
Quadrature Module Contents

Module 11.1: nag quad 1d

Numerical Integration over a Finite Interval

nag quad 1d provides procedures for computing the value of a one-dimensional definite
integral over a finite interval.

Contents

Introduction . 11.1.3

Procedures

nag quad 1d gen . 11.1.5
1-d quadrature, adaptive, finite interval, allowing for badly behaved integrand,
allowing for singularities at user-specified break-points, suitable for oscillatory
integrands

nag quad 1d wt trig . 11.1.9
1-d quadrature, adaptive, finite interval, weight function cos(ωx) or sin(ωx)

nag quad 1d wt end sing . 11.1.13
1-d quadrature, adaptive, finite interval, weight function with end-point singularities
of algebraico-logarithmic type

nag quad 1d wt hilb . 11.1.17
1-d quadrature, adaptive, finite interval, weight function 1/(x − c), Cauchy principal
value (Hilbert transform)

nag quad 1d data . 11.1.21
1-d quadrature, integration of function defined by data values, Gill–Miller method

Examples

Example 1: Singular integral using general integrator . 11.1.23

Example 2: Integrand with oscillatory weight function . 11.1.25

Example 3: Integrands with algebraico-logarithmic singularities . 11.1.27

Example 4: Hilbert transform . 11.1.31

Example 5: Integration of a function defined by data values . 11.1.33

Additional Examples . 11.1.35

Mathematical Background . 11.1.37

References . 11.1.39

[NP3245/3/pdf] Module 11.1: nag quad 1d 11.1.1

Module Contents Quadrature

11.1.2 Module 11.1: nag quad 1d [NP3245/3/pdf]

Quadrature Module Introduction

Introduction
The procedures in this module are designed to estimate the value of a one-dimensional definite integral
of the form:

∫ b

a

f(x) dx,

where the limits of integration a and b are finite, and f(x) is defined by the user, either in the form of a
function, or at a set of distinct points xi, for i = 1, 2, . . . , n.

The module also provides procedures for integrands of the form

f(x) = w(x)g(x),

which contain a factor w(x), called the weight function, of a specific form. These procedures take
full account of any peculiar behaviour attributable to the w(x) factor. For further details see the
Mathematical Background section of this module document.

[NP3245/3/pdf] Module 11.1: nag quad 1d 11.1.3

Module Introduction Quadrature

11.1.4 Module 11.1: nag quad 1d [NP3245/3/pdf]

Quadrature nag quad 1d gen

Procedure: nag quad 1d gen

1 Description

nag quad 1d gen is a general-purpose integrator which computes an approximation to the integral

I =
∫ b

a

f(x) dx

of a function f(x) over a finite interval [a, b]. The procedure is suitable for integrands which have:

• singularities, especially when these are of algebraic or logarithmic type;

• local singular behaviour at a known finite number of points within the integration interval;

• oscillatory behaviour, but are non-singular.

It is an adaptive procedure, offering a choice of six Gauss–Kronrod rules. See Section 6.1 for more details.

This procedure requires a vector valued user-supplied function to evaluate the integrand at an array
of points, and will therefore be more efficient if the evaluation can be performed in vector mode on a
vector-processing machine.

2 Usage

USE nag quad 1d

CALL nag quad 1d gen(f, a, b, result [, optional arguments])

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

n ≥ 1 — the number of break-points

3.1 Mandatory Arguments

f — function
f must return the values of the integrand f at a set of points.

function f(x)

real(kind=wp), intent(in) :: x(:)
Input: the points at which the integrand f must be evaluated.

real(kind=wp) :: f(SIZE(x))
Result: f(i) must contain the value of f at x(i), for i = 1, 2, . . . ,SIZE(x).

[NP3245/3/pdf] Module 11.1: nag quad 1d 11.1.5

nag quad 1d gen Quadrature

a — real(kind=wp), intent(in)
b — real(kind=wp), intent(in)

Input: the lower and upper limits of integral I respectively.
Note: it is not necessary that a < b.

result — real(kind=wp), intent(out)
Output: the approximation to the integral I.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

abs acc — real(kind=wp), intent(in), optional
Input: the absolute accuracy required.
Default: abs acc = SQRT(EPSILON(1.0 wp)).
Constraints: abs acc ≥ 0.0. Both abs acc and rel acc cannot be zero.

rel acc — real(kind=wp), intent(in), optional
Input: the relative accuracy required.
Default: rel acc = 10−4.
Constraints: rel acc ≥ 0.0. Both abs acc and rel acc cannot be zero.

abs err — real(kind=wp), intent(out), optional
Output: an estimate of the modulus of the absolute error, which should be an upper bound for
| I − result |.

rule — integer, intent(in), optional
Input: the integration rule to be used:

if rule = 1 for the Gauss 7-point and Kronrod 15-point rule;
if rule = 2 for the Gauss 10-point and Kronrod 21-point rule;
if rule = 3 for the Gauss 15-point and Kronrod 31-point rule;
if rule = 4 for the Gauss 20-point and Kronrod 41-point rule;
if rule = 5 for the Gauss 25-point and Kronrod 51-point rule;
if rule = 6 for the Gauss 30-point and Kronrod 61-point rule.

Default: rule = 2.
Recommended Value: for an oscillatory, but non-singular integrand, rule = 6.
Constraints: rule = 1, 2, 3, 4, 5, or 6.

brk pts(n) — real(kind=wp), intent(in), optional
Input: the user-specified break-points.
Constraints: n ≥ 1. The break-points must all lie within the interval of integration (but may be
supplied in any order).

max num subint — integer, intent(in), optional
Input: the maximum number of subintervals to be used in the subdivision strategy.
Default: max num subint = max(500,2×(SIZE(brk pts)+1)).
Constraints: max num subint ≥ 1.

