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Nonlinear Equations Module Introduction

Introduction
This module contains the procedure nag nlin sys sol which is designed to solve a set of n nonlinear
equations in n unknowns

fi(x) = 0, i = 1, 2, . . . , n, x = (x1, x2, . . . , xn)T .

It is assumed that the functions are continuous and differentiable so that the matrix of first partial
derivatives of the functions, the Jacobian matrix Jij(x) = ∂fi/∂xj evaluated at the point x, exists,
though it may not be possible to calculate it directly. Since the method is iterative, an initial guess at
the solution has to be supplied, and the solution located will usually be the one closest to this initial
guess.
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Nonlinear Equations nag nlin sys sol

Procedure: nag nlin sys sol

1 Description

nag nlin sys sol is a procedure designed to solve a set of n nonlinear equations in n unknowns

fi(x) = 0, i = 1, 2, . . . , n, x = (x1, x2, . . . , xn)T .

2 Usage

USE nag nlin sys

CALL nag nlin sys sol(fun, x [, optional arguments])

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

n ≥ 1 — the number of equations

3.1 Mandatory Arguments

fun — subroutine
The procedure fun, supplied by the user, must calculate the vector of values fi(x) and, optionally,
their first derivatives ∂fi/∂xj at any point x.
Its specification is:

subroutine fun(x, finish, f vec, f jac)

real(kind=wp), intent(in) :: x(:)
Shape: x has shape (n).
Input: the point x at which the values of fi and (optionally) ∂fi/∂xj are required, for
i, j = 1, 2, . . . , n.

logical, intent(inout) :: finish

Input: finish will always be .false. on entry.
Output: if you wish to terminate the call to this procedure, you should set finish to
.true.. If finish is .true. on exit from fun, then this procedure will terminate with
error%code = 201.

real(kind=wp), intent(out) :: f vec(:)
Shape: f vec has shape (n).
Output: unless finish is set to .true., f vec(i) must contain the value of fi at the point
x, for i = 1, 2, . . . , n.
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real(kind=wp), intent(out), optional :: f jac(:, :)
Shape: f jac has shape (n, n).
Output: if present, f jac(i, j) must contain the value of the first derivative ∂fi/∂xj at the
point x, for i, j = 1, 2, . . . , n.
Note: if the optional argument user jac = .false.(see Section 3.2), then f jac is not
present in any call to fun. If user jac = .true., then f jac is present in some calls to
fun, but not in others; therefore you must test for the presence of f jac before assigning
any values to it. In all cases, f jac must appear as a dummy argument in the user-supplied
procedure fun.

x(n) — real(kind=wp), intent(inout)
Input: an initial estimate of the solution.
Output: the final estimate of the solution.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

user jac — logical, intent(in), optional
Input: specifies whether or not the Jacobian is to be evaluated by the user-supplied procedure
fun.

If user jac=.true., the Jacobian will be evaluated by fun;
if user jac=.false., the Jacobian will be approximated by this procedure using finite
differences, and fun is called to evaluate function values only.

Default: user jac=.true..

num jac eval — integer, intent(out), optional
Output: the number of calls made to fun to evaluate the Jacobian.
Note: num jac eval is set to 0 if user jac=.false..

jac check(n) — real(kind=wp), intent(out), optional
Output: contains the measures of correctness of the respective gradients at the initial point x. If
there is no loss of significance (see Further Details for more information), then if jac check(i)
is 1.0 the ith user-supplied gradient is correct, whilst if jac check(i) is 0.0 the ith gradient is
incorrect. For values of jac check(i) between 0.0 and 1.0 the categorisation is less certain. In
general, a value of jac check(i) > 0.5 indicates that the ith gradient is probably correct.
Note: jac check is set to 0 if user jac=.false..

jac sub diag — integer, intent(in), optional
jac sup diag — integer, intent(in), optional

Input: the number of subdiagonals and superdiagonals, respectively, within the band of the
Jacobian matrix. (If the Jacobian is not banded, or you are unsure, the default value should
be used.)
Default: jac sub diag = n − 1, jac sup diag = n − 1.
Constraints: jac sub diag ≥ 0, jac sup diag ≥ 0.
Note: both these arguments are ignored if user jac = .true..
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f err — real(kind=wp), intent(in), optional
Input: a rough estimate of the largest relative error in the functions. It is used in determining a
suitable step for a forward difference approximation to the Jacobian.
Default: f err = EPSILON(1.0 wp).
Constraints: f err ≥ EPSILON(1.0 wp).
Note: this argument is ignored if user jac = .true..

x tol — real(kind=wp), intent(in), optional
Input: the accuracy in x to which the solution is required.
Default: x tol = SQRT(EPSILON(1.0 wp)).
Constraints: x tol ≥ 0.0.

