
Optimization Module Contents

Module 9.6: nag nlp sparse

Sparse Nonlinear Programming

nag nlp sparse contains a procedure for solving sparse NLP problems.

Contents

Introduction . 9.6.3

Procedures

nag nlp sparse sol . 9.6.5

Solves a sparse nonlinear programming problem

nag nlp sparse cntrl init . 9.6.29

Initialization procedure for nag nlp sparse cntrl wp

Derived Types

nag nlp sparse cntrl wp . 9.6.31

Control parameters for nag nlp sparse sol

Examples

Example 1: Nonlinear Programming Problem (with bounds and linear constraints) 9.6.47

Example 2: Nonlinear Programming Problem (with bounds but no general constraints) . . . 9.6.53

Additional Examples . 9.6.57

Mathematical Background . 9.6.59

References . 9.6.62

[NP3506/4] Module 9.6: nag nlp sparse 9.6.1

Module Contents Optimization

9.6.2 Module 9.6: nag nlp sparse [NP3506/4]

Optimization Module Introduction

Introduction

This module contains two procedures and a derived type as follows:

• nag nlp sparse sol computes a constrained minimum (or maximum) of an arbitrary smooth
function subject to a set of constraints (which may include simple bounds on the variables,
linear constraints and smooth nonlinear constraints), using a sequential quadratic programming
(SQP) method. It may also be used for unconstrained, bound-constrained and linearly constrained
optimization. As many first derivatives as possible should be supplied by the user; any unspecified
derivatives are approximated by finite differences, at non-trivial expense.

• nag nlp sparse cntrl init assigns default values to the components of a structure of the derived
type nag nlp sparse cntrl wp.

• nag nlp sparse cntrl wp may be used to supply optional parameters to nag nlp sparse sol.

[NP3506/4] Module 9.6: nag nlp sparse 9.6.3

Module Introduction Optimization

9.6.4 Module 9.6: nag nlp sparse [NP3506/4]

Optimization nag nlp sparse sol

Procedure: nag nlp sparse sol

1 Description

nag nlp sparse sol is designed to solve a class of nonlinear programming problems that are assumed
to be stated in the following general form:

minimize
x∈Rn

f(x) subject to l ≤







x
F (x)
Gx







≤ u, (1)

where x = (x1, x2, . . . , xn)
T is a set of variables, f(x) is a smooth scalar objective function, l and u are

constant lower and upper bounds, F (x) is a vector of smooth nonlinear constraint functions {Fi(x)} and
G is a sparse matrix.

If there are no nonlinear constraints in (1) and F is linear or quadratic, then nag qp sol in the module
nag qp (9.1) will generally be more efficient if G is a dense matrix. If the problem is dense and does
have nonlinear constraints, then either nag nlp sol or nag con nlin lsq sol 1 (as appropriate) should
be used instead.

The constraints involving F and Gx are called the general constraints. Note that upper and lower bounds
are specified for all variables and constraints. This form allows full generality in specifying various types
of constraint. In particular, the jth constraint can be defined as an equality by setting lj = uj . If certain
bounds are not present, the associated elements of l or u can be set to special values that will be treated
as −∞ or +∞.

The procedure converts the upper and lower bounds on the m elements of F and Gx to equalities by
introducing a set of slack variables s, where s = (s1, s2, . . . , sm)T . For example, the linear constraint
5 ≤ 2x1 + 3x2 ≤ +∞ is replaced by 2x1 + 3x2 − s1 = 0, together with the bounded slack 5 ≤ s1 ≤ +∞.
The problem defined by (1) can therefore be re-written in the following equivalent form:

minimize
x∈Rn,s∈Rm

f(x) subject to

{

F (x)
Gx

}

− s = 0, l ≤
{

x
s

}

≤ u. (2)

Since the slack variables s are subject to the same upper and lower bounds as the elements of F and
Gx, the bounds on F and Gx can simply be thought of as bounds on the combined vector (x, s). The
elements of x and s are partitioned into basic, nonbasic and superbasic variables defined as follows:

A basic variable (xj say) is the jth variable associated with the jth column of the associated basis
matrix B.

A nonbasic variable is a variable that is not basic.

A superbasic variable is a nonbasic variable which is not at one of its bounds.

For example, in the simplex method (see Gill et al. [5]) the elements of x and s can be partitioned at
each vertex into a set of m basic variables (all non-negative) and a set of (n − m) nonbasic variables
(all zero). This is equivalent to partitioning the columns of the constraint matrix as (B | N), where B
contains the m columns that correspond to the basic variables and N contains the (n−m) columns that
correspond to the nonbasic variables.

In general, the objective and constraint functions are structured in the sense that they are formed from
sums of linear and nonlinear functions. This structure can be exploited by the procedure during the
solution process as follows.

Consider the following nonlinear optimization problem with four variables (u, v, z, w):

minimize
u,v,z,w

(u+ v + z)2 + 3z + 5w

subject to the constraints

u2 + v2 + z = 2
u4 + v4 + w = 4
2u + 4v ≥ 0

[NP3506/4] Module 9.6: nag nlp sparse 9.6.5

nag nlp sparse sol Optimization

and to the bounds

z ≥ 0
w ≥ 0.

This problem has several characteristics that can be exploited by the procedure:

The objective function is nonlinear. It is the sum of a nonlinear function of the variables (u,v,z)
and a linear function of the variables (z,w).

The first two constraints are nonlinear. The third is linear.

Each nonlinear constraint function is the sum of a nonlinear function of the variables (u,v) and a
linear function of the variables (z,w).

The nonlinear terms are defined by the procedures obj fun and con fun (see Section 3.2), which involve
only the appropriate subset of variables.

For the objective, we define the function f(u, v, z) = (u + v + z)2 to include only the nonlinear part
of the objective. The three variables (u,v,z) associated with this function are known as the nonlinear
objective variables. The number of them is given by num nlin obj var (see Section 3.2), and they are
the only variables needed in obj fun. The linear part 3z + 5w of the objective is stored in row obj row

(see Section 3.2) of the (constraint) Jacobian matrix A (see below).

Thus, if x′ and y′ denote the nonlinear and linear objective variables, respectively, the objective may be
re-written in the form

f(x′) + cTx′ + dT y′,

where f(x′) is the nonlinear part of the objective; and c and d are constant vectors that form a row of
A. In this example, x′ = (u, v, z) and y′ = w.

Similarly for the constraints, we define a vector function F (u, v) to include just the nonlinear terms. In
this example, F1(u, v) = u2 + v2 and F2(u, v) = u4 + v4, where the two variables (u, v) are known as
the nonlinear Jacobian variables. The number of them is given by num nlin jac var (see Section 3.2),
and they are the only variables needed in con fun. Thus, if x′′ and y′′ denote the nonlinear and linear
Jacobian variables, respectively, the constraint functions and the linear part of the objective have the
form

(

F (x′′) + A2y
′′

A3x
′′ + A4y

′′

)

, (3)

where x′′ = (u, v) and y′′ = (z, w) in this example. This ensures that the Jacobian is of the form

A =

(

J(x′′) A2

A3 A4

)

,

where J(x′′) = ∂F (x′′)
∂x

. Note that J(x′′) always appears in the top left-hand corner of A.

The inequalities l1 ≤ F (x′′)+A2y
′′ ≤ u1 and l2 ≤ A3x

′′+A4y
′′ ≤ u2 implied by the constraint functions

in (3) are known as the nonlinear and linear constraints, respectively. The nonlinear constraint vector
F (x′′) in (3) and (optionally) its partial derivative matrix J(x′′) are set in con fun. The matrices A2,
A3 and A4 contain any (constant) linear terms. Along with the sparsity pattern of J(x′′) they are stored
in the arrays a, row index and col ptr (see Section 3.2).

In general, the vectors x′ and x′′ have different dimensions, but they always overlap, in the sense that
the shorter vector is always the beginning of the other. In the above example, the nonlinear Jacobian
variables (u, v) are an ordered subset of the nonlinear objective variables (u, v, w). In other cases it could
be the other way round (whichever is the most convenient), but the first way keeps J(x′′) as small as
possible.

Note that the nonlinear objective function f(x′) may involve either a subset or superset of the variables
appearing in the nonlinear constraint functions F (x′′). Thus, num nlin obj var ≤ num nlin jac var (or
vice-versa). Sometimes the objective and constraints really involve disjoint sets of nonlinear variables.
In such cases the variables should be ordered so that num nlin obj var > num nlin jac var and

9.6.6 Module 9.6: nag nlp sparse [NP3506/4]

Optimization nag nlp sparse sol

x′ = (x′′, x′′′), where the objective is nonlinear in just the last vector x′′′. The first num nlin jac var

elements of the gradient array obj grad should also be set to zero in obj fun.

You must supply an initial estimate of the solution to (1), together with a procedure obj fun (if n′
1
> 0)

that defines f(x′) and/or (if nN > 0) a procedure con fun which defines F (x′′). On every call, these
procedures must return values of the nonlinear part of the objective function or the nonlinear constraints,
and as many partial derivatives as possible. For maximum reliability, you should provide all partial
derivatives (see Chapter 8 of Gill et al. [5] for a detailed discussion). Any derivatives which are not
provided are approximated by finite differences, at non-trivial expense.

Several options are available for controlling the operation of this procedure, covering facilities such
as:

printed output, at the end of each iteration and at the final solution;

verifying or estimating partial derivatives;

algorithmic parameters, such as tolerances and iteration limits.

These options are grouped together in the optional argument control, which is a structure of the derived
type nag nlp sparse cntrl wp.

The method used by this procedure is described in detail in the Mathematical Background section of
this module document.

Note: all the input arguments needed to specify the problem to be solved by this procedure are optional.
Hence, at least one of the following optional input arguments must be present in every call statement:
con fun, obj fun or a (together with row index and col ptr).

2 Usage

USE nag nlp sparse

CALL nag nlp sparse sol(x, s, obj f [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

n ≥ 1 — the number of variables

m ≥ 1 — the number of slacks (or general constraints)

nZ ≤ n×m — the number of non-zeros

3.1 Mandatory Arguments

x(n) — real(kind=wp), intent(inout)

Input: the initial values of the variables x. (See also the description for x state in Section 3.2.)

Output: the final values of the variables x.

s(m) — real(kind=wp), intent(inout)

Input: if cold start = .true. (the default; see Section 3.2), s need not be initialized.

If cold start = .false., s must contain the initial values of the slacks s.

Output: the final values of the slacks s.

[NP3506/4] Module 9.6: nag nlp sparse 9.6.7

nag nlp sparse sol Optimization

obj f — real(kind=wp), intent(out)

Output: the value of the objective function f(x).

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

num nlin obj var — integer, intent(in), optional

Input: the number of nonlinear objective variables, n′
1
. If the objective function is nonlinear, the

leading n′
1
columns of A belong to the nonlinear objective variables. (See also the description for

num nlin jac var below.)

Constraints:

num nlin obj var must be present if obj fun is present;

0 ≤ num nlin obj var ≤ n.

Default: num nlin obj var = 0.

num nlin con — integer, intent(in), optional

Input: the number of nonlinear constraints, nN.

Constraints:

num nlin con must be present if con fun is present;

0 ≤ num nlin con ≤ m.

Default: num nlin con = 0.

num nlin jac var — integer, intent(in), optional

Input: the number of nonlinear Jacobian variables, n′′
1
. If there are any nonlinear constraints, the

leading n′′
1
columns of A belong to the nonlinear Jacobian variables. If n′

1
> 0 and n′′

1
> 0, the

nonlinear objective and Jacobian variables overlap. The total number of nonlinear variables is given
by n̄ = max(n′

1
, n′′

1
).

Constraints:

num nlin jac var must be present if num nlin con is present;

num nlin jac var = 0 when num nlin con = 0, and 1 ≤ num nlin jac var ≤ n otherwise.

Default: num nlin jac var = 0.

obj fun — subroutine, optional

The procedure obj fun, supplied by the user, must calculate the nonlinear part of the objective
function f(x) and (optionally) its gradient g(x) = ∂f/∂x for a specified n′

1
(≤ n) element vector x.

Its specification is:

subroutine obj fun(first call, final call, x, continue, finish, obj f, &

obj grad, i comm, r comm)

logical, intent(in) :: first call

Input: first call will be .true. when nag nlp sparse sol calls obj fun for the first
time, and .false. for all subsequent calls. It allows you to save computation time if
certain data must be read or calculated only once.

9.6.8 Module 9.6: nag nlp sparse [NP3506/4]

Optimization nag nlp sparse sol

logical, intent(in) :: final call

Input: final call will be .true. when nag nlp sparse sol calls obj fun for the final
time, and .false. for all previous calls. It allows you to perform some additional
computation on the final solution.

real(kind=wp), intent(in) :: x(:)

Shape: x has shape (n′
1
).

Input: the vector x of nonlinear variables at which the nonlinear part of the objective
function and (optionally) elements of its gradient are to be evaluated.

logical, intent(inout) :: continue

Input: continue will always be .true. on entry.

Output: if the nonlinear part of the objective function cannot be calculated at the
current x, you should set continue to .false.. Unless this occurs during the linesearch,
nag nlp sparse sol will then terminate with error%code= 201. Otherwise, the linesearch
will shorten the step and try again.

logical, intent(inout) :: finish

Input: finish will always be .false. on entry.

Output: if you wish to terminate the call to this procedure, you should set finish to
.true., and then nag nlp sparse sol will terminate with error%code = 202 regardless
of the value of continue.

real(kind=wp), intent(out) :: obj f

Output: the value of the objective function at x.

real(kind=wp), intent(inout), optional :: obj grad(:)

Shape: obj grad has shape (n′
1
).

Input: if obj grad is present, its elements must remain unchanged except as specified
below.

Output: if obj grad is present, then:

if obj deriv = .true. (the default), obj grad must contain all the elements of the
vector g(x) given by

g(x) =

(

∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn′
1

)T

,

where ∂f/∂xi is the partial derivative of the nonlinear part of the objective function
with respect to the ith nonlinear objective variable evaluated at x, for i = 1, 2, . . . , n′

1
.