11.1.6 Module 11.1: nag quad 1d [NP3245/3/pdf]

Quadrature nag quad 1d gen

num subint used — integer, intent(out), optional
Output: the final number of subintervals used in the subdivision strategy.

num fun eval — integer, intent(out), optional
Output: the actual number of integrand evaluations.

subint info(:, :) — real(kind=wp), pointer, optional
Output: details of the computation which may be examined in the event of a failure. This
array contains the end-points of the subinterval used by the procedure, along with the integral
contribution and error estimates over these subintervals. Specifically, for i = 1, 2, . . . , m, let ri

denote the approximation to the value of the integral over the subinterval [xi, xi+1] in the partition
of [a, b], and let ei be the corresponding absolute error estimate. Then

∫ xi+1

xi

f(x) dx � ri and result =
m∑

i=1

ri,

unless this procedure terminates while testing for divergence of the integral. In this case result
(and abs err) are taken to be the values returned from the extrapolation process. The value of m
is returned in num subint used, and the values of xi, ri and ei are stored in the array subint info,
that is:

xi = subint info(i, 1), i �= m + 1, xm+1 = b,
ri = subint info(i, 2),
ei = subint info(i, 3).

Note: this array is allocated by nag quad 1d gen. It should be deallocated when no longer required.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 Maximum number of subdivisions allowed has been reached.

The accuracy requirements have not been achieved. Look at the integrand in order
to determine the integration difficulties. If the position of a local difficulty within
the interval can be determined (e.g., a singularity of the integrand or its derivative,
a peak, a discontinuity, etc.) you will probably gain from splitting up the interval
at this point and calling the integrator on the subintervals, or supplying this point
to the procedure as an element of the optional argument brk pts. If necessary,
another integrator should be used, which is designed for handling the type of difficulty
involved. Alternatively, consider relaxing the accuracy requirements specified by the
optional arguments abs acc and rel acc, or increasing the value of the optional
argument max num subint.

[NP3245/3/pdf] Module 11.1: nag quad 1d 11.1.7

nag quad 1d gen Quadrature

202 Round-off error prevents the requested accuracy from being achieved.

The error may be under-estimated. Consider requesting less accuracy.

203 Extremely bad local integrand behaviour.

This causes a very strong subdivision around one (or more) points of the interval.
The same advice applies as in the case error%code = 201.

204 The requested accuracy cannot be achieved.

The extrapolation does not increase the accuracy satisfactorily; the result returned is
the best which can be obtained. The same advice applies as in the case error%code
= 201.

205 The integral is probably divergent, or slowly convergent.

Note that divergence can also occur with any other value of error%code when
error%level = 2.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Algorithmic Detail

This procedure is a modified version of the QUADPACK procedure QAGP (Piessens et al. [6]). It is
an adaptive procedure, offering a choice of six Gauss–Kronrod rules. The algorithm described by De
Doncker [1], incorporates a global acceptance criterion (as defined by Malcolm and Simpson [3]) together
with the ε-algorithm (Wynn [9]) to perform extrapolation. The local error estimation is described in
Piessens et al. [6].

This procedure can cope with singularities of several types. It is very reliable, particularly where the
integrand has singularities other than at an end-point, or has discontinuities or cusps, and it is therefore
recommended where the integrand is known to be badly behaved, or where its nature is completely
unknown.

If f(x) is known to be free of singularities, though it may be oscillatory, this procedure may be used with
rule = 6. If f(x) has singularities of certain types, discontinuities or sharp peaks occurring at known
points , the integral should be evaluated separately over each of the subintervals between these points.
Alternatively, the points may be specified in the optional argument brk pts.

6.2 Accuracy

The procedure cannot guarantee, but in practice usually achieves, the following accuracy:

| I − result | ≤ tol,

where

tol = max (abs acc, rel acc× | I |)

and abs acc and rel acc are the specified absolute and relative accuracies, or their default values. The
optional output argument abs err normally satisfies

| I − result | ≤ abs err ≤ tol.

11.1.8 Module 11.1: nag quad 1d [NP3245/3/pdf]

Quadrature nag quad 1d wt trig

Procedure: nag quad 1d wt trig

1 Description

nag quad 1d wt trig computes an approximation to the integral

I =
∫ b

a

w(x)g(x) dx,

over a finite interval [a, b], where w(x) = sin(ωx) or cos(ωx), for a user-specified ω.

It is an adaptive procedure, and uses a modified Clenshaw–Curtis integration of orders 12 and 24 and
Gauss 7-point and Kronrod 15-point rules. A description of the algorithm is given in Section 6.1.

This procedure requires a vector valued user-supplied function to evaluate g at an array of points, and
will therefore be more efficient if the evaluation can be performed in vector mode on a vector-processing
machine.

2 Usage

USE nag quad 1d

CALL nag quad 1d wt trig(g, a, b, omega, trig wt, result [, optional arguments])

3 Arguments

3.1 Mandatory Arguments

g — function
g must return the values of the function g at a set of points.

function g(x)

real(kind=wp), intent(in) :: x(:)
Input: the points at which g must be evaluated.

real(kind=wp) :: g(SIZE(x))
Result: g(i) must contain the value of g at x(i), for i = 1, 2, . . . ,SIZE(x).

a — real(kind=wp), intent(in)
b — real(kind=wp), intent(in)

Input: the lower and upper limits of integral I respectively.
Note: it is not necessary that a < b.

omega — real(kind=wp), intent(in)
Input: the parameter ω in the weight function w(x).

trig wt — character(len=1), intent(in)
Input: indicates which type of weight function is to be used:

if trig wt = 'c' or 'C', w(x) = cos(ωx);
if trig wt = 's' or 'S', w(x) = sin(ωx).

Constraints: trig wt = 'c', 'C', 's' or 'S'.

