info(k, 1), for
k = 1, 2, . . . ,num intvl used. See Section 4.
Note: this array is allocated by nag quad 1d inf wt trig. It should be deallocated when no longer
required.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 Maximum number of subdivisions allowed has been reached.

The accuracy requirements have not been achieved. Look at the integrand in order
to determine the integration difficulties. If the position of a local difficulty within the
interval can be determined (e.g., a singularity of the integrand or its derivative, a peak,
a discontinuity) you will probably gain from splitting up the interval at this point
and calling this procedure on the infinite subinterval and an appropriate integrator
on the finite subinterval. Alternatively, consider relaxing the accuracy requirements
specified by the optional argument abs acc, or increasing the value of the optional
argument max num subint.

202 Round-off error prevents the requested accuracy from being achieved.

The error may be under-estimated. Consider requesting less accuracy.

203 Extremely bad local integrand behaviour.

This causes a very strong subdivision around one (or more) points of the interval.
The same advice applies as in the case error%code = 201.

204 The requested accuracy cannot be achieved.

The extrapolation does not increase the accuracy satisfactorily; the result returned is
the best which can be obtained. The same advice applies as in the case error%code
= 201.

205 The integral is probably divergent, or slowly convergent.

Note that divergence can also occur with any other value of error%code when
error%level = 2.

206 Bad integration behaviour occurs within one or more of the intervals Ck.

The location and type of the difficulty involved can be determined from the optional
array argument intvl error code (see below).

[NP3245/3/pdf] Module 11.2: nag quad 1d inf 11.2.11

nag quad 1d inf wt trig Quadrature

207 Maximum number of intervals Ck (= max num intvl) allowed has been achieved.

Increase the value of the optional argument max num intvl to allow more cycles (see
below).

208 The extrapolation table does not converge to the required accuracy over the intervals
Ck.

The extrapolation table constructed for convergence acceleration of the series formed
by the integral contribution over the interval Ck, does not converge to the required
accuracy.

In the cases error%code= 206, 207, or 208, the following values of intvl error code(k) give additional
information about the cause of the error.

201 Maximum number of subdivisions allowed has been achieved on the kth interval.

202 Occurrence of round-off error prevents the requested accuracy imposed on the kth interval
from being achieved.

203 Extremely bad integrand behaviour occurs at some points of the kth interval.

204 The integration procedure over the kth interval does not converge (to within the required
accuracy) due to the round-off in the extrapolation procedure invoked on this interval. It
is assumed that the result on this interval is the best which can be obtained.

205 The integral over kth interval is probably divergent or slowly convergent. It must be noted
that divergence can occur with any other value of intvl error code(k).

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The procedure is a modified version of the QUADPACK procedure QAWFE (Piessens et al. [5]). It is an
adaptive procedure, designed to integrate a function of the form w(x)g(x) over a semi-infinite interval,
where w(x) is either sin(ωx) or cos(ωx). Over successive intervals

Ck = [a+ (k − 1)c, a+ kc], k = 1, 2, . . . , n

integration is performed by the same algorithm as is used by nag quad 1d wt trig. The intervals Ck

are of constant length

c =
(2[| ω |])π

| ω | ,

where [| ω |] represents the largest integer less than or equal to | ω |. Since c equals an odd number of
half periods, the integral contributions over succeeding intervals will alternate in sign when the function
g is positive and monotonically decreasing over [a,∞). The algorithm, described in Piessens et al. [5],
incorporates a global acceptance criterion (as defined by Malcolm and Simpson [2]) together with the
ε-algorithm (Wynn [6]) to perform extrapolation. The local error estimation is described in Piessens et
al. [5].

If ω = 0 and trig wt = 'c', the procedure uses the same algorithm as nag quad 1d inf gen (with
rel acc = 0.0).

In contrast to the other procedures in this chapter, this procedure works with a specified absolute
accuracy (abs acc). Over the interval Ck it attempts to satisfy the absolute accuracy requirement

ek = Uk × abs acc,

11.2.12 Module 11.2: nag quad 1d inf [NP3245/3/pdf]

Quadrature nag quad 1d inf wt trig

where Uk = (1− p)pk−1, for k = 1, 2, . . . and p = 0.9.

However, when difficulties occur during the integration over the kth subinterval Ck such that the error
flag intvl error code(k) is non-zero, the accuracy requirement over subsequent intervals is relaxed.
See Piessens et al. [5] for more details.

6.2 Accuracy

The procedure cannot guarantee, but in practice usually achieves, the following accuracy:

| I − result | ≤ abs acc,

where abs acc is the specified absolute accuracy, or its default value. The optional output argument
abs err normally satisfies

| I − result | ≤ abs err ≤ abs acc.

[NP3245/3/pdf] Module 11.2: nag quad 1d inf 11.2.13

nag quad 1d inf wt trig Quadrature

11.2.14 Module 11.2: nag quad 1d inf [NP3245/3/pdf]

Quadrature Example 1

Example 1: Integration of a function over
a semi-infinite interval

The integral
∫ ∞

0

1
(x+ 1)

√
x

dx

is computed using the procedure nag quad 1d inf gen.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

MODULE quad_1d_inf_ex01_mod

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

CONTAINS

FUNCTION f(x)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC SIZE, SQRT

! .. Array Arguments ..