Note that constant elements must be loaded into obj grad on every call to this
procedure unless obj row > 0.

If obj deriv = .false., any available elements of the vector g(x) must be assigned
to the corresponding elements of obj grad; the remaining elements must remain
unchanged . Just before obj fun is called, each element of obj grad is set to a
special value. On return from this procedure, any element that retains the value is
estimated by finite differences, at non-trivial expense.

integer, intent(in), optional :: i comm(:)

real(kind=wp), intent(in), optional :: r comm(:)

Input: you are free to use these arrays to supply information to this procedure from the
calling (sub)program.

Note: obj fun should be thoroughly tested before being supplied to this procedure.
The components cheap test, obj verify and major iter lim of the optional argument

[NP3506/4] Module 9.6: nag nlp sparse 9.6.9

nag nlp sparse sol Optimization

control can be used to assist this process (see the type definition for nag nlp sparse cntrl wp).

Constraints: obj fun must be present if num nlin obj var is present and > 0.

obj row — integer, intent(in), optional

Input: if obj row > num nlin con, row obj row of A is a free row containing the non-zero elements
of the linear part of the objective function. If obj row = 0, there is no free row. If obj row = −1
(the default), there is a dummy ‘free’ row and this procedure will assume that your problem either
has no general constraints or only upper and lower bounds on the variables.

Constraints:

obj row ≥ −1;
m = 1 when obj row = −1;
num nlin con < obj row ≤ m when obj row > 0.

Default: obj row = −1.

obj deriv — logical, intent(in), optional

Input: specifies whether or not all elements of the objective gradient are provided by the user.

If obj deriv = .true. (the default), then all elements of the objective gradient are provided.

If obj deriv = .false., then it is assumed that some elements of the objective gradient are
not provided: this procedure will estimate them using finite differences. The computation of
finite difference approximations usually increases the total run-time, since a call to obj fun

is required for each element estimated. Furthermore, less accuracy can be attained in the
solution (see Chapter 8 of Gill et al. [5] for a discussion of limiting accuracy). At times,
central differences are used rather than forward differences, in which case twice as many calls
to obj fun are needed. (The switch to central differences is determined by considerations of
accuracy and is not under user control.)

The setting obj deriv = .true. should be used whenever possible, since this procedure is more
reliable (and will usually be more efficient) when all derivatives are exact.

Constraints: obj deriv must not be present unless obj fun is present.

Default: obj deriv = .true..

i comm(:) — integer, intent(in), optional

r comm(:) — real(kind=wp), intent(in), optional

Input: these arrays are not used by this procedure, but they are passed directly from the calling
(sub)program to the user supplied procedures obj fun and/or con fun, and hence may be used to
pass information to them.

x lower(n) — real(kind=wp), intent(in), optional

x upper(n) — real(kind=wp), intent(in), optional

Input: the lower and upper bounds on all the variables x. To specify a non-existent lower
bound (i.e., lj = −∞), set x lower(j) ≤ −control%inf bound; to specify a non-existent upper
bound (i.e., uj = +∞), set x upper(j) ≥ +control%inf bound (see the type definition for
nag nlp sparse cntrl wp).

Constraints:

x lower(j) ≤ x upper(j) for j = 1, 2, . . . , n;

| β | < control%inf bound when x lower(j) = x upper(j) = β.

Default: x lower = −control%inf bound; x upper = +control%inf bound.

9.6.10 Module 9.6: nag nlp sparse [NP3506/4]

Optimization nag nlp sparse sol

a(nZ) — real(kind=wp), intent(inout), optional

Input: the non-zero elements of the Jacobian matrix A, ordered by increasing column index. Since
the constraint Jacobian matrix J(x′′) must always appear in the top left-hand corner of A, those
elements in a column associated with any nonlinear constraints must come before any elements
belonging to the linear constraint matrix G and the free row (if any; see obj row above).

In general, A is partitioned into a nonlinear part and a linear part corresponding to the nonlinear
variables and linear variables in the problem. Elements in the nonlinear part may be set to any
value (e.g., zero) because they are initialized at the first point that satisfies the linear constraints
and the upper and lower bounds. The linear part must contain the non-zero elements of G and the
free row (if any).

If con deriv = .true. (the default), the nonlinear part may also be used to store any constant
Jacobian elements. Note that if con fun does not define the constant Jacobian element con jac(i),
the missing value will be obtained directly from a(j) for some j ≥ i.

If con deriv = .false., unassigned elements of con jac are not treated as constant; they are
estimated by finite differences, at non-trivial expense.

Elements with the same row and column indices are not allowed. (See also the descriptions for
row index and col ptr below.)

Output: elements in the nonlinear part corresponding to nonlinear Jacobian variables are
overwritten.

Constraints: a must not be present unless row index and col ptr are present.

Default: the problem contains no general constraints, in which case it may be more appropriate to
use either nag nlp sol or nag con nlin lsq sol 1 instead.

s lower(m) — real(kind=wp), intent(in), optional

s upper(m) — real(kind=wp), intent(in), optional

Input: the lower and upper bounds on all the slacks s. To specify a non-existent lower bound
(i.e., lj = −∞), set s lower(j) ≤ −control%inf bound; to specify a non-existent upper
bound (i.e., uj = +∞), set s upper(j) ≥ +control%inf bound (see the type definition for
nag nlp sparse cntrl wp). Note that the lower (upper) bound corresponding to the free row
or dummy ‘free’ row must be set to −∞ (+∞) and stored in the ABS(obj row)-th element of
s lower (s upper).

Constraints:

s lower and s upper must not be present unless a or con fun is present;

s lower(j) ≤ s upper(j) for j = 1, 2, . . . ,m;

| β | < control%inf bound when s lower(j) = s upper(j) = β;

s lower(ABS(obj row)) ≤ −control%inf bound when obj row 6= 0;

s upper(ABS(obj row)) ≥ +control%inf bound when obj row 6= 0.

Default: s lower = −control%inf bound; s upper = +control%inf bound.

row index(nZ) — integer, intent(in), optional

Input: row index(i) must contain the row index of the non-zero element stored in a(i), for
i = 1, 2, . . . , nZ. The row indices for a column may be supplied in any order subject to the condition
that those elements in a column associated with any nonlinear constraints must appear before those
elements associated with any linear constraints (including the free row, if any). Note that con fun

must define the Jacobian elements in the same order.

Constraints:

row index must not be present unless a and col ptr are present;

1 ≤ row index(i) ≤ m, for i = 1, 2, . . . , nZ.

Default: row index must be present if a is present.

[NP3506/4] Module 9.6: nag nlp sparse 9.6.11

nag nlp sparse sol Optimization

col ptr(n+ 1) — integer, intent(in), optional

Input: col ptr(j) must contain the index in a of the start of the jth column, for i = 1, 2, . . . , n.
To specify the jth column as empty, set col ptr(j) = col ptr(j + 1). Note that the first and last
elements of col ptr must be such that col ptr(1) = 1 and col ptr(n+ 1) = nZ + 1.

Constraints:

col ptr must not be present unless a and row index are present;

col ptr(1) = 1;

col ptr(j) ≥ 1, for j = 2, 3, . . . , n;

col ptr(n+ 1) = nZ + 1;

0 ≤ col ptr(j + 1) − col ptr(j) ≤ m, for j = 1, 2, . . . , n.

Default: col ptr must be present if a is present.

con fun — subroutine, optional

The procedure con fun, supplied by the user, must calculate the vector F (x) of nonlinear constraint
functions and (optionally) its Jacobian (= ∂F/∂x) for a specified n′′

1
(≤ n) element vector x.

Its specification is:

subroutine con fun(first call, final call, x, continue, finish, con f, &

con jac, i comm, r comm)

logical, intent(in) :: first call

Input: first call will be .true. when nag nlp sparse sol calls con fun for the first
time, and .false. for all subsequent calls. It allows you to save computation time if
certain data must be read or calculated only once. See also the description of con jac.

logical, intent(in) :: final call

Input: final call will be .true. when nag nlp sparse sol calls con fun for the final
time, and .false. for all previous calls. It allows you to perform some additional
computation on the final solution.

real(kind=wp), intent(in) :: x(:)

Shape: x has shape (n′′
1
).

Input: the vector x of nonlinear Jacobian variables at which the nonlinear constraint
functions and (optionally) elements of the constraint Jacobian are to be evaluated.

logical, intent(inout) :: continue

Input: continue will always be .true. on entry.

Output: if the nonlinear constraint functions cannot be calculated at the current x,
you should set continue to .false.. Unless this occurs during the linesearch,
nag nlp sparse sol will then terminate with error%code= 201. Otherwise, the linesearch
will shorten the step and try again.

logical, intent(inout) :: finish

Input: finish will always be .false. on entry.

Output: if you wish to terminate the call to this procedure, you should set finish to
.true., and then nag nlp sparse sol will terminate with error%code = 202 regardless
of the value of continue.

real(kind=wp), intent(out) :: con f(:)

Shape: con f has shape (nN).

Output: con f(i) must contain the value of the ith nonlinear constraint at x, for
i = 1, 2, . . . , nN.

9.6.12 Module 9.6: nag nlp sparse [NP3506/4]

Optimization nag nlp sparse sol

real(kind=wp), intent(inout), optional :: con jac(:)

Shape: con jac has shape (nN ∗ n′′1).
Input: if con jac is present, its elements must remain unchanged except as specified below.

Output: if con jac is present, then it must return the available elements of the constraint
Jacobian evaluated at x. These elements must be stored in exactly the same positions
as implied by the definitions of a, row index and col ptr described above. Note that
nag nlp sparse sol does not perform any internal checks for consistency, so great care is
essential.

If con deriv = .true. (the default), the value of any constant Jacobian element not
defined by this procedure will be obtained directly from a.

If con deriv = .false., each element of con jac is set to a special value just before
con fun is called. On return from this procedure, any element that retains the value is
estimated by finite differences, at non-trivial expense.

integer, intent(in), optional :: i comm(:)

real(kind=wp), intent(in), optional :: r comm(:)

Input: you are free to use these arrays to supply information to this procedure from the
calling (sub)program.

Note: if there are any nonlinear constraints, then the first call to con fun will precede the first call
to obj fun. con fun should be thoroughly tested before being supplied to this procedure. The
components cheap test, con verify and major iter lim of the optional argument control can
be used to assist this process (see the type definition for nag nlp sparse cntrl wp).

Constraints: con fun must be present if num nlin con is present and > 0.

con deriv — logical, intent(in), optional

Input: specifies whether or not all elements of the constraint Jacobian are provided by the
user.

If con deriv = .true. (the default), then all elements of the constraint Jacobian are provided.

If con deriv = .false., then it is assumed that some elements of the constraint Jacobian
are not provided; this procedure will estimate them using finite differences. The computation
of finite difference approximations usually increases the total run-time, since a call to con fun

is needed to estimate all unspecified elements (if any) in each column of the Jacobian. For
example, if the sparsity pattern of the Jacobian has the form









∗ ∗ ∗
? ?

∗ ?
∗ ∗









where ‘∗’ indicates an element provided by the user and ‘?’ indicates an element to be
estimated, this procedure will call con fun twice: once to estimate the missing element in
column 2, and again to estimate the two missing elements in column 3. (Since columns 1 and
4 are known, they require no calls to con fun.) Furthermore, less accuracy can be attained in
the solution (see Chapter 8 of Gill et al. [5] for a discussion of limiting accuracy). At times,
central differences are used rather than forward differences, in which case twice as many calls
to con fun are needed. (The switch to central differences is determined by considerations of
accuracy and is not under user control.)

The setting con deriv = .true. should be used whenever possible, since this procedure is more
reliable (and will usually be more efficient) when all derivatives are exact.

Constraints: con deriv must not be present unless con fun is present.

Default: con deriv = .true..

[NP3506/4] Module 9.6: nag nlp sparse 9.6.13

nag nlp sparse sol Optimization

work factor — real(kind=wp), intent(in), optional

Input: a quantity used to estimate the amount of workspace needed to store the basis factors. (The
bigger the better, since it is not certain how much workspace the basis factors need.) More precisely,
if the minimum amount of workspace required to start solving the problem is denoted by w, then
the amount of workspace actually allocated by the procedure will be work factor × w.

Constraints: work factor > 1.0.

Default: work factor = 3.0.

cold start — logical, intent(in), optional

Input: indicates how a starting basis is to obtained as follows:

if cold start = .true. (the default), then an internal Crash procedure will be used to choose
an initial basis;

if cold start = .false., then a basis is already defined in x state and s state (probably
from a previous call).

Default: cold start = .true..

names(n+m) — character(len=8), intent(in), optional

Input: the column (i.e., variable) and row (i.e., constraint) names to be used in the printed output.
More precisely, the first n elements must contain the names for the columns, the next nN elements
must contain the names for the nonlinear rows (if any) and the next (m−nN) elements must contain
the names for the linear rows (if any). Note that the name for the free row or dummy ‘free’ row
must be stored in names(n+ABS(obj row)).

Default: the column and row names will be chosen automatically by the procedure.

x state(n) — integer, intent(inout), optional

Input: if cold start = .true. (the default), x state must specify the initial states of the variables
x. An internal Crash procedure is then used to select an initial basis matrix B. The initial basis
matrix will be triangular (neglecting certain small elements in each column). It is chosen from
various rows and columns of (A − I). Possible values for x state(j) (also used by s state) are as
follows:

x state(j) State of x(j) during Crash procedure
0 or 1 Eligible for the basis

2 Ignored
3 Eligible for the basis (given preference over 0 or 1)

4 or 5 Ignored

If nothing special is known about the problem, or there is no wish to provide special information,
you may set x state = 0 and x = 0.0. All variables will then be eligible for the initial basis. Less
trivially, to say that the jth variable will probably be equal to one of its bounds, set x state(j) =
4 and x(j) = x lower(j) or x state(j) = 5 and x(j) = x upper(j) as appropriate.