[NP3245/3/pdf] Module 11.1: nag quad 1d 11.1.9

nag quad 1d wt trig Quadrature

result — real(kind=wp), intent(out)
Output: the approximation to the integral I.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

abs acc — real(kind=wp), intent(in), optional
Input: the absolute accuracy required.
Default: abs acc = SQRT(EPSILON(1.0 wp)).
Constraints: abs acc ≥ 0.0. Both abs acc and rel acc cannot be zero.

rel acc — real(kind=wp), intent(in), optional
Input: the relative accuracy required.
Default: rel acc = 10−4.
Constraints: rel acc ≥ 0.0. Both abs acc and rel acc cannot be zero.

abs err — real(kind=wp), intent(out), optional
Output: an estimate of the modulus of the absolute error, which should be an upper bound for
| I − result |.

max num subint — integer, intent(in), optional
Input: the maximum number of subintervals to be used in the subdivision strategy.
Default: max num subint = 500.
Constraints: max num subint ≥ 2.

num subint used — integer, intent(out), optional
Output: the final number of subintervals used in the subdivision strategy.

num fun eval — integer, intent(out), optional
Output: the actual number of integrand evaluations.

subint info(:, :) — real(kind=wp), pointer, optional
Output: details of the computation which may be examined in the event of a failure. This
array contains the end-points of the subinterval used by the procedure, along with the integral
contribution and error estimates over these subintervals. Specifically, for i = 1, 2, . . . , m, let ri

denote the approximation to the value of the integral over the subinterval [xi, xi+1] in the partition
of [a, b], and let ei be the corresponding absolute error estimate. Then

∫ xi+1

xi

w(x)g(x) dx � ri and result =
m∑

i=1

ri,

unless this procedure terminates while testing for divergence of the integral. In this case result
(and abs err) are taken to be the values returned from the extrapolation process. The value of m
is returned in num subint used, and the values of xi, ri and ei are stored in the array subint info,
that is:

xi = subint info(i, 1), i �= m + 1, xm+1 = b,
ri = subint info(i, 2),
ei = subint info(i, 3).

Note: this array is allocated by nag quad 1d wt trig. It should be deallocated when no longer
required.

11.1.10 Module 11.1: nag quad 1d [NP3245/3/pdf]

Quadrature nag quad 1d wt trig

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 Maximum number of subdivisions allowed has been reached.

The accuracy requirements have not been achieved. Look at the integrand in order
to determine the integration difficulties. If the position of a local difficulty within
the interval can be determined (e.g., a singularity of the integrand or its derivative,
a peak, a discontinuity, etc.) you will probably gain from splitting up the interval
at this point and calling the integrator on the subintervals. If necessary, another
integrator should be used, which is designed for handling the type of difficulty
involved. Alternatively, consider relaxing the accuracy requirements specified by the
optional arguments abs acc and rel acc, or increasing the value of the optional
argument max num subint.

202 Round-off error prevents the requested accuracy from being achieved.

The error may be under-estimated. Consider requesting less accuracy.

203 Extremely bad local integrand behaviour.

This causes a very strong subdivision around one (or more) points of the interval.
The same advice applies as in the case error%code = 201.

204 The requested accuracy cannot be achieved.

The extrapolation does not increase the accuracy satisfactorily; the result returned is
the best which can be obtained. The same advice applies as in the case error%code
= 201.

205 The integral is probably divergent, or slowly convergent.

Note that divergence can also occur with any other value of error%code when
error%level = 2.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The procedure is a modified version of the QUADPACK procedure QFOUR (Piessens et al. [6]). It is an
adaptive procedure, designed to integrate a function of the form w(x)g(x), where w(x) is either sin(ωx)
or cos(ωx).

[NP3245/3/pdf] Module 11.1: nag quad 1d 11.1.11

nag quad 1d wt trig Quadrature

Consider a subinterval of length

L =| b − a | 2−l.

The integration over this subinterval is performed by means of a modified Clenshaw–Curtis procedure
(Piessens and Branders [5]), if Lω > 4 and l ≤ 20. In this case a Chebyshev series approximation of
degree 24 is used to approximate g(x), while an error estimate is computed from this approximation
together with that obtained using a Chebyshev series of degree 12. If the above conditions do not hold
the Gauss 7-point and Kronrod 15-point rules are used. The algorithm described in Piessens et al. [6],
incorporates a global acceptance criterion (as defined by Malcolm and Simpson [3]) together with the
ε-algorithm (Wynn [9]) to perform extrapolation. The local error estimation is described in Piessens et
al. [6].

6.2 Accuracy

The procedure cannot guarantee, but in practice usually achieves, the following accuracy:

| I − result | ≤ tol,

where

tol = max (abs acc, rel acc× | I |)

and abs acc and rel acc are the specified absolute and relative accuracies, or their default values. The
optional output argument abs err normally satisfies

| I − result | ≤ abs err ≤ tol.

11.1.12 Module 11.1: nag quad 1d [NP3245/3/pdf]

Quadrature nag quad 1d wt end sing

Procedure: nag quad 1d wt end sing

1 Description

nag quad 1d wt end sing computes an approximation to the integral

I =
∫ b

a

w(x)g(x) dx,

over a finite interval [a, b]. The weight w(x) has end-point algebraico-logarithmic singularities of the
form:

w(x) =




(x − a)α(x − b)β , or
(x − a)α(x − b)β ln(x − a), or
(x − a)α(x − b)β ln(b − x), or
(x − a)α(x − b)β ln(x − a) ln(b − x),

where α > −1, β > −1.

It is an adaptive procedure, and uses a modified Clenshaw–Curtis integration of orders 12 and 24 and
Gauss 7-point and Kronrod 15-point rules. A description of the algorithm is given in Section 6.1.

This procedure requires a vector valued user-supplied function to evaluate g at an array of points, and
will therefore be more efficient if the evaluation can be performed in vector mode on a vector-processing
machine.

2 Usage

USE nag quad 1d

CALL nag quad 1d wt end sing(g, a, b, alpha, beta, log wt, result &
[, optional arguments])

3 Arguments

3.1 Mandatory Arguments

g — function
g must return the values of the function g at a set of points.

function g(x)

real(kind=wp), intent(in) :: x(:)
Input: the points at which g must be evaluated.

real(kind=wp) :: g(SIZE(x))
Result: g(i) must contain the value of g at x(i), for i = 1, 2, . . . ,SIZE(x).

a — real(kind=wp), intent(in)
b — real(kind=wp), intent(in)

Input: the lower and upper limits of integral I respectively.
Constraints: a < b.

[NP3245/3/pdf] Module 11.1: nag quad 1d 11.1.13

nag quad 1d wt end sing Quadrature

alpha — real(kind=wp), intent(in)
beta — real(kind=wp), intent(in)

Input: the parameters α and β in the weight function.
Constraints: alpha > −1, beta > −1.

log wt — character(len=1), intent(in)
Input: indicates which type of weight function is to be used:

if log wt = 'n' or 'N', w(x) = (x − a)α(x − b)β ;
if log wt = 'l' or 'L', w(x) = (x − a)α(x − b)β ln(x − a);
if log wt = 'u' or 'U', w(x) = (x − a)α(x − b)β ln(b − x);
if log wt = 'b' or 'B', w(x) = (x − a)α(x − b)β ln(x − a) ln(b − x).