scale(n) — real(kind=wp), intent(inout), optional
Input: the multiplicative scale factors for the variables. If scale(i) = 0.0 for i = 1, 2, . . . , n, then
the variables will be scaled internally.
Output: the scale factors actually used.
Default: scale(i) = 0.0 for i = 1, 2, . . . , n.
Constraints: scale(i) ≥ 0.0.

factor — real(kind=wp), intent(in), optional
Input: a quantity to be used in determining the initial step bound. In most cases, factor should
lie between 0.1 and 100. (The step bound is factor ×‖ scale × x ‖2 if this is non-zero; otherwise
the bound is factor.)
Default: factor = 100.0.
Constraints: factor ≥ 0.0.

max fun eval — integer, intent(in), optional
Input: the maximum number of calls to fun. If, at the end of an iteration, the number of calls to
fun exceeds max fun eval, this procedure will exit with error%code = 202.
Default: max fun eval = 200(n+ 1).
Constraints: max fun eval > 0.

num fun eval — integer, intent(out), optional
Output: the number of calls made to fun to evaluate the functions.

f vec(n) — real(kind=wp), intent(out), optional
Output: the function values at the final point, x.

q jac(n, n) — real(kind=wp), intent(out), optional
Output: the orthogonal matrix Q produced by the QR factorization of the final approximate
Jacobian.

r jac(n(n + 1)/2) — real(kind=wp), intent(out), optional
Output: the upper triangular matrix R produced by the QR factorization of the final approximate
Jacobian, stored row-wise, i.e., Rij is stored in r jac(j + (2(n + 1)− i)(i − 1)/2) for i ≥ j where
i, j = 1, . . . , n.

qt f(n) — real(kind=wp), intent(out), optional
Output: the vector QT f .
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error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

304 Invalid presence of an optional argument.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 Execution terminated by the user.

finish has been set to .true. in the user-supplied procedure fun.

202 Maximum number of function evaluations reached.

Consider restarting the calculation from the final point held in x.

203 Tolerance required is too small.

No further improvement in the approximate solution, x, is possible.

204 The iteration is not making good progress.

The last 5 Jacobian evaluations indicate that further improvement cannot be made.

205 The iteration is not making good progress.

The last 10 iterations indicate that further improvement cannot be made.

5 Examples of Usage

Complete examples of the use of this procedure appear in Examples 1 and 2 of this module document.

6 Further Comments

6.1 Algorithmic Detail

This procedure is based upon the MINPACK procedures HYBRJ and HYBRD (See Moré et al. [1]).
It chooses the correction at each step as a convex combination of the Newton and scaled gradient
directions. Under reasonable conditions this guarantees global convergence for starting points far from
the solution and a fast rate of convergence. The Jacobian is updated by the rank-1 method of Broyden.
At the starting point the Jacobian is calculated (or approximated by finite differences), but it is not
recalculated or approximated again until the rank-1 method fails to produce satisfactory progress. For
more details see Powell [3].

10.3.8 Module 10.3: nag nlin sys [NP3245/3/pdf]



Nonlinear Equations nag nlin sys sol

6.2 Accuracy

If x̂ is the true solution and D denotes the diagonal matrix whose entries are defined by the array scale,
then this procedure tries to ensure that ‖D(x− x̂)‖2 ≤ x tol ×‖Dx̂‖2. If this condition is satisfied with
x tol = 10−k, then the larger components of Dx have k significant decimal digits. There is a danger
that the smaller components of Dx may have large relative errors, but the fast rate of convergence of
this procedure usually avoids this possibility.

If x tol is less than EPSILON(1.0 wp) and the above test is satisfied with EPSILON(1.0 wp) in place of
x tol, then the procedure exits with error%code = 203.

Note that this convergence test is based purely on relative error, and may not indicate convergence if
the solution is very close to the origin.

The test assumes that the functions and the Jacobian (if provided) are reasonably well behaved and
consistently coded. If this condition is not satisfied, then this procedure may incorrectly indicate
convergence. The validity of the answer can be checked, for example, by rerunning this procedure
with a tighter tolerance.

6.3 Timing

The time required by this procedure to solve a given problem depends on n, the behaviour of the
functions, the accuracy requested and the starting point. The number of arithmetic operations executed
by this procedure to process each call of fun is about 11.5n2 and 1.3n3 for the evaluation of the Jacobian.
Unless fun can be evaluated quickly, the timing of this procedure will be strongly influenced by the time
spent in fun. Ideally the problem should be scaled so that, at the solution, the function values are of
comparable magnitude.
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Example 1: Solution of a tridiagonal system of equations
(finite difference Jacobian)

To determine the values x1, . . . , x9 which satisfy the tridiagonal equations:

(3− 2x1)x1 − 2x2 = −1
−xi−1 + (3− 2xi)xi − 2xi+1 = −1, i = 2, 3, . . . , 8
−x8 + (3− 2x9)x9 = −1.