Following the Crash procedure, variables for which x state(j) = 2 are made superbasic. Other
variables not selected for the basis are then made nonbasic at the value x(j) if x lower(j) ≤ x(j)
≤ x upper(j), or at the value x lower(j) or x upper(j) closest to x(j).

If cold start = .false., x state must specify the initial states of the variables x. Note that
x state already contains valid values if it was present in a previous call with the same value of n.

Output: the final states of the variables x. The significance of each possible value of x state(j)
(also used by s state) is as follows:

x state(j) State of variable j Normal value of x(j)
0 Nonbasic x lower(j)
1 Nonbasic x upper(j)
2 Superbasic Between x lower(j) and x upper(j)
3 Basic Between x lower(j) and x upper(j)

9.6.14 Module 9.6: nag nlp sparse [NP3506/4]

Optimization nag nlp sparse sol

If num infeas = 0, basic and superbasic variables may be outside their bounds by as much as the
value of control%minor feas tol (see the type definition for nag nlp sparse cntrl wp). Note
that if scaling is specified, control%minor feas tol applies to the variables of the scaled problem.
In this case, the variables of the original problem may be as much as 0.1 outside their bounds, but
this is unlikely unless the problem is very badly scaled.

Very occasionally some nonbasic variables may be outside their bounds by as much as
control%minor feas tol, and there may be some nonbasic variables for which x(j) lies strictly
between its bounds.

If num infeas > 0, some basic and superbasic variables may be outside their bounds by an arbitrary
amount (bounded by sum infeas if scaling was not used).

Constraints:

if cold start = .true., 0 ≤ x state(j) ≤ 5 for j = 1, 2, . . . , n;

if cold start = .false., x state must be present and 0 ≤ x state(j) ≤ 3 for j = 1, 2, . . . , n.

Default: x state = 0.

s state(m) — integer, intent(inout), optional

Input: if cold start = .true. (the default), s state need not be initialized.

If cold start = .false., s state must specify the initial states of the slacks s. Note that s state

already contains valid values if it was present in a previous call with the same value of m.

Output: the final states of the slacks s. The significance of each possible value of s state(j) is as
follows:

s state(j) State of slack j Normal value of s(j)
0 Nonbasic s lower(j)
1 Nonbasic s upper(j)
2 Superbasic Between s lower(j) and s upper(j)
3 Basic Between s lower(j) and s upper(j)

Constraints: if cold start = .false., s state must be present and 0 ≤ s state(j) ≤ 3 for
j = 1, 2, . . . ,m.

Default: s state = 0.

x lambda(n) — real(kind=wp), intent(out), optional

Output: the values of the Lagrange multipliers for the bounds on the variables (reduced costs).

lin lambda(m− nN) — real(kind=wp), intent(out), optional

Output: the values of the Lagrange multipliers for the bounds on the linear constraints (shadow
costs).

Constraints: lin lambda must not be present unless a is present.

nlin lambda(nN) — real(kind=wp), intent(inout), optional

Input: if cold start = .true. (the default), nlin lambda need not be initialized.

If cold start = .false., nlin lambda must contain a set of Lagrange multiplier estimates for the
nonlinear constraints. If nothing special is known about the problem, or there is no wish to provide
special information, you may set nlin lambda = 0.0.

Output: the values of the Lagrange multipliers for the bounds on the nonlinear constraints (shadow
costs).

Constraints: nlin lambda must not be present unless con fun, num nlin con and
num nlin jac var are present. If cold start = .false., nlin lambda must be present if
num nlin con is present and > 0.

Default: nlin lambda = 0.0.

[NP3506/4] Module 9.6: nag nlp sparse 9.6.15

nag nlp sparse sol Optimization

num infeas — integer, intent(out), optional

Output: the number of constraints that lie outside their bounds by more than the value of
control%minor feas tol (default value = SQRT(EPSILON(1.0 wp)); see the type definition for
nag nlp sparse cntrl wp).

If the linear constraints are infeasible, the sum of the infeasibilities of the linear constraints is
minimized subject to the upper and lower bounds being satisfied. In this case, num infeas contains
the number of elements of Gx that lie outside their upper or lower bounds. Note that the nonlinear
constraints are not evaluated.

Otherwise, the sum of the infeasibilities of the nonlinear constraints is minimized subject to the
linear constraints and the upper and lower bounds being satisfied. In this case, num infeas contains
the number of elements of F (x) that lie outside their upper or lower bounds.

sum infeas — real(kind=wp), intent(out), optional

Output: the sum of the infeasibilities of constraints that lie outside their bounds by more than
the value of control%minor feas tol (default value = SQRT(EPSILON(1.0 wp)); see the type
definition for nag nlp sparse cntrl wp).

num superbasic vars — integer, intent(inout), optional

Input: the number of superbasics, nS . It need not be specified if cold start = .true. (the
default), but must retain its value from a previous call when cold start = .false..

Output: the final number of superbasics.

Default: num superbasic vars = 0.

control — type(nag nlp sparse cntrl wp), intent(in), optional

Input: a structure containing scalar components; these are used to alter the default values of
those parameters which control the behaviour of the algorithm and level of printed output.
The initialization of this structure and its use is described in the procedure document for
nag nlp sparse cntrl init.

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

305 Invalid absence of an optional argument.

320 The procedure was unable to allocate enough memory.

9.6.16 Module 9.6: nag nlp sparse [NP3506/4]

Optimization nag nlp sparse sol

Failures (error%level = 2):

error%code Description

201 User requested termination.

This exit occurs if you have set finish to .true. in obj fun or con fun.

202 Objective and/or constraint values could not be calculated.

This exit occurs if you have set continue to .false. in obj fun or con fun.

203 The problem is infeasible.

The general constraints cannot all be satisfied simultaneously to within the
values of control%major feas tol (default value = SQRT(EPSILON(1.0 wp))) and
control%minor feas tol (default value = SQRT(EPSILON(1.0 wp))).

204 The problem is unbounded (or badly scaled).

The objective function is not bounded below (or above in the case of maximization)
in the feasible region because a nonbasic variable can apparently be increased or
decreased by an arbitrary amount without causing a basic variable to violate a bound.
Add an upper or lower bound to the variable (whose index is printed by default) and
rerun nag nlp sparse sol.

205 The problem may be unbounded.

Check that the values of control%unbounded obj (default value = 1015) and
control%unbounded step size (default value = max(control%inf bound, 1015)) are
not too small. This exit also implies that the objective function is not bounded below
(or above in the case of maximization) in the feasible region defined by expanding
the bounds by the value of control%violation lim (default value = 10.0).

206 Too many superbasic variables.

Increase the value of control%superbasics lim (default value = min(n, 500, n̄+1))
and rerun nag nlp sparse sol.

207 The user-provided derivatives of the objective function (computed by obj fun) appear
to be incorrect.

Check that obj fun has been coded correctly and that all relevant elements of the
objective gradient have been assigned their correct values.

208 The user-provided derivatives of the constraint functions (computed by con fun)
appear to be incorrect.

Check that con fun has been coded correctly and that all relevant elements of the
nonlinear constraint Jacobian have been assigned their correct values.

209 The current point cannot be improved upon.

Check that obj fun and con fun have been coded correctly and that they are
consistent with the values of obj deriv (default value = .true.) and con deriv

(default value = .true.).

210 Numerical error in trying to satisfy the linear constraints (or the linearized nonlinear
constraints).

The basis is very ill-conditioned.

211 Not enough workspace for the basis factors.

Increase the value of work factor (default value = 3.0) and rerun
nag nlp sparse sol.

[NP3506/4] Module 9.6: nag nlp sparse 9.6.17

nag nlp sparse sol Optimization

212 The basis is singular after 15 attempts to factorize it (and adding slacks where
necessary).

Either the problem is badly scaled or the value of control%lu fac tol (default value
= 5.0 or 100.0) is too large.

213 An unexpected error has occurred. Please contact NAG.

Warnings (error%level = 1):

error%code Description

101 Feasible solution found, but requested accuracy not achieved.

Check that the value of control%major opt tol (default value =
SQRT(EPSILON(1.0 wp))) is not too small (say, < EPSILON(1.0 wp)).

102 Too many iterations.

Check that the values of control%major iter lim (default value = 1000) and/or
control%minor iter lim (default value = 500) and/or control%iter lim (default
value = 10000) are not too small.

5 Examples of Usage

Complete examples of the use of this procedure appear in Examples 1 and 2 of this module document.
These examples could be modified to use some (or all) of the optional arguments described in Section
3.2.

6 Further Comments

6.1 Accuracy

If the value of control%major optim tol is set to 10−d (default value = SQRT(EPSILON(1.0 wp)); see
the type definition for nag nlp sparse cntrl wp) and error%code = 0 on exit, then the final value of
f(x) should have approximately d correct significant digits.

7 Description of Printed Output

7.1 Major Iteration Printout

This section describes the intermediate and final printout produced by the major iterations of this
procedure (see Section 1 of the Mathematical Background section of this module document). The level
of printed output can be controlled via the components list and major print level of the optional
argument control. For example, a listing of the parameter settings to be used by this procedure is
output unless control%list is set to .false.. Note also that the intermediate printout and the final
printout are produced only if control%major print level ≥ 10 (the default).

When control%major print level ≥ 5 and control%lt80 char = .true. (the default), the following
line of output (< 80 characters) is produced at every iteration. In all cases, the values of the quantities
printed are those in effect on completion of the given iteration.

9.6.18 Module 9.6: nag nlp sparse [NP3506/4]

Optimization nag nlp sparse sol

Maj is the major iteration count.
Mnr is the number of minor iterations required by the feasibility and optimality phases of

the QP subproblem. Generally, Mnr will be 1 in the later iterations, since theoretical
analysis predicts that the correct active set will be identified near the solution (see
the Mathematical Background section of this module document).

Step is the step taken along the computed search direction. On reasonably well behaved
problems, the unit step will be taken as the solution is approached.

Merit Function is the value of the augmented Lagrangian merit function (see (6) in Section 1 of the
Mathematical Background section of this module document) at the current iterate.
As the solution is approached, Merit Function will converge to the value of the
objective function at the solution.
In elastic mode (see Section 2 of the Mathematical Background section of this module
document), the merit function is a composite function involving the constraint
violations weighted by the value of control%elastic wt (default value = 1.0 or
100.0; see the type definition for nag nlp sparse cntrl wp).
If there are no nonlinear constraints present (i.e., nN = 0), this entry contains
Objective, the value of the objective function f(x). In this case, f(x) will decrease
monotonically to its optimal value.

Feasibl is the value of rowerr , the largest element of the scaled nonlinear constraint
vector defined in the description of control%major feas tol (see the type
definition for nag nlp sparse cntrl wp). The solution is regarded as ‘feasible’ if
Feasibl is less than (or equal to) the value of control%major feas tol (default
value = SQRT(EPSILON(1.0 wp))). Feasibl will be approximately zero in the
neighbourhood of a solution.
If there are no nonlinear constraints present (i.e., nN = 0), all iterates are feasible
and this entry is not printed.

Optimal is the value of maxgap, the largest element of the maximum complementarity gap
vector defined in the description of control%major opt tol (see the type definition
for nag nlp sparse cntrl wp). The Lagrange multipliers are regarded as ‘optimal’
if Optimal is less than (or equal to) the value of control%major opt tol (default
value = SQRT(EPSILON(1.0 wp))). Optimal will be approximately zero in the
neighbourhood of a solution.

Cond Hz is an estimate of the condition number of the reduced Hessian of the Lagrangian (not
printed if nN and n′

1
are both zero). It is the square of the ratio between the largest

and smallest diagonal elements of the upper triangular matrix R. This constitutes
a lower bound on the condition number of the matrix RTR that approximates the
reduced Hessian. The larger this number, the more difficult the problem.

PD is a two-letter indication of the status of the convergence tests involving
the feasibility and optimality of the iterates defined in the descriptions of
control%major feas tol and control%major opt tol (see the type definition for
nag nlp sparse cntrl wp). Each letter is T if the test is satisfied, and F otherwise.
The tests indicate whether the values of Feasibl and Optimal are sufficiently small.
For example, TF or TT is printed if there are no nonlinear constraints present (since
all iterates are feasible). If either indicator is F when the procedure terminates with
error%code = 0, you should check the solution carefully.

M is printed if an extra evaluation of obj fun and con fun was needed in order
to define an acceptable positive-definite quasi-Newton update to the Hessian of
the Lagrangian. This modification is only performed when there are nonlinear
constraints present (i.e., nN > 0).

m is printed if, in addition, it was also necessary to modify the update to include an
augmented Lagrangian term.

s is printed if a self-scaled BFGS (Broyden–Fletcher–Goldfarb–Shanno) update was
performed. This update is always used when the Hessian approximation is diagonal,
and hence always follows a Hessian reset.

S is printed if, in addition, it was also necessary to modify the self-scaled update in
order to maintain positive-definiteness.

n is printed if no positive-definite BFGS update could be found, in which case the
approximate Hessian is unchanged from the previous iteration.

[NP3506/4] Module 9.6: nag nlp sparse 9.6.19

nag nlp sparse sol Optimization

r is printed if the approximate Hessian was reset after 10 consecutive major iterations
in which no BFGS update could be made. The diagonal elements of the approximate
Hessian are retained if at least one update has been performed since the last reset.
Otherwise, the approximate Hessian is reset to the identity matrix.