Constraints: log wt = 'n', 'N', 'l', 'L', 'u', 'U', 'b' or 'B'.

result — real(kind=wp), intent(out)
Output: the approximation to the integral I.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

abs acc — real(kind=wp), intent(in), optional
Input: the absolute accuracy required.
Default: abs acc = SQRT(EPSILON(1.0 wp)).
Constraints: abs acc ≥ 0.0. Both abs acc and rel acc cannot be zero.

rel acc — real(kind=wp), intent(in), optional
Input: the relative accuracy required.
Default: rel acc = 10−4.
Constraints: rel acc ≥ 0.0. Both abs acc and rel acc cannot be zero.

abs err — real(kind=wp), intent(out), optional
Output: an estimate of the modulus of the absolute error, which should be an upper bound for
| I − result |.

max num subint — integer, intent(in), optional
Input: the maximum number of subintervals to be used in the subdivision strategy.
Default: max num subint = 500.
Constraints: max num subint ≥ 2.

num subint used — integer, intent(out), optional
Output: the final number of subintervals used in the subdivision strategy.

num fun eval — integer, intent(out), optional
Output: the actual number of integrand evaluations.

11.1.14 Module 11.1: nag quad 1d [NP3245/3/pdf]

Quadrature nag quad 1d wt end sing

subint info(:, :) — real(kind=wp), pointer, optional
Output: details of the computation which may be examined in the event of a failure. This
array contains the end-points of the subinterval used by the procedure, along with the integral
contribution and error estimates over these subintervals. Specifically, for i = 1, 2, . . . , m, let ri

denote the approximation to the value of the integral over the subinterval [xi, xi+1] in the partition
of [a, b], and let ei be the corresponding absolute error estimate. Then

∫ xi+1

xi

w(x)g(x) dx � ri and result =
m∑

i=1

ri,

unless this procedure terminates while testing for divergence of the integral. In this case result
(and abs err) are taken to be the values returned from the extrapolation process. The value of m
is returned in num subint used, and the values of xi, ri and ei are stored in the array subint info,
that is:

xi = subint info(i, 1), i �= m + 1, xm+1 = b,
ri = subint info(i, 2),
ei = subint info(i, 3).

Note: this array is allocated by nag quad 1d wt end sing. It should be deallocated when no longer
required.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 Maximum number of subdivisions allowed has been reached.

The accuracy requirements have not been achieved. Look at the integrand in order
to determine the integration difficulties. If the position of a local difficulty within
the interval can be determined (e.g., a singularity of the integrand or its derivative,
a peak, a discontinuity, etc.) you will probably gain from splitting up the interval
at this point and calling the integrator on the subintervals. If necessary, another
integrator should be used, which is designed for handling the type of difficulty
involved. Alternatively, consider relaxing the accuracy requirements specified by the
optional arguments abs acc and rel acc, or increasing the value of the optional
argument max num subint.

202 Round-off error prevents the requested accuracy from being achieved.

The error may be under-estimated. Consider requesting less accuracy.

203 Extremely bad local integrand behaviour.

This causes a very strong subdivision around one (or more) points of the interval.
The same advice applies as in the case error%code = 201.

[NP3245/3/pdf] Module 11.1: nag quad 1d 11.1.15

nag quad 1d wt end sing Quadrature

5 Examples of Usage

A complete example of the use of this procedure appears in Example 3 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The procedure is a modified version of the QUADPACK procedure QAWSE (Piessens et al. [6]). It
is an adaptive procedure, designed to integrate a function of the form w(x)g(x), where w(x) may
have algebraico-logarithmic singularities at the end points a and/or b. We start by bisecting the
original interval and applying modified Clenshaw–Curtis integration of orders 12 and 24 to both halves.
Clenshaw–Curtis integration is then used on all subintervals which have a or b as one of their end-points
(Piessens et al. [7]). On the other subintervals the Gauss 7-point and Kronrod 15-point rules are used. A
global acceptance criterion (as defined by Malcolm and Simpson [3]) is used. The local error estimation
is described in Piessens et al. [6].

6.2 Accuracy

The procedure cannot guarantee, but in practice usually achieves, the following accuracy:

| I − result | ≤ tol,

where

tol = max (abs acc, rel acc× | I |)

and abs acc and rel acc are the specified absolute and relative accuracies, or their default values. The
optional output argument abs err normally satisfies

| I − result | ≤ abs err ≤ tol.

11.1.16 Module 11.1: nag quad 1d [NP3245/3/pdf]

Quadrature nag quad 1d wt hilb

Procedure: nag quad 1d wt hilb

1 Description

nag quad 1d wt hilb computes an approximation to the Hibert transform of a function g(x):

I =
∫ b

a

g(x)
x − c

dx,

over a finite interval [a, b] where c �= a and c �= b.

It is an adaptive procedure, and uses a modified Clenshaw–Curtis integration of orders 12 and 24 and
Gauss 7-point and Kronrod 15-point rules. A description of the algorithm is given in Section 6.1.

This procedure requires a vector valued user-supplied function to evaluate g at an array of points, and
will therefore be more efficient if the evaluation can be performed in vector mode on a vector-processing
machine.

2 Usage

USE nag quad 1d

CALL nag quad 1d wt hilb(g, a, b, c, result [, optional arguments])

3 Arguments

3.1 Mandatory Arguments

g — function
g must return the values of the function g at a set of points.

function g(x)

real(kind=wp), intent(in) :: x(:)
Input: the points at which g must be evaluated.

real(kind=wp) :: g(SIZE(x))
Result: g(i) must contain the value of g at x(i), for i = 1, 2, . . . ,SIZE(x).

a — real(kind=wp), intent(in)
b — real(kind=wp), intent(in)

Input: the lower and upper limits of integral I respectively.
Note: it is not necessary that a < b.

c — real(kind=wp), intent(in)
Input: the parameter c in the weight function.
Constraints: c �= a and c �= b.

result — real(kind=wp), intent(out)
Output: the approximation to the integral I.