The Jacobian is approximated by the procedure.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

MODULE nlin_sys_ex01_mod

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

CONTAINS

SUBROUTINE fun(x,finish,f_vec,f_jac)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC SIZE

! .. Scalar Arguments ..

LOGICAL, INTENT (INOUT) :: finish

! .. Array Arguments ..

REAL (wp), OPTIONAL, INTENT (OUT) :: f_jac(:,:)

REAL (wp), INTENT (OUT) :: f_vec(:)

REAL (wp), INTENT (IN) :: x(:)

! .. Local Scalars ..

INTEGER :: n

! .. Executable Statements ..

n = SIZE(x)

f_vec = (3.0_wp-2.0_wp*x)*x + 1.0_wp

f_vec(2:n) = f_vec(2:n) - x(1:n-1)

f_vec(1:n-1) = f_vec(1:n-1) - 2.0_wp*x(2:n)

END SUBROUTINE fun

END MODULE nlin_sys_ex01_mod

PROGRAM nag_nlin_sys_ex01

! Example Program Text for nag_nlin_sys

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_out

USE nag_nlin_sys, ONLY : nag_nlin_sys_sol

USE nlin_sys_ex01_mod, ONLY : fun, wp
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! .. Implicit None Statement ..

IMPLICIT NONE

! .. Parameters ..

INTEGER, PARAMETER :: n = 9

! .. Local Arrays ..

REAL (wp) :: x(n)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_nlin_sys_ex01’

! Starting values for the initial approximate solution

x = -0.1_wp

! Solve the system of non-linear equations

CALL nag_nlin_sys_sol(fun,x,user_jac=.FALSE.)

WRITE (nag_std_out,’(/1X,A/3(/3F12.4))’) ’Final approximate solution’, x

END PROGRAM nag_nlin_sys_ex01

2 Program Data

None.

3 Program Results
Example Program Results for nag_nlin_sys_ex01

Final approximate solution

-0.5707 -0.6816 -0.7017

-0.7042 -0.7014 -0.6919

-0.6658 -0.5960 -0.4164
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Example 2: Solution of a tridiagonal system of equations
(user-supplied Jacobian)

To determine the values x1, . . . , x9 which satisfy the tridiagonal equations:

(3− 2x1)x1 − 2x2 = −1
−xi−1 + (3− 2xi)xi − 2xi+1 = −1, i = 2, 3, . . . , 8
−x8 + (3− 2x9)x9 = −1.

This example illustrates the use of the optional argument jac check in order to validate the user-supplied
Jacobian for consistency with the function values specified.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

MODULE nlin_sys_ex02_mod

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

CONTAINS

SUBROUTINE fun(x,finish,f_vec,f_jac)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC PRESENT, SIZE

! .. Scalar Arguments ..

LOGICAL, INTENT (INOUT) :: finish

! .. Array Arguments ..

REAL (wp), OPTIONAL, INTENT (OUT) :: f_jac(:,:)

REAL (wp), INTENT (OUT) :: f_vec(:)

REAL (wp), INTENT (IN) :: x(:)

! .. Local Scalars ..

INTEGER :: i, n

! .. Executable Statements ..

n = SIZE(x)

f_vec = (3.0_wp-2.0_wp*x)*x + 1.0_wp

f_vec(2:n) = f_vec(2:n) - x(1:n-1)

f_vec(1:n-1) = f_vec(1:n-1) - 2.0_wp*x(2:n)

IF (PRESENT(f_jac)) THEN

f_jac = 0.0_wp

DO i = 1, n

f_jac(i,i) = 3.0_wp - 4.0_wp*x(i)

IF (i>1) f_jac(i,i-1) = -1.0_wp

IF (i<n) f_jac(i,i+1) = -2.0_wp

END DO

END IF

END SUBROUTINE fun

END MODULE nlin_sys_ex02_mod
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PROGRAM nag_nlin_sys_ex02

! Example Program Text for nag_nlin_sys

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_out

USE nag_nlin_sys, ONLY : nag_nlin_sys_sol

USE nlin_sys_ex02_mod, ONLY : fun, wp

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Parameters ..

INTEGER, PARAMETER :: n = 9

CHARACTER (*), PARAMETER :: fmt1 = ’(/,1X,A,/,3(/,3F12.4))’

CHARACTER (*), PARAMETER :: fmt2 = ’(/,1X,A,I4)’

! .. Local Scalars ..

INTEGER :: num_fun_eval, num_jac_eval

! .. Local Arrays ..