R is printed if the approximate Hessian has been reset by discarding all but its diagonal
elements. This reset will be forced periodically by the values of control%hess freq

(default value = 99999999) and control%hess upd (default value = 20 or 99999999;
see the type definition for nag nlp sparse cntrl wp). However, it may also be
necessary to reset an ill-conditioned Hessian from time to time.

l is printed if the change in the norm of the variables was greater than the value
defined by control%major step lim (default value = 2.0; see the type definition for
nag nlp sparse cntrl wp). If this output occurs frequently during later iterations,
it may be worthwhile increasing the value of control%major step lim.

c is printed if central differences have been used to compute the unknown elements
of the objective and constraint gradients. A switch to central differences is made
if either the linesearch gives a small step, or x is close to being optimal. In some
cases, it may be necessary to re-solve the QP subproblem with the central difference
gradient and Jacobian.

u is printed if the QP subproblem was unbounded.
t is printed if the minor iterations were terminated after the number of iterations

specified by the value of control%minor iter lim (default value = 500; see the
type definition for nag nlp sparse cntrl wp) was reached.

i is printed if the QP subproblem was infeasible when the procedure was not in elastic
mode. This event triggers the start of nonlinear elastic mode, which remains in
effect for all subsequent iterations. Once in elastic mode, the QP subproblems
are associated with the elastic problem (see (8) in Section 2 of the Mathematical
Background section of this module document). It is also printed if the minimizer of
the elastic subproblem does not satisfy the linearized constraints when this procedure
is already in elastic mode. (In this case, a feasible point for the usual QP subproblem
may or may not exist.)

w is printed if a weak solution of the QP subproblem was found.

The final printout includes a listing of the status of every variable and constraint.

The following describes the printout for each variable. A full stop (.) is printed for any numerical value
that is zero.

Variable gives the name of the variable. If names (see Section 3.2) is present, the name
supplied in names(j) is assigned to the jth variable. Otherwise, a default name is
used.

State gives the state of the variable (LL if nonbasic on its lower bound, UL if nonbasic on
its upper bound, EQ if nonbasic and fixed, FR if nonbasic and strictly between its
bounds, BS if basic and SBS if superbasic).
A key is sometimes printed before State to give additional information about the
state of a variable. Note that unless the value of control%scale opt is set to 0
(default value = 1 or 2; see the type definition for nag nlp sparse cntrl wp), the
tests for assigning a key are applied to the variables of the scaled problem.

A Alternative optimum possible. The variable is nonbasic, but its reduced
gradient is essentially zero. This means that if the variable were allowed
to start moving away from its current value, there would be no change in
the value of the objective function. The values of the basic and superbasic
variables might change, giving a genuine alternative solution. The values of
the Lagrange multipliers might also change.

D Degenerate. The variable is basic, but it is equal to (or very close to) one of
its bounds.

I Infeasible. The variable is basic and is currently violating one of its
bounds by more than the value of control%minor feas tol (default value =
SQRT(EPSILON(1.0 wp)); see the type definition for
nag nlp sparse cntrl wp).

9.6.20 Module 9.6: nag nlp sparse [NP3506/4]

Optimization nag nlp sparse sol

N Not precisely optimal. xj is nonbasic. Its reduced gradient is larger than the
value of control%major feas tol (default value = SQRT(EPSILON(1.0 wp));
see the type definition for nag nlp sparse cntrl wp).

Value is the value of the variable at the final iterate.
Lower Bound is the lower bound specified for the variable. None indicates that

x lower(j) ≤ −control%inf bound (default value = 1020; see the type definition
for nag nlp sparse cntrl wp).

Upper Bound is the upper bound specified for the variable. None indicates that x upper(j) ≥
control%inf bound.

Lagr Mult is the Lagrange multiplier for the associated bound. This will be zero if State is FR
unless x lower(j) ≤ −control%inf bound and x upper(j) ≥ control%inf bound,
in which case the entry will be blank. If x is optimal, the multiplier should be
non-negative if State is LL, and non-positive if State is UL.

Residual is the difference between the variable Value and the nearer of its (finite) bounds
x lower(j) and x upper(j). A blank entry indicates that the associated variable
is not bounded (i.e., x lower(j) ≤ −control%inf bound and x upper(j) ≥
control%inf bound).

The meaning of the printout for general constraints is the same as that given above for variables, with
‘variable’ replaced by ‘constraint’, n replaced by m, names(j) replaced by names(n + j), x lower and
x upper are replaced by s lower and s upper respectively, and with the following change in the heading:

Constrnt gives the name of the general constraint.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to
this precision.

When control%major print level ≥ 20 and control%lt80 char = .false., the following line of
intermediate printout (< 120 characters) is produced at every iteration. Unless stated otherwise, the
values of the quantities printed are those in effect on completion of the given iteration.

Major (see Maj above)
Minor (see Mnr above)
Step (as above)
nObj is the number of times obj fun has been called to evaluate the nonlinear part of

the objective function. Evaluations needed for the estimation of the gradients by
finite differences are not included. nObj is printed as a guide to the amount of work
required for the linesearch.

nCon is the number of times con fun has been called to evaluate the nonlinear constraint
functions (not printed if nN is zero).

Merit (see Merit Function above)
Feasibl (as above)
Optimal (as above)
nS is the current number of superbasic variables.
Penalty is the Euclidean norm of the vector of penalty parameters used in the augmented

Lagrangian function (not printed if nN is zero).
LU is the number of non-zeros representing the basis factors L and U on completion of

the QP subproblem. If there are nonlinear constraints present, the basis factorization
B = LU is computed at the start of the first minor iteration. At this stage,
LU = lenL + lenU, where lenL is the number of subdiagonal elements in the columns
of a lower triangular matrix and lenU is the number of diagonal and superdiagonal
elements in the rows of an upper triangular matrix. As columns of B are replaced
during the minor iterations, the value of LU may fluctuate up or down (but in
general will tend to increase). As the solution is approached and the number of
minor iterations required to solve each QP subproblem decreases towards zero, LU
will reflect the number of non-zeros in the LU factors at the start of each QP
subproblem.

[NP3506/4] Module 9.6: nag nlp sparse 9.6.21

nag nlp sparse sol Optimization

If there are no nonlinear constraints present, refactorization is subject only
to the value of control%fac freq (default value = 50 or 100; see the type
definition for nag nlp sparse cntrl wp) and hence LU will tend to increase between
factorizations.

Swp is the number of columns of the basis matrix B that were swapped with columns of S
in order to improve the condition number of B (not printed if nN is zero). The swaps
are determined by an LU factorization of the rectangular matrix BS = (B S)T ,
with stability being favoured more than sparsity.

Cond Hz (as above)
PD (as above)
M (as above)
m (as above)
s (as above)
S (as above)
n (as above)
r (as above)
R (as above)
l (as above)
c (as above)
u (as above)
t (as above)
i (as above)
w (as above)

When control%major print level ≥ 20 and control%lt80 char = .true. (the default), the following
lines of intermediate printout (up to 120 characters) are produced whenever the matrix B or BS =
(B S)T is factorized prior to solving the next QP subproblem. Gaussian elimination is used to compute
a sparse LU factorization of B or BS , where PLP

T is a lower triangular matrix and PUQ is an upper
triangular matrix for some permutation matrices P and Q. The factorization is stabilized in the manner
described under the component lu fac tol (default value = 5.0 or 100.0) of the optional argument
control.

Factorize is the factorization count.
Demand is a code giving the reason for the present factorization as follows:

Code Meaning
0 First LU factorization.
1 The number of updates reached the value of control%fac freq (default

value = 50 or 100; see the type definition for
nag nlp sparse cntrl wp).

2 The number of non-zeros in the updated factors has increased
significantly.

7 Not enough storage to update factors.
10 Row residuals too large.
11 Ill-conditioning has caused inconsistent results.

Iteration is the iteration count.
Nonlinear is the number of nonlinear variables in the current basis B (not printed if BS is

factorized).
Linear is the number of linear variables in B (not printed if BS is factorized).
Slacks is the number of slack variables in B (not printed if BS is factorized).
Elems is the number of non-zeros in B (not printed if BS is factorized).
Density is the percentage non-zero density of B (not printed if BS is factorized). More

precisely, Density = 100× Elems/(Nonlinear + Linear + Slacks)2.
Compressns is the number of times the data structure holding the partially factorized matrix

needed to be compressed, in order to recover unused workspace. Ideally, it should
be zero.

9.6.22 Module 9.6: nag nlp sparse [NP3506/4]

Optimization nag nlp sparse sol

Merit is the average Markowitz merit count for the elements chosen to be the diagonals
of PUQ. Each merit count is defined to be (c − 1)(r − 1), where c and r are the
number of non-zeros in the column and row containing the element at the time it
is selected to be the next diagonal. Merit is the average of m such quantities. It
gives an indication of how much work was required to preserve sparsity during the
factorization.

lenL is the number of non-zeros in L.
lenU is the number of non-zeros in U .
Increase is the percentage increase in the number of non-zeros in L and U

relative to the number of non-zeros in B. More precisely, Increase =
100×(lenL+lenU−Elems)/Elems.

m is the number of rows in the problem. Note that m = Ut + Lt + bp.
Ut is the number of triangular rows of B at the top of U .
d1 is the number of columns remaining when the density of the basis matrix being

factorized reached 0.3.
Lmax is the maximum subdiagonal element in the columns of L. This will not exceed the

value of control%lu fac tol (default value = 5.0 or 100.0; see the type definition
for nag nlp sparse cntrl wp).

Bmax is the maximum non-zero element in B (not printed if BS is factorized).
BSmax is the maximum non-zero element in BS (not printed if B is factorized).
Umax is the maximum non-zero element in U , excluding elements of B that remain in U

unchanged. (For example, if a slack variable is in the basis, the corresponding row
of B will become a row of U without modification. Elements in such rows will not
contribute to Umax. If the basis is strictly triangular, none of the elements of B will
contribute, and Umax will be zero.)
Ideally, Umax should not be significantly larger than Bmax. If it is several orders of
magnitude larger, it may be advisable to reset the value of control%lu fac tol to
some value nearer unity.
Umax is not printed if BS is factorized.

Umin is the magnitude of the smallest diagonal element of PUQ.
Growth is the value of the ratio Umax/Bmax, which should not be too large.

Providing Lmax is not large (say < 10.0), the ratio max(Bmax, Umax)/Umin is an
estimate of the condition number of B. If this number is extremely large, the basis
is nearly singular and some numerical difficulties might occur. (However, an effort
is made to avoid near-singularity by using slacks to replace columns of B that would
have made Umin extremely small, and the modified basis is refactorized.)

Lt is the number of triangular columns of B at the left of L.
bp is the size of the ‘bump’ or block to be factorized nontrivially after the triangular

rows and columns of B have been removed.
d2 is the number of columns remaining when the density of the basis matrix being

factorized has reached 0.6.

When control%major print level ≥ 20, control%lt80 char = .true. (the default) and the value of
control%crash opt > 0 (default value = 0 or 3; see the type definition for nag nlp sparse cntrl wp),
the following lines of intermediate printout (< 80 characters) are produced at every iteration. They refer
to the number of columns selected by the Crash procedure during each of several passes through A while
searching for a triangular basis matrix.

Slacks is the number of slacks selected initially.
Free cols is the number of free columns in the basis, including those whose bounds are rather

far apart.
Preferred is the number of ‘preferred’ columns in the basis (i.e., x state(j) = 3 for some

j ≤ n). It will be a subset of the columns for which x state(j) = 3 was specified.
Unit is the number of unit columns in the basis.
Double is the number of columns in the basis containing 2 non-zeros.
Triangle is the number of triangular columns in the basis with 3 (or more) non-zeros.
Pad is the number of slacks used to pad the basis (to make it a non-singular triangle).

[NP3506/4] Module 9.6: nag nlp sparse 9.6.23

nag nlp sparse sol Optimization

When control%major print level = 1 or ≥ 10, the following lines of final printout (up to 120
characters) are produced. Note that the final printout includes a listing of the status of every variable
and constraint.

Let xj denote the jth ‘column variable’, for j = 1, 2, . . . , n. We assume that a typical variable xj has
bounds α ≤ xj ≤ β.

The following describes the printout for each variable. A full stop (.) is printed for any numerical value
that is zero.

Number is the column number j. (This is used internally to refer to xj in the intermediate
output.)

Column gives the name of xj .
State gives the state of xj relative to the bounds α and β. The various possible states

are as follows:

LL xj is nonbasic at its lower limit, α.
UL xj is nonbasic at its upper limit, β.
EQ xj is nonbasic and fixed at the value α = β.
FR xj is nonbasic at some value strictly between its bounds: α < xj < β.
BS xj is basic. Usually α < xj < β.
SBS xj is superbasic. α < xj < β.

A key is sometimes printed before State to give additional information about the
state of a variable. Note that unless the value of control%scale opt is set to 0
(default value = 1 or 2; see the type definition for nag nlp sparse cntrl wp), the
tests for assigning a key are applied to the variables of the scaled problem.

A Alternative optimum possible. xj is nonbasic, but its reduced gradient is
essentially zero. This means that if xj were allowed to start moving away
from its current value, there would be no change in the value of the objective
function. The values of the basic and superbasic variables might change,
giving a genuine alternative solution. The values of the Lagrange multipliers
might also change.

D Degenerate. xj is basic, but it is equal to (or very close to) one of its bounds.
I Infeasible. xj is basic and is currently violating one of its bounds

by more than the value of control%minor feas tol (default value =
SQRT(EPSILON(1.0 wp)); see the type definition for
nag nlp sparse cntrl wp).

N Not precisely optimal. xj is nonbasic. Its reduced gradient is larger than the
value of control%major feas tol (default value = SQRT(EPSILON(1.0 wp));
see the type definition for nag nlp sparse cntrl wp).

Activity is the value of xj at the final iterate.
Obj Gradient is the value of gj at the final iterate. (If any xj is infeasible, gj is the gradient of the

sum of infeasibilities.)
Lower Bound is α, the lower bound specified for xj . None indicates that x lower(j) ≤

−control%inf bound (default value = 1020; see the type definition for
nag nlp sparse cntrl wp).

Upper Bound is β, the upper bound specified for xj . None indicates that x upper(j) ≥
control%inf bound.

Reduced Gradnt is the value of dj at the final iterate.
m+j is the value of m+ j.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to
this precision.