[NP3245/3/pdf] Module 11.1: nag quad 1d 11.1.17

nag quad 1d wt hilb Quadrature

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

abs acc — real(kind=wp), intent(in), optional
Input: the absolute accuracy required.
Default: abs acc = SQRT(EPSILON(1.0 wp)).
Constraints: abs acc ≥ 0.0. Both abs acc and rel acc cannot be zero.

rel acc — real(kind=wp), intent(in), optional
Input: the relative accuracy required.
Default: rel acc = 10−4.
Constraints: rel acc ≥ 0.0. Both abs acc and rel acc cannot be zero.

abs err — real(kind=wp), intent(out), optional
Output: an estimate of the modulus of the absolute error, which should be an upper bound for
| I − result |.

max num subint — integer, intent(in), optional
Input: the maximum number of subintervals to be used in the subdivision strategy.
Default: max num subint = 500.
Constraints: max num subint ≥ 2.

num subint used — integer, intent(out), optional
Output: the final number of subintervals used in the subdivision strategy.

num fun eval — integer, intent(out), optional
Output: the actual number of integrand evaluations.

subint info(:, :) — real(kind=wp), pointer, optional
Output: details of computation which may be examined in the event of a failure. This array
contains the end-points of the subinterval used by the procedure along with the integral contribution
and error estimates over these subintervals. Specifically, for i = 1, 2, . . . , m, let ri denote the
approximation to the value of the integral over the subinterval [xi, xi+1] in the partition of [a, b],
and let ei be the corresponding absolute error estimate. Then

∫ xi+1

xi

g(x)
x − c

dx � ri and result =
m∑

i=1

ri,

unless this procedure terminates while testing for divergence of the integral. In this case result
(and abs err) are taken to be the values returned from the extrapolation process. The value of m
is returned in num subint used, and the values of xi, ri and ei are stored in the array subint info,
that is:

xi = subint info(i, 1), i �= m + 1, xm+1 = b,
ri = subint info(i, 2),
ei = subint info(i, 3).

Note: this array is allocated by nag quad 1d wt hilb. It should be deallocated when no longer
required.

11.1.18 Module 11.1: nag quad 1d [NP3245/3/pdf]

Quadrature nag quad 1d wt hilb

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 Maximum number of subdivisions allowed has been reached.

The accuracy requirements have not been achieved. Look at the integrand in order
to determine the integration difficulties. If the position of a local difficulty within
the interval can be determined (e.g., a singularity of the integrand or its derivative,
a peak, a discontinuity, etc.) you will probably gain from splitting up the interval
at this point and calling the integrator on the subintervals. If necessary, another
integrator should be used, which is designed for handling the type of difficulty
involved. Alternatively, consider relaxing the accuracy requirements specified by the
optional arguments abs acc and rel acc, or increasing the value of the optional
argument max num subint.

202 Round-off error prevents the requested accuracy from being achieved.

The error may be under-estimated. Consider requesting less accuracy.

203 Extremely bad local integrand behaviour.

This causes a very strong subdivision around one (or more) points of the interval.
The same advice applies as in the case error%code = 201.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 4 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The procedure is a modified version of the QUADPACK procedure QAWS (Piessens et al. [6]). It is an
adaptive procedure, designed to integrate a function of the form w(x)g(x), where the weight function
w(x) = 1/(x−c) is that of Hilbert transform. (If c is in the interval (a, b), the integral is to be interpreted
in the sense of a Cauchy principal value.) A global acceptance criterion (as defined by Malcolm and
Simpson [3]) is used. Special care is taken to ensure that c is never the end-point of a subinterval
(Piessens et al. [8]). On each subinterval (c1, c2) modified Clenshaw–Curtis integration of orders 12 and
24 is performed if c1 − d ≤ c ≤ c2 + d where d = (c2 − c1)/20. Otherwise the Gauss 7-point and Kronrod
15-point rules are used. The local error estimation is described in Piessens et al. [6].

[NP3245/3/pdf] Module 11.1: nag quad 1d 11.1.19

nag quad 1d wt hilb Quadrature

6.2 Accuracy

The procedure cannot guarantee, but in practice usually achieves, the following accuracy:

| I − result | ≤ tol,

where

tol = max (abs acc, rel acc× | I |)

and abs acc and rel acc are the specified absolute and relative accuracies, or their default values. The
optional output argument abs err normally satisfies

| I − result | ≤ abs err ≤ tol.

11.1.20 Module 11.1: nag quad 1d [NP3245/3/pdf]

Quadrature nag quad 1d data

Procedure: nag quad 1d data

1 Description

nag quad 1d data evaluates the definite integral

I =
∫ xn

x1

y(x) dx,

where the function y(x) is specified at the n distinct points x1, x2, . . . , xn, n ≥ 4, which are either in
ascending or descending order. The method is due to Gill and Miller [2]. See Section 6.1 for more details.

2 Usage

USE nag quad 1d

CALL nag quad 1d data(x, y, result [, optional arguments])

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

n ≥ 4 — the number of data points

3.1 Mandatory Arguments

x(n) — real(kind=wp), intent(in)
Input: the values x1, x2, . . . , xn of the independent variable.
Constraints: either x(1) < x(2) < · · · < x(n), or x(1) > x(2) > · · · > x(n).

y(n) — real(kind=wp), intent(in)
Input: the values yi of the dependent variable at the points xi, for i = 1, 2, . . . , n.

result — real(kind=wp), intent(out)
Output: an estimate of the integral.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

err estimate — real(kind=wp), intent(out), optional
Output: an estimate of the uncertainty in result.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

[NP3245/3/pdf] Module 11.1: nag quad 1d 11.1.21

nag quad 1d data Quadrature

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 5 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The integral between successive points is calculated by the four-point finite-difference formula centred
on the interval concerned, except in the case of the first and last intervals, where four-point forward and
backward difference formulae respectively are employed. An approximation to the truncation error is
integrated and added to the result. It is also returned separately to give an estimate of the uncertainty
in the result. The method is due to Gill and Miller [2].
In their paper, Gill and Miller [2] do not add the quantity err estimate to result. However, extensive
tests have shown that a dramatic reduction in the error often results from such addition. In other cases,
it does not make an improvement, but these tend to be cases of low accuracy in which the modified
answer is not significantly inferior to the unmodified one. You have the option of recovering the result
of Gill and Miller [2] by subtracting err estimate from result on return from the procedure.