REAL (wp), INTENT (IN) :: x(:)

! .. Function Return Value ..

REAL (wp) :: f(SIZE(x))

! .. Executable Statements ..

f = 1.0_wp/((x+1.0_wp)*SQRT(x))

END FUNCTION f

END MODULE quad_1d_inf_ex01_mod

PROGRAM nag_quad_1d_inf_ex01

! Example Program Text for nag_quad_1d_inf

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_out

USE nag_quad_1d_inf, ONLY : nag_quad_1d_inf_gen

USE quad_1d_inf_ex01_mod, ONLY : wp, f

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Local Scalars ..

REAL (wp) :: a, result

CHARACTER (1) :: inf_limit

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_quad_1d_inf_ex01’

[NP3245/3/pdf] Module 11.2: nag quad 1d inf 11.2.15

Example 1 Quadrature

a = 0.0_wp

inf_limit = ’upper’

CALL nag_quad_1d_inf_gen(f,a,inf_limit,result)

WRITE (nag_std_out,’(/,1X,A,F10.4)’) &

’a - lower limit of integration = ’, a

WRITE (nag_std_out,’(1X,A,A)’) &

’inf_limit - infinite limit of integration = ’, inf_limit

WRITE (nag_std_out,’(1X,A,F9.5)’) &

’result - approximation to the integral =’, result

END PROGRAM nag_quad_1d_inf_ex01

2 Program Data

None.

3 Program Results
Example Program Results for nag_quad_1d_inf_ex01

a - lower limit of integration = 0.0000

inf_limit - infinite limit of integration = u

result - approximation to the integral = 3.14159

11.2.16 Module 11.2: nag quad 1d inf [NP3245/3/pdf]

Quadrature Example 2

Example 2: Computation of a cosine transform
over a semi-infinite interval

The integral
∫ ∞

0

1√
x
cos(πx/2) dx

is computed using the procedure nag quad 1d inf wt trig.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

MODULE quad_1d_inf_ex02_mod

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

CONTAINS

FUNCTION g(x)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC SIZE, SQRT

! .. Array Arguments ..

REAL (wp), INTENT (IN) :: x(:)

! .. Function Return Value ..

REAL (wp) :: g(SIZE(x))

! .. Executable Statements ..

WHERE (x>0.0_wp)

g = 1.0_wp/SQRT(x)

ELSEWHERE

g = 0.0_wp

END WHERE

END FUNCTION g

END MODULE quad_1d_inf_ex02_mod

PROGRAM nag_quad_1d_inf_ex02

! Example Program Text for nag_quad_1d_inf

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_out

USE nag_math_constants, ONLY : nag_pi

USE nag_quad_1d_inf, ONLY : nag_quad_1d_inf_wt_trig

USE quad_1d_inf_ex02_mod, ONLY : wp, g

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Local Scalars ..

REAL (wp) :: a, omega, pi, result

[NP3245/3/pdf] Module 11.2: nag quad 1d inf 11.2.17

Example 2 Quadrature

CHARACTER (1) :: trig_wt

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_quad_1d_inf_ex02’

pi = nag_pi(0.0_wp)

a = 0.0_wp

omega = 0.5_wp*pi

trig_wt = ’cosine’

CALL nag_quad_1d_inf_wt_trig(g,a,omega,trig_wt,result)

WRITE (nag_std_out,’(/,1X,A,F10.4)’) &

’a - lower limit of integration = ’, a

WRITE (nag_std_out,*) ’b - upper limit of integration = infinity’

WRITE (nag_std_out,’(1X,A,F9.5)’) &

’result - approximation to the integral =’, result

END PROGRAM nag_quad_1d_inf_ex02

2 Program Data

None.

3 Program Results
Example Program Results for nag_quad_1d_inf_ex02

a - lower limit of integration = 0.0000

b - upper limit of integration = infinity

result - approximation to the integral = 1.00000

11.2.18 Module 11.2: nag quad 1d inf [NP3245/3/pdf]

Quadrature Additional Examples

Additional Examples
Not all example programs supplied with NAG fl90 appear in full in this module document. The following
additional examples, associated with this module, are available.

nag quad 1d inf ex03

Computation of a cosine transform over a semi-infinite interval with specified accuracy.

[NP3245/3/pdf] Module 11.2: nag quad 1d inf 11.2.19

References Quadrature

References

[1] De Doncker E (1978) An adaptive extrapolation algorithm for automatic integration SIGNUM
Newsl. 13 (2) 12–18

[2] Malcolm M A and Simpson R B (1976) Local versus global strategies for adaptive quadrature ACM
Trans. Math. Software 1 129–146

[3] Piessens R (1973) An algorithm for automatic integration Angew. Inf. 15 399–401

[4] Piessens R and Branders M (1975) Algorithm 002. Computation of oscillating integrals J. Comput.
Appl. Math. 1 153–164

[5] Piessens R, De Doncker-Kapenga E, Überhuber C and Kahaner D (1983) QUADPACK, A
Subroutine Package for Automatic Integration Springer-Verlag

[6] Wynn P (1956) On a device for computing the em(Sn) transformation Math. Tables Aids Comput.
10 91–96

11.2.20 Module 11.2: nag quad 1d inf [NP3245/3/pdf]