General linear constraints take the form l ≤ Ax ≤ u. The ith constraint is therefore of the form
α ≤ aT

i x ≤ β, and the value of aT
i x is called the row activity . Internally, the linear constraints take the

form Ax− s = 0, where the slack variables s should satisfy the bounds l ≤ s ≤ u. For the ith ‘row’, it is

9.6.24 Module 9.6: nag nlp sparse [NP3506/4]

Optimization nag nlp sparse sol

the slack variable si that is directly available, and it is sometimes convenient to refer to its state. Slacks
may be basic or nonbasic (but not superbasic).

Nonlinear constraints α ≤ Fi(x)+aT
i x ≤ β are treated similarly, except that the row activity and degree

of infeasibility are computed directly from Fi(x) + aT
i x rather than from si.

The following describes the printout for each variable. A full stop (.) is printed for any numerical value
that is zero.

Number is the value of n+i. (This is used internally to refer to si in the intermediate output.)
Row gives the name of the ith row.
State gives the state of the ith row relative to the bounds α and β. The various possible

states are as follows:

LL The row is at its lower limit, α.
UL The row is at its upper limit, β.
EQ The limits are the same (α = β).
BS The constraint is not binding. si is basic.

A key is sometimes printed before State to give additional information about the
state of si. Note that unless the value of control%scale opt is set to 0 (default
value = 1 or 2; see the type definition for nag nlp sparse cntrl wp), the tests for
assigning a key are applied to the variables of the scaled problem.

A Alternative optimum possible. si is nonbasic, but its reduced gradient is
essentially zero. This means that if si were allowed to start moving away
from its current value, there would be no change in the value of the objective
function. The values of the basic and superbasic variables might change,
giving a genuine alternative solution. The values of the Lagrange multipliers
might also change.

D Degenerate. si is basic, but it is equal to (or very close to) one of its bounds.
I Infeasible. si is basic and is currently violating one of its bounds

by more than the value of control%minor feas tol (default value =
SQRT(EPSILON(1.0 wp)); see the type definition for
nag nlp sparse cntrl wp).

N Not precisely optimal. si is nonbasic. Its reduced gradient is larger than the
value of control%major feas tol (default value = SQRT(EPSILON(1.0 wp));
see the type definition for nag nlp sparse cntrl wp).

Activity is the value of aT
i x (or Fi(x) + aT

i x for nonlinear rows) at the final iterate.
Slack Activity is the value by which the row differs from its nearest bound. (For the free row (if

any), it is set to Activity.)
Lower Bound is α, the lower bound specified for si. None indicates that s lower(j) ≤

−control%inf bound (default value = 1020; see the type definition for
nag nlp sparse cntrl wp).

Upper Bound is β, the upper bound specified for si. None indicates that s upper(j) ≥
control%inf bound.

Dual Activity is the value of the dual variable πi.
i gives the index i of the ith row.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to
this precision.

7.2 Minor Iteration Printout

This section describes the intermediate and final printout produced by the minor iterations of this
procedure, which involves solving a QP subproblem at every major iteration. (For more details see
Section 1 of the Mathematical Background section of this module document.) The level of printed
output can be controlled via the component minor print level of the optional argument control.

[NP3506/4] Module 9.6: nag nlp sparse 9.6.25

nag nlp sparse sol Optimization

Note that the printout is produced only if control%minor print level ≥ 1 (default value = 0, which
produces no output).

When control%minor print level ≥ 1 and control%lt80 char = .true., the following line of output
(< 80 characters) is produced at every iteration. In all cases, the values of the quantities printed are
those in effect on completion of the given iteration of the QP subproblem.

Itn is the iteration count.
Step is the step taken along the computed search direction.
Ninf is the number of infeasibilities. This will not increase unless the iterations are in

elastic mode. Ninf will be zero during the optimality phase.
Sinf is the value of the sum of infeasibilities if Ninf is non-zero. This will be zero during

the optimality phase.
Objective is the value of the current QP objective function when Ninf is zero and the iterations

are not in elastic mode. The switch to elastic mode is indicated by a change in the
heading to Composite Obj (see below).

Composite Obj is the value of the composite objective function (see (8) in Section 2 of the
Mathematical Background section of this module document) when the iterations
are in elastic mode. This function will decrease monotonically at each iteration.

Norm rg is the Euclidean norm of the reduced gradient of the QP objective function. During
the optimality phase, this norm will be approximately zero after a unit step.

When control%minor print level ≥ 1 and control%lt80 char = .false., the following line of output
(up to 120 characters) is produced at every iteration. In all cases, the values of the quantities printed
are those in effect on completion of the given iteration of the QP subproblem.

In the description below, a ‘pricing’ operation is defined to be the process by which a nonbasic variable
is selected to become superbasic (in addition to those already in the superbasic set). If the problem is
purely linear, the variable selected will usually become basic immediately (unless it happens to reach its
opposite bound and return to the nonbasic set).

Itn (as above)
pp is the partial price indicator. The variable selected by the last pricing operation

came from the pp-th partition of A and −I. Note that pp is reset to zero whenever
the basis is refactorized.

dj is the value of the reduced gradient (or reduced cost) for the variable selected by the
pricing operation at the start of the current iteration.

+SBS is the variable selected by the pricing operation to be added to the superbasic set.
-SBS is the variable chosen to leave the superbasic set. It has become basic if the entry

under -B is non-zero; otherwise it has become nonbasic.
-BS is the variable removed from the basis (if any) to become nonbasic.
-B is the variable removed from the basis (if any) to swap with a slack variable made

superbasic by the latest pricing operation. The swap is done to ensure that there
are no superbasic slacks.

Step (as above)
Pivot is the rth element of a vector y satisfying By = aq whenever aq (the qth column of the

constraint matrix (A −I)) replaces the rth column of the basis matrix B. Wherever
possible, Step is chosen so as to avoid extremely small values of Pivot (since they
may cause the basis to be nearly singular). In extreme cases, it may be necessary to

increase the value of control%pivot tol (default value = (EPSILON(1.0 wp))0.67;
see the type definition for nag nlp sparse cntrl wp) to exclude very small elements
of y from consideration during the computation of Step.

Ninf (as above)

9.6.26 Module 9.6: nag nlp sparse [NP3506/4]

Optimization nag nlp sparse sol

Sinf/Objective is the value of the current objective function. If x is infeasible, Sinf gives the value of
the sum of infeasibilities at the start of the current iteration. It will usually decrease
at each non-zero value of Step, but may occasionally increase if the value of Ninf
decreases by a factor of 2 or more. However, in elastic mode this entry gives the
value of the composite objective function (see (8) in Section 2 of the Mathematical
Background section of this module document), which will decrease monotonically at
each iteration. If x is feasible, Objective is the value of the current QP objective
function.

L is the number of non-zeros in the basis factor L. Immediately after a basis
factorization B = LU , this entry contains lenL. Further non-zeros are added to
L when various columns of B are later replaced. (Thus, L increases monotonically.)

U is the number of non-zeros in the basis factor U . Immediately after a basis
factorization B = LU , this entry contains lenU. As columns of B are replaced,
the matrix U is maintained explicitly (in sparse form). The value of U may fluctuate
up or down; in general, it will tend to increase.

Ncp is the number of compressions required to recover workspace in the data structure
for U . This includes the number of compressions needed during the previous basis
factorization. Normally, Ncp should increase very slowly.

The following items are printed only if the problem is nonlinear or the superbasic set is non-empty (i.e.,
if the current solution is nonbasic).

Norm rg (as above)
nS is the current number of superbasic variables.
Cond Hz (as above)

[NP3506/4] Module 9.6: nag nlp sparse 9.6.27

nag nlp sparse sol Optimization

9.6.28 Module 9.6: nag nlp sparse [NP3506/4]

Optimization nag nlp sparse cntrl init

Procedure: nag nlp sparse cntrl init

1 Description

nag nlp sparse cntrl init assigns default values to the components of a structure of the derived type
nag nlp sparse cntrl wp.

2 Usage

USE nag nlp sparse

CALL nag nlp sparse cntrl init(control)

3 Arguments

3.1 Mandatory Argument

control — type(nag nlp sparse cntrl wp), intent(out)

Output: a structure containing the default values of those parameters which control the behaviour
of the algorithm and level of printed output. A description of its components is given in the
document for the derived type nag nlp sparse cntrl wp.

4 Error Codes

None.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.

[NP3506/4] Module 9.6: nag nlp sparse 9.6.29

nag nlp sparse cntrl init Optimization

9.6.30 Module 9.6: nag nlp sparse [NP3506/4]

Optimization Type nag nlp sparse cntrl wp

Derived Type: nag nlp sparse cntrl wp

Note. The names of derived types containing real/complex components are precision dependent. For double precision the
name of this type is nag nlp sparse cntrl dp. For single precision the name is nag nlp sparse cntrl sp. Please read the
Users’ Note for your implementation to check which precisions are available.

1 Description

A structure of type nag nlp sparse cntrl wp is used to supply a number of optional parameters: these
govern the level of printed output and a number of tolerances and limits, which allow you to influence
the behaviour of the algorithm. If this structure is supplied then it must be initialized prior to use by
calling nag nlp sparse cntrl init, which assigns default values to all the structure components. You
may then assign required values to selected components of the structure (as appropriate).

2 Type Definition

The public components are listed below; components are grouped according to their function. A full
description of the purpose of each component is given in Section 3.

type nag nlp sparse cntrl wp

! Printing parameters

logical :: list

integer :: unit

logical :: lt80 char

integer :: major print level

integer :: minor print level

! Derivative verification and approximation

logical :: cheap test

logical :: obj verify

integer :: start obj check

integer :: stop obj check

logical :: con verify

integer :: start con check

integer :: stop con check

real(kind=wp) :: fwd diff int

real(kind=wp) :: cent diff int

! Tolerances and limits

integer :: check freq

integer :: crash opt

integer :: expand freq

integer :: fac freq

integer :: hess freq

integer :: hess upd

integer :: iter lim

integer :: major iter lim

integer :: minor iter lim

integer :: part price

integer :: scale opt

integer :: superbasics lim

real(kind=wp) :: crash tol

real(kind=wp) :: elastic wt

real(kind=wp) :: fun prec

real(kind=wp) :: inf bound

real(kind=wp) :: linesearch tol

real(kind=wp) :: lu den tol

real(kind=wp) :: lu fac tol

real(kind=wp) :: lu sing tol

[NP3506/4] Module 9.6: nag nlp sparse 9.6.31

Type nag nlp sparse cntrl wp Optimization

real(kind=wp) :: lu upd tol

real(kind=wp) :: major feas tol

real(kind=wp) :: major opt tol

real(kind=wp) :: major step lim

real(kind=wp) :: minor feas tol

real(kind=wp) :: minor opt tol

real(kind=wp) :: pivot tol

real(kind=wp) :: scale tol

real(kind=wp) :: unbounded obj

real(kind=wp) :: unbounded step size

real(kind=wp) :: violation lim

logical :: deriv linesearch

logical :: feas exit

logical :: hess lim mem

logical :: minimize

end type nag nlp sparse cntrl wp

3 Components

3.1 Printing Parameters

list — logical

Controls the printing of the parameter settings in the call to nag nlp sparse sol.

If list = .true. (the default), then the parameter settings are printed;

if list = .false., then the parameter settings are not printed.

Default: list = .true..

unit — integer

Specifies the Fortran unit number to which all output produced by nag nlp sparse sol is sent.

Default: unit = the default Fortran output unit number for your implementation.

Constraints: a valid output unit.

lt80 char — logical

Controls the maximum length of each line of output produced by nag nlp sparse sol.

If lt80 char = .true. (the default), then the output will not exceed 80 characters per line;

if lt80 char = .false., then the output will not exceed 120 characters per line whenever
major print level = 5 or ≥ 10 (the default) or minor print level ≥ 1 (default value = 0).

Default: lt80 char = .true..

major print level — integer

Controls the amount of output produced by the major iterations of nag nlp sparse sol, as
indicated below. A detailed description of the printed output is given in Section 7.1 of the procedure
document for nag nlp sparse sol.

If lt80 char = .true. (the default), the following output is sent to the Fortran unit number
defined by unit:

0 No output.
1 The final solution only.
5 One line of summary output (< 80 characters) for each major iteration (no printout of

the final solution).
≥ 10 The final solution and one line of summary output for each major iteration.

9.6.32 Module 9.6: nag nlp sparse [NP3506/4]

Optimization Type nag nlp sparse cntrl wp

If lt80 char = .false., the following output is sent to the Fortran unit number defined by unit:

0 No output.
1 The final solution only.
5 One long line of output (< 120 characters) for each major iteration (no printout of the

final solution).
≥ 10 The final solution and one long line of output for each major iteration.

Default: major print level = 10.

minor print level — integer

Controls the amount of output produced by the minor iterations of nag nlp sparse sol, as
indicated below. A detailed description of the printed output is given in Section 7.2 of the procedure
document for nag nlp sparse sol.

If lt80 char = .true. (the default), the following output is sent to the Fortran unit number
defined by unit:

0 No output.
≥ 1 One line of summary output (< 80 characters) for each minor iteration (no printout of

the final QP solution).

If lt80 char = .false., the following output is sent to the Fortran unit number defined by unit:

0 No output.
≥ 1 One long line of output (< 120 characters) for each minor iteration (no printout of the

final QP solution).

Default: minor print level = 0.

3.2 Derivative Verification and Approximation

Let x̂ denote the first point that satisfies the linear constraints and bounds on the variables.

cheap test — logical

cheap test specifies the level of verification of elements computed by the user-supplied procedures
obj fun and con fun (see Section 3 of the procedure document for nag nlp sparse sol).

If cheap test = .true. (the default), then only a ‘cheap’ test will be performed on the
objective gradient and constraint Jacobian at the point x̂ (requiring three calls to obj fun

and two calls to con fun). Note that no checks are carried out if every column of the constraint
Jacobian contains a missing element.

If cheap test = .false., then a more reliable (but more expensive) check will be made
on individual objective gradient and constraint Jacobian elements at the point x̂ (see the
descriptions of obj verify and con verify).

Default: cheap test = .true..

obj verify — logical

Note: obj verify only takes effect if cheap test = .false. (default value = .true.).