In order to check results independently, and so as to provide an alternative technique, you may
fit the data with a cubic spline using nag spline 1d lsq fit and then evaluate its integral using
nag spline 1d intg; both these procedures are provided in the module nag spline 1d (8.2).

6.2 Accuracy

The procedure does not allow you to specify an accuracy level, but on return | err estimate | is an
approximation to, but not necessarily a bound for, | I − result |. If on exit error%code has a non-zero
value, both result and err estimate are returned as zero.

11.1.22 Module 11.1: nag quad 1d [NP3245/3/pdf]

Quadrature Example 1

Example 1: Singular integral using general integrator

The integral
∫ 2π

0

x sin(30x)√
1 − x2

4π2

dx

is computed using nag quad 1d gen.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

MODULE quad_1d_ex01_mod

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

REAL (wp) :: pi

CONTAINS

FUNCTION f(x)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC SIN, SIZE, SQRT

! .. Array Arguments ..

REAL (wp), INTENT (IN) :: x(:)

! .. Function Return Value ..

REAL (wp) :: f(SIZE(x))

! .. Executable Statements ..

f = x*SIN(30.0_wp*x)/SQRT(1.0_wp-x*x/(4.0_wp*pi*pi))

END FUNCTION f

END MODULE quad_1d_ex01_mod

PROGRAM nag_quad_1d_ex01

! Example Program Text for nag_quad_1d

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_out

USE nag_math_constants, ONLY : nag_pi

USE nag_quad_1d, ONLY : nag_quad_1d_gen

USE quad_1d_ex01_mod, ONLY : wp, f, pi

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Local Scalars ..

REAL (wp) :: a, b, result

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_quad_1d_ex01’

[NP3245/3/pdf] Module 11.1: nag quad 1d 11.1.23

Example 1 Quadrature

pi = nag_pi(0.0_wp)

a = 0.0_wp

b = 2.0_wp*pi

CALL nag_quad_1d_gen(f,a,b,result)

WRITE (nag_std_out,’(/,1X,A,F10.4)’) &

’a - lower limit of integration = ’, a

WRITE (nag_std_out,’(1X,A,F10.4)’) &

’b - upper limit of integration = ’, b

WRITE (nag_std_out,’(1X,A,F9.5)’) &

’result - approximation to the integral =’, result

END PROGRAM nag_quad_1d_ex01

2 Program Data

None.

3 Program Results
Example Program Results for nag_quad_1d_ex01

a - lower limit of integration = 0.0000

b - upper limit of integration = 6.2832

result - approximation to the integral = -2.54326

11.1.24 Module 11.1: nag quad 1d [NP3245/3/pdf]

Quadrature Example 2

Example 2: Integrand with oscillatory weight function

The integral
∫ 1

0

ln(x) sin(10πx) dx

is computed using nag quad 1d wt trig.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

MODULE quad_1d_ex02_mod

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

CONTAINS

FUNCTION g(x)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC LOG, SIZE

! .. Array Arguments ..

REAL (wp), INTENT (IN) :: x(:)

! .. Function Return Value ..

REAL (wp) :: g(SIZE(x))

! .. Executable Statements ..

WHERE (x>0.0_wp)

g = LOG(x)

ELSEWHERE

g = 0.0_wp

END WHERE

END FUNCTION g

END MODULE quad_1d_ex02_mod

PROGRAM nag_quad_1d_ex02

! Example Program Text for nag_quad_1d

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_out

USE nag_math_constants, ONLY : nag_pi

USE nag_quad_1d, ONLY : nag_quad_1d_wt_trig

USE quad_1d_ex02_mod, ONLY : wp, g

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Local Scalars ..

REAL (wp) :: a, b, omega, pi, result

CHARACTER (1) :: trig_wt

! .. Executable Statements ..

[NP3245/3/pdf] Module 11.1: nag quad 1d 11.1.25

Example 2 Quadrature

WRITE (nag_std_out,*) ’Example Program Results for nag_quad_1d_ex02’

pi = nag_pi(0.0_wp)

a = 0.0_wp

b = 1.0_wp

omega = 10.0_wp*pi

trig_wt = ’sine’

CALL nag_quad_1d_wt_trig(g,a,b,omega,trig_wt,result)

WRITE (nag_std_out,’(/,1X,A,F10.4)’) &

’a - lower limit of integration = ’, a

WRITE (nag_std_out,’(1X,A,F10.4)’) &

’b - upper limit of integration = ’, b

WRITE (nag_std_out,’(1X,A,F9.5)’) &

’result - approximation to the integral =’, result

END PROGRAM nag_quad_1d_ex02

2 Program Data

None.

3 Program Results
Example Program Results for nag_quad_1d_ex02

a - lower limit of integration = 0.0000

b - upper limit of integration = 1.0000

result - approximation to the integral = -0.12814

11.1.26 Module 11.1: nag quad 1d [NP3245/3/pdf]

Quadrature Example 3

Example 3: Integrands with algebraico-logarithmic
singularities

The integrals
∫ 1

0

ln(x) cos(10πx) dx and
∫ 1

0

sin(10x)√
x(1 − x)

dx

are computed using nag quad 1d wt end sing.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

MODULE quad_1d_ex03_mod

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

REAL (wp) :: pi

CONTAINS

FUNCTION g1(x)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC COS, SIZE

! .. Array Arguments ..

REAL (wp), INTENT (IN) :: x(:)

! .. Function Return Value ..

REAL (wp) :: g1(SIZE(x))

! .. Executable Statements ..

g1 = COS(10.0_wp*pi*x)

END FUNCTION g1

FUNCTION g2(x)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC SIN, SIZE

! .. Array Arguments ..

REAL (wp), INTENT (IN) :: x(:)

! .. Function Return Value ..