REAL (wp) :: jac_check(n), x(n)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_nlin_sys_ex02’

! Starting values for the initial approximate solution

x = -0.1_wp

! Solve the system of non-linear equations: Include the optional

! argument jac_check to measure the consistency of the function

! and the Jacobian

CALL nag_nlin_sys_sol(fun,x,num_fun_eval=num_fun_eval, &

num_jac_eval=num_jac_eval,jac_check=jac_check)

WRITE (nag_std_out,fmt1) ’Final approximate solution’, x

WRITE (nag_std_out,fmt1) ’Jacobian consistency errors’, jac_check

WRITE (nag_std_out,fmt2) ’Number of function evaluations =’, &

num_fun_eval

WRITE (nag_std_out,fmt2) ’Number of Jacobian evaluations =’, &

num_jac_eval

END PROGRAM nag_nlin_sys_ex02

2 Program Data

None.

3 Program Results
Example Program Results for nag_nlin_sys_ex02

Final approximate solution

-0.5707 -0.6816 -0.7017

-0.7042 -0.7014 -0.6919

-0.6658 -0.5960 -0.4164

Jacobian consistency errors

1.0000 1.0000 1.0000

1.0000 1.0000 1.0000
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1.0000 1.0000 1.0000

Number of function evaluations = 17

Number of Jacobian evaluations = 1
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Mathematical Background

1 Introduction

nag nlin sys sol is designed to solve a set of nonlinear equations in n unknowns

fi(x) = 0, i = 1, 2, . . . , n, x = (x1, x2, . . . , xn)T . (1)

It is assumed that the functions are continuous and differentiable so that the matrix of first partial
derivatives of the functions, the Jacobian matrix Jij(x) = ∂fi/∂xj evaluated at the point x, exists,
though it may not be possible to calculate it directly.
The functions fi must be independent, otherwise there will be an infinity of solutions and the methods
will fail. However, even when the functions are independent the solutions may not be unique. Since the
methods are iterative, an initial guess at the solution has to be supplied, and the solution located will
usually be the one closest to this initial guess.

The solution of a set of nonlinear equations

fi(x1, x2, . . . , xn) = 0, i = 1, 2, . . . , n (2)

can be regarded as a special case of the problem of finding a minimum of a sum of squares

s(x) =
m∑

i=1

[fi(x1, x2, . . . , xn)]2 (m ≥ n). (3)

So the procedures in Chapter 9 (Optimization) are relevant as well as the special nonlinear equations
procedures.

The procedure nag nlin sys sol is provided for solving a set of nonlinear equations. This procedure
requires the fi (and possibly their derivatives) to be calculated in user-supplied functions. These should
be set up carefully so the procedure can work as efficiently as possible.

The main decision which has to be made by the user is whether to supply the derivatives ∂fi/∂xj . It is
advisable to do so if possible, since the results obtained by algorithms which use derivatives are generally
more reliable than those obtained by algorithms which do not use derivatives.

Firstly, the calculation of the functions and their derivatives should be ordered so that cancellation
errors are avoided. This is particularly important in a procedure that uses these quantities to build up
estimates of higher derivatives.

Secondly, scaling of the variables has a considerable effect on the efficiency of the procedure. The problem
should be designed so that the elements of x are of similar magnitude. The same comment applies to
the functions, all the fi should be of comparable size.

The accuracy is usually determined by the accuracy parameters of the procedure, but the following
points may be useful.

• Greater accuracy in the solution may be requested by choosing smaller input values for the
accuracy parameters. However, if unreasonable accuracy is demanded, rounding errors may become
important and cause a failure.

• An approximation to the error in the solution is given by e, where e is the solution to the set of
linear equations J(x)e = −f(x) where f(x) = (f1(x), f2(x), . . . , fn(x))T .

• If the functions fi(x) are changed by small amounts εi, for i = 1, 2, . . . , n, then the corresponding
change in the solution x is given approximately by σ, where σ is the solution of the set of linear
equations J(x)σ = −ε. Thus one can estimate the sensitivity of x to any uncertainties in the
specification of fi(x), for i = 1, 2, . . . , n.
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Further Details

1 Derivative Checking

In order to check the user-supplied derivatives for consistency with the functions themselves, the optional
argument jac check can be specified in the argument list of nag nlin sys sol. You are strongly advised
to make use of this functionality whenever the Jacobian is provided.

The checking procedure is based upon the MINPACK procedure CHKDER (see Moré et al. [1]). It checks
the ith gradient for consistency with the ith function by computing a forward-difference approximation
along a suitably chosen direction and comparing this approximation with the user-supplied gradient
along the same direction. The principal characteristic of the checking procedure is its invariance under
changes in scale of the variables or functions.

This procedure does not perform reliably if the cancellation or rounding errors cause a severe loss of
significance in the evaluation of a function. Therefore, none of the components of x should be unusually
small (in particular zero) or any other value which may cause loss of significance.
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