It specifies whether or not individual elements of the objective gradient are to be checked. (Note
that unspecified elements are not checked, and hence they result in no overhead.)

If obj verify = .true. (the default), then individual objective gradient elements within
the range specified by start obj check (default value = 1) to stop obj check (default
value = the number of variables) will be checked at the point x̂. If major print level >
0 (the default), a result of the form OK or BAD? is printed to indicate whether or not each
element appears to be correct.

If obj verify = .false., then no checks will be performed on the objective gradient.

Default: obj verify = .true..

[NP3506/4] Module 9.6: nag nlp sparse 9.6.33

Type nag nlp sparse cntrl wp Optimization

start obj check — integer

Note: start obj check only takes effect if obj verify = .true. (the default).

It specifies the first element of the objective gradient to be checked.

Default: start obj check = 1.

Constraints: see the description of stop obj check.

stop obj check — integer

Note: stop obj check only takes effect if obj verify = .true. (the default).

It specifies the last element of the objective gradient to be checked.

Default: stop obj check = the number of nonlinear objective variables.

Constraints: 1 ≤ start obj check ≤ stop obj check ≤ the number of variables.

con verify — logical

Note: con verify only takes effect if cheap test = .false. (default value = .true.).

It specifies whether or not individual elements of the constraint Jacobian are to be checked. (Note
that unspecified elements are not checked, and hence they result in no overhead.)

If con verify = .true. (the default), then individual Jacobian elements in columns
start con check (default value = 1) to stop con check (default value = number of variables)
will be checked at the point x̂. If major print level > 0 (the default), a result of the form
OK or BAD? is printed to indicate whether or not each element appears to be correct.

If con verify = .false., then no checks will be performed on the constraint Jacobian.

Default: con verify = .true..

start con check — integer

Note: start con check only takes effect if con verify = .true. (the default).

It specifies the first column of the constraint Jacobian to be checked.

Default: start con check = 1.

Constraints: see the description of stop con check.

stop con check — integer

Note: stop con check only takes effect if con verify = .true. (the default).

It specifies the last column of the constraint Jacobian to be checked.

Default: stop con check = the number of nonlinear constraint variables.

Constraints: 1 ≤ start con check ≤ stop con check ≤ the number of variables.

fwd diff int — real(kind=wp)

fwd diff int defines an interval used to estimate derivatives by forward differences in the following
circumstances:

(a) for verifying the objective gradient and/or constraint Jacobian (see the descriptions of
cheap test, obj verify and con verify);

(b) for estimating unspecified elements of the objective gradient and/or constraint Jacobian.

A derivative with respect to xj is estimated by perturbing that element of x to the value
xj + fwd diff int × (1 + |xj |), and then evaluating f(x) and/or F (x) (as appropriate) at the
perturbed point. The resulting gradient estimates should be accurate to O(fwd diff int), unless
the functions are badly scaled. Judicious alteration of fwd diff int may sometimes lead to greater
accuracy. See Gill et al. [5] for a discussion of the accuracy in finite difference approximations.

Default: fwd diff int = SQRT(fun prec).

Constraints: EPSILON(1.0 wp) ≤ fwd diff int < 1.0.

9.6.34 Module 9.6: nag nlp sparse [NP3506/4]

Optimization Type nag nlp sparse cntrl wp

cent diff int — real(kind=wp)

cent diff int specifies the difference interval to be used near an optimal solution in order to obtain
more accurate (but more expensive) estimates of gradients. This requires twice as many function
evaluations as compared to using forward differences (see the description of fwd diff int). The
interval used for the jth variable is hj = cent diff int×(1+|xj |). The resulting gradient estimates
should be accurate to O((cent diff int)2), unless the functions are badly scaled. The switch to
central differences is indicated by c at the end of each line of intermediate printout produced by
the major iterations (see Section 7.1 of the procedure document for nag nlp sparse sol). See Gill
et al. [5] for a discussion of the accuracy in finite difference approximations.

Default: cent diff int = (fun prec)
1
3 .

Constraints: EPSILON(1.0 wp) ≤ cent diff int < 1.0.

3.3 Algorithm Choice and Tolerances

check freq — integer

check freq specifies how often the current solution (x, s) is to be tested to see whether it satisfies
the general linear constraints (including any linearized nonlinear constraints). The numerical test
is performed every check freq-th minor iteration after the most recent basis factorization. The
constraints are of the form Ax− s = b, where s is the set of slack variables. If the largest element
of the residual vector r = b−Ax+ s is judged to be too large, the current basis is refactorized and
the basic variables recomputed to satisfy the general constraints more accurately.

If check freq = 0, the value 99999999 is used instead and effectively no checks are made.

Default: check freq = 60.

Constraints: check freq ≥ 0.

crash opt — integer

crash opt is used in conjunction with the optional argument cold start (see Section 3.2 of the
procedure document for nag nlp sparse sol) in order to select an initial basis.

If cold start = .true. (the default), an internal Crash procedure is used to select an initial basis
from various rows and columns of the constraint matrix (A −I). The value of crash opt determines
which rows and columns of A are initially eligible for the basis, and how many times the Crash
procedure is called. Columns of −I are used to pad the basis where necessary. The possible choices
for crash opt are the following.

0 The initial basis contains only slack variables: B = I.
1 The Crash procedure is called once (looking for a triangular basis in all rows and

columns of A).
2 The Crash procedure is called twice (if there are any nonlinear constraints). The

first call looks for a triangular basis in linear rows, and the iteration proceeds with
simplex iterations until the linear constraints are satisfied. The Jacobian is then
evaluated for the first major iteration and the Crash procedure is called again to
find a triangular basis in the nonlinear rows (whilst retaining the current basis for
linear rows).

3 The Crash procedure is called up to three times (if there are any nonlinear
constraints). The first two calls treat linear equality constraints and linear inequality
constraints separately. The Jacobian is then evaluated for the first major iteration
and the Crash procedure is called again to find a triangular basis in the nonlinear
rows (whilst retaining the current basis for linear rows).

If crash opt ≥ 1, certain slacks on inequality rows are selected for the basis first. (If
crash opt ≥ 2, numerical values are used to exclude slacks that are close to a bound.) The Crash
procedure then makes several passes through the columns of A, searching for a basis matrix that is
essentially triangular. A column is assigned to ‘pivot’ on a particular row if the column contains a
suitably large element in a row that has not yet been assigned. (The pivot elements ultimately form

[NP3506/4] Module 9.6: nag nlp sparse 9.6.35

Type nag nlp sparse cntrl wp Optimization

the diagonals of the triangular basis.) For remaining unassigned rows, slack variables are inserted
to complete the basis.

Default: crash opt = 0 if there are any nonlinear constraints, and 3 otherwise.

Constraints: 0 ≤ crash opt ≤ 3.

crash tol — real(kind=wp)

crash tol is used in conjunction with the optional argument cold start (see Section 3.2 of the
procedure document for nag nlp sparse sol) in order to select an initial basis.

It allows the Crash procedure to ignore certain ‘small’ non-zero elements in the columns of A while
searching for a triangular basis. If amax is the largest element in the jth column, other non-zeros
aij in the column are ignored if |aij | ≤ amax × crash tol.

The basis obtained by the Crash procedure may not be strictly triangular when crash tol > 0.0,
but it is likely to be non-singular and almost triangular. The intention is to obtain a starting basis
containing more columns of A and fewer (arbitrary) slacks. A feasible solution may be reached
earlier on some problems.

Default: crash tol = 0.1.

Constraints: 0.0 ≤ crash tol < 1.0.

deriv linesearch — logical

deriv linesearch specifies the tolerance to be used at every major iteration in order to improve the
value of the Lagrangian merit function (6) during the linesearch (see Section 1 of the Mathematical
Background section of this module document).

If deriv linesearch = .true. (the default), a linesearch based upon safeguarded cubic
interpolation (which requires both function and gradient values in order to compute estimates
of the step αk) is used.

If deriv linesearch = .false., a linesearch based upon safeguarded quadratic interpolation
(which does not require the evaluation or approximation of any gradients) is used. This setting
should also be used if some analytic derivatives are not provided.

A nonderivative linesearch can be slightly less robust on difficult problems, and it is recommended
that the default be used if the functions and their derivatives can be computed at approximately
the same cost. If the gradients are very expensive to compute relative to the functions however, a
nonderivative linesearch may result in a significant decrease in the total run-time.

Default: deriv linesearch = .true..

elastic wt — real(kind=wp)

elastic wt specifies the initial weight γ associated with problem (8) (see Section 2 of the
Mathematical Background section of this module document).

At any given major iteration k, elastic mode is entered if the QP subproblem is infeasible or the QP
dual variables (Lagrange multipliers) are larger in magnitude than elastic wt× (1+ ‖ g(xk) ‖2),
where g is the objective gradient. In either case, the QP subproblem is re-solved in elastic mode
with γ = elastic wt× (1+ ‖ g(xk) ‖2).
Thereafter, γ is increased (subject to a maximum allowable value) at any point that is optimal
for problem (8) but not feasible for problem (1). After the pth increase, γ = (1+ ‖ g(xk1

) ‖2)×
10p × elastic wt, where xk1

is the iterate at which γ was first needed.

Default: elastic wt = 100.0 if there are any nonlinear constraints, and 1.0 otherwise.

Constraints: elastic wt ≥ 0.0.

9.6.36 Module 9.6: nag nlp sparse [NP3506/4]

Optimization Type nag nlp sparse cntrl wp

expand freq — integer

expand freq is part of the EXPAND anti-cycling procedure due to Gill et al. [4], which is designed
to make progress even on highly degenerate problems.

For linear models, the strategy is to force a positive step at every iteration, at the expense of
violating the constraints by a small amount. Suppose that the value of minor feas tol is δ. Over
a period of expand freq iterations, the feasibility tolerance actually used by this procedure (i.e.,
the working feasibility tolerance) increases from 0.5δ to δ (in steps of 0.5δ/expand freq).

For nonlinear models, the same procedure is used for iterations in which there is only one superbasic
variable. (Cycling can only occur when the current solution is at a vertex of the feasible region.)
Thus, zero steps are allowed if there is more than one superbasic variable, but otherwise positive
steps are enforced.

Increasing the value of expand freq helps reduce the number of slightly infeasible nonbasic basic
variables (most of which are eliminated during the resetting procedure). However, it also diminishes
the freedom to choose a large pivot element (see the description of pivot tol).

If expand freq = 0, the value 99999999 is used instead and effectively no anti-cycling procedure is
invoked.

Default: expand freq = 10000.

Constraints: expand freq ≥ 0.

fac freq — integer

fac freq specifies the maximum number of basis changes that will occur between factorizations of
the basis matrix.

For linear problems, the basis factors are usually updated at every iteration. The default value (=
100) is reasonable for typical problems, particularly those that are extremely sparse or well-scaled.

When the objective function is nonlinear, fewer basis updates will occur as the solution is
approached. The number of iterations between basis factorizations will therefore increase. During
these iterations a test is made regularly according to the value of check freq to ensure that the
general constraints are satisfied. If necessary, the basis will be refactorized before the limit of
fac freq updates is reached.

Default: fac freq = 50 if there are any nonlinear constraints, and 100 otherwise.

Constraints: fac freq ≥ 1.

feas exit — logical

Note: feas exit only takes effect if the linear constraints are feasible, or the value of
major iter lim is not exceeded.

It specifies whether additional iterations be performed when termination is about to occur at a
point that does not satisfy the nonlinear constraints.

If feas exit = .true., additional iterations are performed in order to find a feasible point
(if any) for the nonlinear constraints. This involves solving a feasible point problem in which
the objective function is omitted.

If feas exit = .false. (the default), no additional iterations are performed.

Default: feas exit = .false..

fun prec — real(kind=wp)

fun prec defines the relative function precision εR, which is intended to be a measure of the relative
accuracy with which the nonlinear functions can be computed. For example, if f(x) (or Fi(x)) is
computed as 1000.56789 for some relevant x and the first 6 significant digits are known to be correct,
the appropriate value for εR would be 10−6.

Ideally the functions f(x) or Fi(x) should have magnitude of order 1. If all functions are
substantially less than 1 in magnitude, εR should be the absolute precision. For example, if f(x)

[NP3506/4] Module 9.6: nag nlp sparse 9.6.37

Type nag nlp sparse cntrl wp Optimization

(or Fi(x)) is computed as 1.23456789 × 10−4 for some relevant x and the first 6 significant digits
are known to be correct, the appropriate value for εR would be 10−10.

The choice of εR can be quite complicated for badly scaled problems; see Chapter 8 of Gill et al. [5]
for a discussion of scaling techniques. The default value is appropriate for most simple functions
that are computed with full accuracy.

In some cases the function values will be the result of extensive computation, possibly involving
an iterative procedure that can provide few digits of precision at reasonable cost. Specifying an
appropriate value of fun prec may therefore lead to savings, by allowing the linesearch procedure
to terminate when the difference between function values along the search direction becomes as
small as the absolute error in the values.

Default: fun prec = (EPSILON(1.0 wp))0.8.

Constraints: EPSILON(1.0 wp) ≤ fun prec < 1.0.

hess freq — integer

hess freq specifies the maximum number of BFGS updates allowed between resetting the
approximate Hessian to the identity matrix upon completion of a major iteration. It is intended to
be used in conjunction with hess lim mem.

Default: hess freq = 99999999 and effectively no resets occur.

Constraints: hess freq ≥ 1.

hess lim mem — logical

hess lim mem specifies the method for storing and updating the quasi-Newton approximation to
the Hessian of the Lagrangian function.

If hess lim mem = .true. (the default), a limited memory procedure is used to update a
diagonal Hessian approximation Hr a limited number of times. (Updates are accumulated as
a list of vector pairs. They are discarded at regular intervals after Hr has been reset to their
diagonal.)

If hess lim mem = .false., the approximate Hessian is treated as a dense matrix, and BFGS
quasi-Newton updates are applied explicitly. This is most efficient when the total number
of nonlinear variables is not too large (say, < 75). In this case, you can expect 1-step Q-
superlinear convergence to the solution.