REAL (wp) :: g2(SIZE(x))

! .. Executable Statements ..

g2 = SIN(10.0_wp*x)

END FUNCTION g2

END MODULE quad_1d_ex03_mod

[NP3245/3/pdf] Module 11.1: nag quad 1d 11.1.27

Example 3 Quadrature

PROGRAM nag_quad_1d_ex03

! Example Program Text for nag_quad_1d

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_out

USE nag_math_constants, ONLY : nag_pi

USE nag_quad_1d, ONLY : nag_quad_1d_wt_end_sing

USE quad_1d_ex03_mod, ONLY : wp, g1, g2, pi

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Local Scalars ..

REAL (wp) :: a, alpha1, alpha2, b, beta1, beta2, result1, result2

CHARACTER (1) :: log_wt

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_quad_1d_ex03’

pi = nag_pi(0.0_wp)

a = 0.0_wp

b = 1.0_wp

alpha1 = 0.0_wp

beta1 = 0.0_wp

log_wt = ’lower’

WRITE (nag_std_out,’(/,1X,A,F10.4)’) &

’a - lower limit of integration = ’, a

WRITE (nag_std_out,’(1X,A,F10.4)’) &

’b - upper limit of integration = ’, b

CALL nag_quad_1d_wt_end_sing(g1,a,b,alpha1,beta1,log_wt,result1)

WRITE (nag_std_out,*)

WRITE (nag_std_out,’(1X,A,F10.4)’) &

’alpha1 - parameter in the first weight function = ’, alpha1

WRITE (nag_std_out,’(1X,A,F10.4)’) &

’beta1 - parameter in the first weight function = ’, beta1

WRITE (nag_std_out,’(1X,A,F9.5)’) &

’result1 - approximation to the first integral =’, result1

alpha2 = -0.5_wp

beta2 = -0.5_wp

log_wt = ’none’

CALL nag_quad_1d_wt_end_sing(g2,a,b,alpha2,beta2,log_wt,result2)

WRITE (nag_std_out,*)

WRITE (nag_std_out,’(1X,A,F10.4)’) &

’alpha2 - parameter in the second weight function = ’, alpha2

WRITE (nag_std_out,’(1X,A,F10.4)’) &

’beta2 - parameter in the second weight function = ’, beta2

WRITE (nag_std_out,’(1X,A,F9.5)’) &

’result2 - approximation to the second integral =’, result2

END PROGRAM nag_quad_1d_ex03

2 Program Data

None.

11.1.28 Module 11.1: nag quad 1d [NP3245/3/pdf]

Quadrature Example 3

3 Program Results
Example Program Results for nag_quad_1d_ex03

a - lower limit of integration = 0.0000

b - upper limit of integration = 1.0000

alpha1 - parameter in the first weight function = 0.0000

beta1 - parameter in the first weight function = 0.0000

result1 - approximation to the first integral = -0.04899

alpha2 - parameter in the second weight function = -0.5000

beta2 - parameter in the second weight function = -0.5000

result2 - approximation to the second integral = 0.53502

[NP3245/3/pdf] Module 11.1: nag quad 1d 11.1.29

Example 3 Quadrature

11.1.30 Module 11.1: nag quad 1d [NP3245/3/pdf]

Quadrature Example 4

Example 4: Hilbert transform

The integral
∫ 1

−1

1
(x2 + 0.012)(x − 0.5)

dx

is computed using nag quad 1d wt hilb.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

MODULE quad_1d_ex04_mod

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

CONTAINS

FUNCTION g(x)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC SIZE

! .. Array Arguments ..

REAL (wp), INTENT (IN) :: x(:)

! .. Function Return Value ..

REAL (wp) :: g(SIZE(x))

! .. Executable Statements ..

g = 1.0_wp/(x*x+0.01_wp*0.01_wp)

END FUNCTION g

END MODULE quad_1d_ex04_mod

PROGRAM nag_quad_1d_ex04

! Example Program Text for nag_quad_1d

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_out

USE nag_quad_1d, ONLY : nag_quad_1d_wt_hilb

USE quad_1d_ex04_mod, ONLY : wp, g

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Local Scalars ..

REAL (wp) :: a, b, c, result

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_quad_1d_ex04’

a = -1.0_wp

b = 1.0_wp

[NP3245/3/pdf] Module 11.1: nag quad 1d 11.1.31

Example 4 Quadrature

c = 0.5_wp

CALL nag_quad_1d_wt_hilb(g,a,b,c,result)

WRITE (nag_std_out,’(/,1X,A,F10.4)’) &

’a - lower limit of integration = ’, a

WRITE (nag_std_out,’(1X,A,F10.4)’) &

’b - upper limit of integration = ’, b

WRITE (nag_std_out,’(1X,A,F10.4)’) &

’c - parameter in the weight function = ’, c

WRITE (nag_std_out,’(1X,A,F12.3)’) &

’result - approximation to the integral =’, result

END PROGRAM nag_quad_1d_ex04

2 Program Data

None.

3 Program Results
Example Program Results for nag_quad_1d_ex04

a - lower limit of integration = -1.0000

b - upper limit of integration = 1.0000

c - parameter in the weight function = 0.5000

result - approximation to the integral = -628.462

11.1.32 Module 11.1: nag quad 1d [NP3245/3/pdf]

Quadrature Example 5

Example 5: Integration of a function defined by data values

The integral
∫ 1

0

1
1 + x2

dx = π

is computed using nag quad 1d data by reading in the function values at 21 unequally spaced points.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_quad_1d_ex05

! Example Program Text for nag_quad_1d

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_quad_1d, ONLY : nag_quad_1d_data

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, n

REAL (wp) :: result

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: x(:), y(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_quad_1d_ex05’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) n

ALLOCATE (x(n),y(n)) ! Allocate storage

READ (nag_std_in,*) (x(i),y(i),i=1,n)

CALL nag_quad_1d_data(x,y,result)