Note that if hess freq = 20 (default value = 99999999) is used in conjunction with
hess lim mem = .false., the effect will be similar to using hess lim mem = .true. in conjunction
with hess upd = 20 (the default), except that the latter will retain the current diagonal during
resets.

Default: hess lim mem = .true..

hess upd — integer

Note: hess upd only takes effect if hess lim mem = .true. (the default).

It defines the maximum number of pairs of Hessian update vectors that are to be used to define
the quasi-Newton approximate Hessian.

Once the limit of hess upd updates is reached, all but the diagonal elements of the accumulated
updates are discarded and the process starts again. Broadly speaking, the more updates that are
stored, the better the quality of the approximate Hessian. On the other hand, the more vectors
that are stored, the greater the cost of each QP iteration.

The default value is likely to give a robust algorithm without significant expense, but faster
convergence may be obtained with far fewer updates (say, < 10).

Default: hess upd = 20 if hess lim mem = .true. and 99999999 otherwise, in which case effectively
no updates are performed.

Constraints: hess upd ≥ 0.

9.6.38 Module 9.6: nag nlp sparse [NP3506/4]

Optimization Type nag nlp sparse cntrl wp

inf bound — real(kind=wp)

inf bound defines the ‘infinite’ bound size in the definition of the problem constraints. Any upper
bound greater than or equal to inf bound will be regarded as +∞ (and similarly any lower bound
less than or equal to −inf bound will be regarded as −∞).

Default: inf bound = 1020.

Constraints: inf bound > 0.0.

iter lim — integer

iter lim specifies the maximum number of minor iterations allowed (i.e., iterations of the
simplex method or the QP algorithm), summed over all major iterations. (See the description
of minor iter lim and major iter lim.)

Default: iter lim = 10000.

Constraints: iter lim ≥ 1.

linesearch tol — real(kind=wp)

linesearch tol controls the accuracy with which a steplength will be located along the direction
of search at each iteration. At the start of each linesearch a target directional derivative for the
Lagrangian merit function is identified. The value of linesearch tol therefore determines the
accuracy to which this target value is approximated.

The default value (= 0.9) requests an inaccurate search, and is appropriate for most problems,
particularly those with any nonlinear constraints.

If the nonlinear functions are expensive to evaluate, a less accurate search may be appropriate. If
the optional arguments obj deriv and con deriv are both set to .true. (the default; see Section
3.2 of the procedure document for nag nlp sparse sol), try setting linesearch tol to 0.99. (The
number of major iterations required to solve the problem might increase, but the total number of
function evaluations may decrease enough to compensate.)

If obj deriv and/or con deriv are set to .false., a moderately accurate search may be
appropriate; try setting linesearch tol to 0.5. Each search will (typically) require only 1 − 5
function values, but many function calls will then be needed to estimate the missing gradients for
the next iteration.

If the nonlinear functions are cheap to evaluate, a more accurate search may be appropriate; try
setting linesearch tol to 0.1, 0.01 or 0.001. The number of major iterations required to solve the
problem might decrease.

Default: linesearch tol = 0.9.

Constraints: 0.0 ≤ linesearch tol < 1.0.

lu den tol — real(kind=wp)

lu sing tol — real(kind=wp)

lu den tol defines the density tolerance to be used during the LU factorization of the basis matrix.
Columns of L and rows of U are formed one at a time, and the remaining rows and columns of
the basis are altered appropriately. At any stage, if the density of the remaining matrix exceeds
lu den tol, the Markowitz strategy for choosing pivots is terminated. The remaining matrix is
then factorized using a dense LU procedure. Increasing the value of lu den tol towards unity may
give slightly sparser LU factors, with a slight increase in factorization time.

lu sing tol defines the singularity tolerance to be used to guard against ill-conditioned basis
matrices. Whenever the basis is refactorized, the diagonal elements of U are tested as follows. If
|ujj | ≤ lu sing tol or |ujj | < lu sing tol × max

i
|uij |, the jth column of the basis is replaced

by the corresponding slack variable. This is most likely to occur when the optional argument
cold start is set to .false. (see Section 3.2 of the procedure document for nag nlp sparse sol),
or at the start of a major iteration.

[NP3506/4] Module 9.6: nag nlp sparse 9.6.39

Type nag nlp sparse cntrl wp Optimization

In some cases, the Jacobian matrix may converge to values that make the basis exactly singular
(e.g., a whole row of the Jacobian matrix could be zero at an optimal solution). Before exact
singularity occurs, the basis could become very ill-conditioned and the optimization could progress
very slowly (if at all). Setting lu sing tol to 0.00001 (say) may therefore help cause a judicious
change of basis in such situations.

Default: lu den tol = 0.6; lu sing tol = (EPSILON(1.0 wp))0.67.

Constraints: lu den tol ≥ 0.0; lu sing tol > 0.0.

lu fac tol — real(kind=wp)

lu upd tol — real(kind=wp)

lu fac tol and lu upd tol specify tolerances which affect the stability and sparsity of the basis
factorization B = LU , during refactorization and updating, respectively. The lower triangular
matrix L is a product of matrices of the form

(

1
µ 1

)

,

where the multipliers µ satisfy |µ| ≤ lu fac tol and |µ| ≤ lu upd tol. Smaller values of
lu fac tol and lu upd tol favour stability, while larger values favour sparsity. The default values
usually strike a good compromise. For large and relatively dense problems, setting lu fac tol to
10.0 or 5.0 (say) may give a marked improvement in sparsity without impairing stability to a serious
degree. Note that for problems involving band matrices, it may be necessary to reduce lu fac tol

and/or lu upd tol in order to achieve stability.

Default: lu fac tol = 5.0 if there are any nonlinear constraints, and 100.0 otherwise;
lu upd tol = 5.0 if there are any nonlinear constraints, and 10.0 otherwise.

Constraints: lu fac tol ≥ 1.0; lu upd tol ≥ 1.0.

major feas tol — real(kind=wp)

major feas tol specifies how accurately the nonlinear constraints should be satisfied. The default
value is appropriate when the linear and nonlinear constraints contain data to approximately that
accuracy. A larger value may be appropriate if some of the problem functions are known to be of
low accuracy.

Let rowerr be defined as the maximum nonlinear constraint violation normalized by the size of the
solution. It is required to satisfy

rowerr = max
i

violi
‖ (x, s) ‖ ≤ major feas tol,

where violi is the violation of the ith nonlinear constraint.

Default: major feas tol = SQRT(EPSILON(1.0 wp)).

Constraints: EPSILON(1.0 wp) ≤ major feas tol < 1.0.

major opt tol — real(kind=wp)

major opt tol specifies the final accuracy of the dual variables π. If nag nlp sparse sol

terminates with error%code = 0, a primal and dual solution (x, s, π) will have been computed
such that

maxgap = max
j

gapj

‖ π ‖ ≤ major opt tol,

where gapj is an estimate of the complementarity gap for the jth variable and ‖ π ‖ is a measure
of the size of the QP dual variables (or Lagrange multipliers) given by

‖ π ‖ = max

(

σ√
m
, 1

)

, where σ =

m
∑

i=1

|πi|.

9.6.40 Module 9.6: nag nlp sparse [NP3506/4]

Optimization Type nag nlp sparse cntrl wp

It is included to make the tests independent of a scale factor on the objective function. Specifically,
gapj is computed from the final QP solution using the reduced gradients dj = gj − πTaj , where
gj is the jth element of the objective gradient and aj is the associated column of the constraint
matrix (A − I):

gapj =

{

dj min(xj − lj , 1) if dj ≥ 0;
−dj min(uj − xj , 1) if dj < 0.

Default: major opt tol = SQRT(EPSILON(1.0 wp)).

Constraints: EPSILON(1.0 wp) ≤ major opt tol < 1.0.

major iter lim — integer

major iter lim specifies the maximum number of major iterations allowed before termination. It
is intended to guard against an excessive number of linearizations of the nonlinear constraints.

If you wish to check that a call to nag nlp sparse sol is correct before attempting to solve the
problem in full then major iter lim may be set to 0. No major iterations will be performed
but the initialization stages prior to the first major iteration will be processed and a listing of
parameter settings output if list = .true. (the default). Any derivative checking (as specified by
cheap test, obj verify and con verify) will also be performed.

Default: major iter lim = 1000.

Constraints: major iter lim ≥ 0.

major step lim — real(kind=wp)

major step lim limits the change in x during a linesearch. It applies to all nonlinear problems
once a ‘feasible solution’ or ‘feasible subproblem’ has been found.

A linesearch determines a step α in the interval 0 < α ≤ β, where β = 1 if there are any nonlinear
constraints, or the step to the nearest upper or lower bound on x if all the constraints are linear.
Normally, the first step attempted is α1 = min(1, β).

In some cases, such as f(x) = aebx or f(x) = axb, even a moderate change in the elements of x
can lead to floating-point overflow. The value of major step lim is therefore used to define a step
limit β̄ given by

β̄ =
major step lim× (1 + ‖x‖2)

‖p‖2
,

where p is the search direction and the first evaluation of f(x) is made at the (potentially) smaller
step length α1 = min(1, β̄, β).

Wherever possible, upper and lower bounds on x should be used to prevent evaluation of nonlinear
functions at meaningless points. The default value (= 2.0) should not affect progress on well-
behaved functions, but values such as 0.1 or 0.01 may be helpful when rapidly varying functions
are present. If a small value of major step lim is selected, a ‘good’ starting point may be required.
An important application is to the class of nonlinear least-squares problems.

Default: major step lim = 2.0.

Constraints: major step lim > 0.0.

minimize — logical

minimize specifies the required direction of the optimization. It applies to both linear and nonlinear
terms (if any) in the objective function f(x).

If minimize = .true. (the default), f(x) is minimized.

If minimize = .false., f(x) is maximized.

Note that if two problems are the same except that one minimizes f(x) and the other maximizes
−f(x), their solutions will be the same but the signs of the dual variables πi and the reduced
gradients dj will be reversed.

Default: minimize = .true..

[NP3506/4] Module 9.6: nag nlp sparse 9.6.41

Type nag nlp sparse cntrl wp Optimization

minor feas tol — real(kind=wp)

minor feas tol specifies the tolerance within which all variables eventually satisfy their upper and
lower bounds. Since this includes slack variables, general linear constraints should also be satisfied
to within minor feas tol. Note that feasibility with respect to nonlinear constraints is judged by
the value of major feas tol (and not by minor feas tol).

If the bounds and linear constraints cannot be satisfied to within minor feas tol, the problem
is declared infeasible. Let Sinf be the corresponding sum of infeasibilities (see Section 7.1 of the
procedure document for nag nlp sparse sol). If Sinf is quite small, it may be appropriate to raise
minor feas tol by a factor of 10 or 100. Otherwise, some error in the data should be suspected.

If scale opt > 1, feasibility is defined in terms of the scaled problem (since it is more likely to be
meaningful). (See the description of scale opt.)

Nonlinear functions will only be evaluated at points that satisfy the bounds and linear constraints.
If there are regions where a function is undefined, every effort should be made to eliminate these
regions from the problem. For example, if f(x1, x2) =

√
x1 + log(x2), it is essential to place lower

bounds on both x1 and x2. If the bounds are specified as x1 ≥ 10−5 and x2 ≥ 10−4, it might be
appropriate to specify minor feas tol as 10−6. (The log singularity is more serious; in general,
you should attempt to keep x as far away from singularities as possible.)

In reality, the value of minor feas tol is used as a feasibility tolerance for satisfying the bounds
on x and s in each QP subproblem. If the sum of infeasibilities cannot be reduced to zero, the QP
subproblem is declared infeasible and the procedure is then in elastic mode thereafter (with only
the linearized nonlinear constraints defined to be elastic). (See the description of elastic wt.)

Default: minor feas tol = SQRT(EPSILON(1.0 wp)).

Constraints: EPSILON(1.0 wp) ≤ minor feas tol < 1.0.

minor iter lim — integer

minor iter lim specifies the maximum number of iterations allowed between successive
linearizations of the nonlinear constraints. Values in the range 10 to 50 prevent excessive effort being
expended on early major iterations, but allow later QP subproblems to be solved to completion.
Note that an extra m minor iterations are allowed if the first QP subproblem to be solved starts
with the all-slack basis B = I. (See the description of crash tol.)

In general, it is unsafe to specify values as small as 1 or 2 for minor iter lim (because even when
an optimal solution has been reached, a few minor iterations may be needed for the corresponding
QP subproblem to be recognised as optimal).

Default: minor iter lim = 500.

Constraints: minor iter lim ≥ 1.

minor opt tol — real(kind=wp)

minor opt tol is used to judge optimality for each QP subproblem. Let the QP reduced gradients
be dj = gj − πTaj , where gj is the jth element of the QP gradient, aj is the associated column of
the QP constraint matrix and π is the set of QP dual variables.

By construction, the reduced gradients for basic variables are always zero. The QP subproblem will
be declared optimal if the reduced gradients for nonbasic variables at their upper or lower bounds
satisfy

dj

‖ π ‖ ≥ −minor opt tol or
dj

‖ π ‖ ≤ minor opt tol

respectively, and if
|dj |
‖ π ‖ ≤ minor opt tol for superbasic variables.

Note that ‖ π ‖ is a measure of the size of the dual variables. It is included to make the tests
independent of a scale factor on the objective function. (The value of ‖ π ‖ actually used is defined
in the description of major opt tol.)

9.6.42 Module 9.6: nag nlp sparse [NP3506/4]

Optimization Type nag nlp sparse cntrl wp

If the objective is scaled down to be very small , the optimality test reduces to comparing dj against
minor opt tol.

Default: minor opt tol = SQRT(EPSILON(1.0 wp)).

Constraints: EPSILON(1.0 wp) ≤ minor opt tol < 1.0.

part price — integer

part price is recommended for large problems that have significantly more variables than
constraints (i.e., n À m). It reduces the work required for each ‘pricing’ operation (i.e., when
a nonbasic variable is selected to become superbasic). The possible choices for part price are the
following.