WRITE (nag_std_out,’(/,1X,A,F9.5)’) &

’result - approximation to the integral =’, result

DEALLOCATE (x,y) ! Deallocate storage

END PROGRAM nag_quad_1d_ex05

2 Program Data
Example Program Data for nag_quad_1d_ex05

21

0.00 4.0000

0.04 3.9936

0.08 3.9746

0.12 3.9432

0.22 3.8153

[NP3245/3/pdf] Module 11.1: nag quad 1d 11.1.33

Example 5 Quadrature

0.26 3.7467

0.30 3.6697

0.38 3.4943

0.39 3.4719

0.42 3.4002

0.45 3.3264

0.46 3.3014

0.60 2.9412

0.68 2.7352

0.72 2.6344

0.73 2.6094

0.83 2.3684

0.85 2.3222

0.88 2.2543

0.90 2.2099

1.00 2.0000

3 Program Results
Example Program Results for nag_quad_1d_ex05

result - approximation to the integral = 3.14141

11.1.34 Module 11.1: nag quad 1d [NP3245/3/pdf]

Quadrature Additional Examples

Additional Examples
Not all example programs supplied with NAG fl90 appear in full in this module document. The following
additional examples, associated with this module, are available.

nag quad 1d ex06

Oscillatory smooth integrand using general integrator.

nag quad 1d ex07

Integrand at known point of singularity using general integrator.

nag quad 1d ex08

Singular integral using general integrator with user specified accuracy.

nag quad 1d ex09

Integrand with oscillatory weight function with specified accuracy.

[NP3245/3/pdf] Module 11.1: nag quad 1d 11.1.35

Additional Examples Quadrature

11.1.36 Module 11.1: nag quad 1d [NP3245/3/pdf]

Quadrature Mathematical Background

Mathematical Background

1 Quadrature

To estimate the value of a one-dimensional integral, a quadrature rule uses an approximation in the form
of a weighted sum of integrand values, i.e.,

∫ b

a

f(x) dx �
N∑

i=1

wif(xi), (1)

where xi and wi are the abscissae and the weights of the quadrature rule, respectively.

More generally, if the integrand has the form f(x) = w(x)g(x), the corresponding formula becomes

∫ b

a

w(x)g(x) dx �
N∑

i=1

wig(xi). (2)

If the integrand is known only at a fixed set of points, these points must be used as the abscissae,
and the weighted sum is calculated using finite-difference methods. However, if the functional form of
the integrand is known, so that its value can easily be evaluated at any abscissae, then a wide variety
of quadrature rules are available, each characterised by its choice of abscissae and the corresponding
weights.

The choice of an appropriate rule depends on the interval [a, b] and the form of any w(x) factor. A
suitable value of N depends on the behaviour of f(x) (or of g(x), if there is a w(x) factor present).

Among possible rules, we mention particularly the Gaussian formulae, which employ a distribution of
abscissae which is optimal for f(x) or g(x) of polynomial form.

Generally, quadrature algorithms are divided into two categories: automatic and non-automatic. In a
non-automatic algorithm, a fixed number of abscissae, N , is used. This number and the particular rule
chosen uniquely determine the weights and abscissae. No estimate is made of the accuracy of the result.
However, in an automatic algorithm, the number of abscissae, N , within [a, b] is gradually increased until
consistency is achieved to within a level of accuracy (absolute or relative) requested by the user. There
are essentially two ways of doing this, non-adaptive or adaptive; hybrid forms of these two methods are
also possible.

1.1 Non-adaptive Algorithms

A series of rules using increasing values of N are successively applied over the whole interval [a, b]. It
is clearly more economical if abscissae already used for a lower value of N can be used again as part of
a higher-order formula. This principle is known as optimal extension. There is no overlap between the
abscissae used in Gaussian formulae of different orders. However, the Kronrod formulae are designed to
give an optimal (2N + 1)-point formula by adding (N + 1) points to an N -point Gauss formula.

1.2 Adaptive Algorithms

The interval [a, b] is repeatedly divided into a number of subintervals, and integration rules are
applied separately to each subinterval. Typically, the subdivision process will be carried further in the
neighbourhood of a sharp peak in the integrand, than where the curve is smooth. Thus, the distribution
of abscissae is adapted to the shape of the integrand.

Subdivision raises the problem of what constitutes an acceptable accuracy in each subinterval. The
usual global acceptability criterion demands that the sum of the absolute values of the error estimates
in the subintervals should meet the conditions required of the error over the whole interval. Automatic
extrapolation over several levels of subdivision may eliminate the effects of some types of singularities.

An ideal general-purpose method would be an automatic method which could be used for a wide variety
of integrands, was efficient (i.e., required the use of as few abscissae as possible), and was reliable (i.e.,
always gave results within the requested accuracy). Complete reliability is unobtainable, and generally

[NP3245/3/pdf] Module 11.1: nag quad 1d 11.1.37

Mathematical Background Quadrature

higher reliability is obtained at the expense of efficiency, and vice versa. It must therefore be emphasised
that the automatic procedures in this module cannot be assumed to be 100% reliable. In general, however,
the reliability is very high.

11.1.38 Module 11.1: nag quad 1d [NP3245/3/pdf]

Quadrature References

References

[1] De Doncker E (1978) An adaptive extrapolation algorithm for automatic integration SIGNUM
Newsl. 13 (2) 12–18

[2] Gill P E and Miller G F (1972) An algorithm for the integration of unequally spaced data Comput.
J. 15 80–83

[3] Malcolm M A and Simpson R B (1976) Local versus global strategies for adaptive quadrature ACM
Trans. Math. Software 1 129–146

[4] Piessens R (1973) An algorithm for automatic integration Angew. Inf. 15 399–401

[5] Piessens R and Branders M (1975) Algorithm 002. Computation of oscillating integrals J. Comput.
Appl. Math. 1 153–164

[6] Piessens R, De Doncker-Kapenga E, Überhuber C and Kahaner D (1983) QUADPACK, A
Subroutine Package for Automatic Integration Springer-Verlag

[7] Piessens R, Mertens I and Branders M (1974) Integration of functions having end-point singularities
Angew. Inf. 16 65–68

[8] Piessens R, Van Roy-BrandersM and Mertens I (1976) The automatic evaluation of Cauchy principal
value integrals Angew. Inf. 18 31–35

[9] Wynn P (1956) On a device for computing the em(Sn) transformation Math. Tables Aids Comput.
10 91–96

[NP3245/3/pdf] Module 11.1: nag quad 1d 11.1.39