1 All columns of the constraint matrix (A − I) are searched.
≥ 2 Both A and I are partitioned to give part price roughly equal segments Aj , Ij , for

j = 1, 2, . . . , p (modulo p). If the previous pricing search was successful on Aj , Ij , the
next search begins on the segments Aj+1, Ij+1. If a reduced gradient is found that
is larger than some dynamic tolerance, the variable with the largest such reduced
gradient (of appropriate sign) is selected to enter the basis. If nothing is found, the
search continues on the next segments Aj+2, Ij+2, and so on.

Default: part price = 1 if there are any nonlinear constraints, and 10 otherwise.

Constraints: part price ≥ 1.

pivot tol — real(kind=wp)

pivot tol specifies the tolerance to be used during the solution of QP subproblems in order to
prevent columns entering the basis if they would cause the basis to become almost singular.

When x changes to x+ αp for some specified search direction p, a ‘ratio test’ is used to determine
which element of x reaches an upper or lower bound first. The corresponding element of p is called
the pivot element . Elements of p that are smaller than pivot tol are ignored (and therefore cannot
be pivot elements).

It is common in practice for two (or more) variables to reach a bound at essentially the same
time. In such cases, the value of minor feas tol provides some freedom to maximize the pivot
element and thereby improve numerical stability. Excessively small values of minor feas tol

should therefore not be specified. To a lesser extent, the value of expand freq also provides some
freedom to maximize the pivot element. Excessively large values of expand freq should therefore
not be specified. (See the description of minor feas tol and expand freq.)

Default: pivot tol = (EPSILON(1.0 wp))0.67.

Constraints: pivot tol > 0.0.

scale opt — integer

scale opt enables you to scale the variables and constraints using an iterative procedure due to
Fourer [9], which attempts to compute row scales ri and column scales cj such that the scaled matrix
coefficients āij = aij× (cj/ri) are as close as possible to unity. (The lower and upper bounds on the
variables and slacks for the scaled problem are redefined as l̄j = lj/cj and ūj = uj/cj respectively,
where cj ≡ rj−n if j > n.) The possible choices for scale opt are the following.

0 No scaling is performed. This is recommended if it is known that the elements of x
and the constraint matrix A (along with its Jacobian) never become large (say, >
1000).

1 All linear constraints and variables are scaled. This may improve the overall
efficiency of the procedure on some problems.

2 All constraints and variables are scaled. Also, an additional scaling is performed
that takes into account columns of (A − I) that are fixed or have positive lower
bounds or negative upper bounds.

[NP3506/4] Module 9.6: nag nlp sparse 9.6.43

Type nag nlp sparse cntrl wp Optimization

If there are any nonlinear constraints present, the scale factors depend on the Jacobian at the
first point that satisfies the linear constraints and the upper and lower bounds. The setting
scale opt = 2 should therefore be used only if a ‘good’ starting point is available and the problem
is not highly nonlinear.

Default: scale opt = 1 if there are any nonlinear constraints, and 2 otherwise.

Constraints: 0 ≤ scale opt ≤ 2.

scale tol — real(kind=wp)

Note: scale tol only takes effect if scale opt = 1 or 2 (the default).

It is used to control the number of scaling passes to be made through the constraint matrix A. At
least 3 (and at most 10) passes will be made. More precisely, let ap denote the largest column ratio

(i.e.,
′biggest′ element
′smallest′ element in some sense) after the pth scaling pass through A. The scaling procedure

is terminated if ap ≥ ap−1 × scale tol for some p ≥ 3. Thus, increasing the value of scale tol

from 0.9 to 0.99 (say) will probably increase the number of passes through A.

Default: scale tol = 0.9.

Constraints: 0.0 < scale tol < 1.0.

superbasics lim — integer

Note: superbasics lim only takes effect if the problem is nonlinear.

It places a limit on the storage allocated for superbasic variables. Ideally, it should be set to a value
slightly larger than the ‘number of degrees of freedom’ expected at the solution.

The number of degrees of freedom is often called the ‘number of independent variables’. Normally,
the value of superbasics lim need not be greater than the total number of nonlinear variables
plus one, but for many problems it may be considerably smaller.

Default: superbasics lim = min(500, the number of variables, the total number of nonlinear
variables + 1).

Constraints: superbasics lim ≥ 1.

unbounded obj — real(kind=wp)

unbounded step size — real(kind=wp)

unbounded obj and unbounded step size attempt to detect unboundedness in nonlinear problems.
During the linesearch, the objective function f is evaluated at points of the form x+ αp, where x
and p are fixed and α varies. If |f | exceeds unbounded obj or α exceeds unbounded step size, the
iterations are terminated and the procedure terminates with error%code = 204.

If singularities are present, unboundedness in f(x) may manifest itself by a floating-point overflow
during the evaluation of f(x+ αp), before the test against unbounded obj can be made.

Unboundedness in x is best avoided by placing finite upper and lower bounds on the variables.

Default: unbounded obj = 1015; unbounded step size = max(inf bound, 1020).

Constraints: unbounded obj > 0.0; unbounded step size > 0.0.

violation lim — real(kind=wp)

violation lim specifies an absolute limit on the magnitude of the maximum constraint violation
after the linesearch. Upon completion of the linesearch, the new iterate xk+1 satisfies the condition

vi(xk+1) ≤ violation lim×max(1, vi(x0)),

where x0 is the point at which the nonlinear constraints are first evaluated and vi(x) is the ith
nonlinear constraint violation vi(x) = max(0, li − Fi(x), Fi(x)− ui).

The effect of the violation limit is to restrict the iterates to lie in an expanded feasible region whose
size depends on the magnitude of violation lim. This makes it possible to keep the iterates within
a region where the objective function is expected to be well-defined and bounded below (or above

9.6.44 Module 9.6: nag nlp sparse [NP3506/4]

Optimization Type nag nlp sparse cntrl wp

in the case of maximization). If the objective function is bounded below (or above in the case of
maximization) for all values of the variables, then violation lim may be any large positive value.

Default: violation lim = 10.0.

Constraints: violation lim > 0.0.

[NP3506/4] Module 9.6: nag nlp sparse 9.6.45

Type nag nlp sparse cntrl wp Optimization

9.6.46 Module 9.6: nag nlp sparse [NP3506/4]

Optimization Example 1

Example 1: Nonlinear Programming Problem

(with bounds and linear constraints)

This is a reformulation of Problem 74 from Hock and Schittkowski [10] and involves the minimization of
the nonlinear function

3x3 + 10−6x3
3 + 2x4 +

2

3
× 10−6x3

4

subject to the bounds

−0.55 ≤ x1 ≤ 0.55
−0.55 ≤ x2 ≤ 0.55

0 ≤ x3 ≤ 1200
0 ≤ x4 ≤ 1200

to the linear constraints

−x1 + x2 ≥ −0.55,
x1 − x2 ≥ −0.55,

and to the nonlinear constraints

1000 sin(−x1 − 0.25) + 1000 sin(−x2 − 0.25)− x3 = −894.8,
1000 sin(x1 − 0.25) + 1000 sin(x1 − x2 − 0.25)− x4 = −894.8,
1000 sin(x2 − 0.25) + 1000 sin(x2 − x1 − 0.25) = −1294.8.

The initial point, which is infeasible, is

x(0) = (0, 0, 0, 0)T .

The optimal solution (to five figures) is

x∗ = (0.11887, −0.39623, 679.94, 1026.0)T ,

and F (x∗) = 5126.4. All the nonlinear constraints are active at the solution.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

MODULE nlp_sparse_ex01_mod

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Default Accessibility ..

PUBLIC

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

CONTAINS

SUBROUTINE obj_fun(first_call,final_call,x,continue,finish,obj_f, &

obj_grad,i_comm,r_comm)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC PRESENT

! .. Scalar Arguments ..

REAL (wp), INTENT (OUT) :: obj_f

LOGICAL, INTENT (INOUT) :: continue, finish

[NP3506/4] Module 9.6: nag nlp sparse 9.6.47

Example 1 Optimization

LOGICAL, INTENT (IN) :: final_call, first_call

! .. Array Arguments ..

INTEGER, OPTIONAL, INTENT (IN) :: i_comm(:)

REAL (wp), OPTIONAL, INTENT (INOUT) :: obj_grad(:)

REAL (wp), OPTIONAL, INTENT (IN) :: r_comm(:)

REAL (wp), INTENT (IN) :: x(:)

! .. Executable Statements ..

obj_f = 1.0E-6_wp*x(3)**3 + (2.0E-6_wp/3.0_wp)*x(4)**3

IF (PRESENT(obj_grad)) THEN

obj_grad(1:2) = 0.0_wp

obj_grad(3) = 3.0E-6_wp*x(3)**2

obj_grad(4) = 2.0E-6_wp*x(4)**2

END IF

END SUBROUTINE obj_fun

SUBROUTINE con_fun(first_call,final_call,x,continue,finish,con_f, &

con_jac,i_comm,r_comm)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC COS, PRESENT, SIN

! .. Parameters ..

REAL (wp), PARAMETER :: quarter = 0.25_wp

REAL (wp), PARAMETER :: thousand = 1000.0_wp

! .. Scalar Arguments ..

LOGICAL, INTENT (INOUT) :: continue, finish

LOGICAL, INTENT (IN) :: final_call, first_call

! .. Array Arguments ..

INTEGER, OPTIONAL, INTENT (IN) :: i_comm(:)

REAL (wp), INTENT (OUT) :: con_f(:)

REAL (wp), OPTIONAL, INTENT (INOUT) :: con_jac(:)

REAL (wp), OPTIONAL, INTENT (IN) :: r_comm(:)

REAL (wp), INTENT (IN) :: x(:)

! .. Executable Statements ..

con_f(1) = SIN(-x(1)-quarter) + SIN(-x(2)-quarter)

con_f(2) = SIN(x(1)-quarter) + SIN(x(1)-x(2)-quarter)

con_f(3) = SIN(x(2)-quarter) + SIN(x(2)-x(1)-quarter)

con_f = thousand*con_f

IF (PRESENT(con_jac)) THEN

con_jac(1) = -COS(-x(1)-quarter)

con_jac(2) = COS(x(1)-x(2)-quarter) + COS(x(1)-quarter)

con_jac(3) = -COS(x(2)-x(1)-quarter)

con_jac(4) = -COS(-x(2)-quarter)

con_jac(5) = -COS(x(1)-x(2)-quarter)

con_jac(6) = COS(x(2)-quarter) + COS(x(2)-x(1)-quarter)

con_jac = thousand*con_jac

END IF

END SUBROUTINE con_fun

END MODULE nlp_sparse_ex01_mod

PROGRAM nag_nlp_sparse_ex01

! Example Program Text for nag_nlp_sparse

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

9.6.48 Module 9.6: nag nlp sparse [NP3506/4]

Optimization Example 1

USE nlp_sparse_ex01_mod, ONLY : con_fun, obj_fun, wp

USE nag_nlp_sparse, ONLY : nag_nlp_sparse_sol

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Parameters ..

INTEGER, PARAMETER :: idummy = -11111, m = 6, n = 4

INTEGER, PARAMETER :: nname = n + m

INTEGER, PARAMETER :: nnz = 14, num_nlin_con = 3, num_nlin_jac_var = 2, &

num_nlin_obj_var = 4, obj_row = 6

! .. Local Scalars ..

INTEGER :: i, icol, jcol

REAL (wp) :: obj_f

! .. Local Arrays ..

INTEGER :: col_ptr(n+1) = idummy

INTEGER :: row_index(nnz)

REAL (wp) :: a(nnz), s(m), s_lower(m), s_upper(m), x(n), x_lower(n), &

x_upper(n)

CHARACTER (8) :: names(n+m) = (/ ’Varble 1’, ’Varble 2’, ’Varble 3’, &

’Varble 4’, ’NlnCon 1’, ’NlnCon 2’, ’NlnCon 3’, ’LinCon 1’, ’LinCon 2’, &

’Free Row’/)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_nlp_sparse_ex01’

READ (nag_std_in,*) ! Skip heading in data file

jcol = 1

col_ptr(jcol) = 1

DO i = 1, nnz

! Element (row_index(i), icol) is stored in a(i)

READ (nag_std_in,*) a(i), row_index(i), icol

IF (icol<jcol) THEN

! Elements not ordered by increasing column index.

WRITE (nag_std_out,*) ’Element in column’, icol, &

’ found after element in column’, jcol, ’. Problem abandoned.’

STOP

ELSE IF (icol==jcol+1) THEN

! Index in a of the start of the icol-th column equals i.

col_ptr(icol) = i

jcol = icol

ELSE IF (icol>jcol+1) THEN

! Index in a of the start of the icol-th column equals i,

! but columns jcol+1,jcol+2,...,icol-1 are empty. Set the

! corresponding elements of col_ptr to i.

col_ptr(jcol+1:icol) = i

jcol = icol

END IF

END DO

col_ptr(n+1) = nnz + 1

IF (n>icol) THEN

[NP3506/4] Module 9.6: nag nlp sparse 9.6.49

Example 1 Optimization

! Columns n,n-1,...,icol+1 are empty. Set the corresponding

! elements of col_ptr accordingly.

DO i = n, icol + 1, -1

IF (col_ptr(i)==idummy) col_ptr(i) = col_ptr(i+1)

END DO

END IF

READ (nag_std_in,*) (x_lower(i),i=1,n)

READ (nag_std_in,*) (x_upper(i),i=1,n)

READ (nag_std_in,*) (s_lower(i),i=1,m)

READ (nag_std_in,*) (s_upper(i),i=1,m)

READ (nag_std_in,*) (x(i),i=1,n)

! Solve the problem

CALL nag_nlp_sparse_sol(x,s,obj_f,obj_fun=obj_fun, &

num_nlin_con=num_nlin_con,num_nlin_obj_var=num_nlin_obj_var, &

num_nlin_jac_var=num_nlin_jac_var,obj_row=obj_row,con_fun=con_fun,a=a, &

row_index=row_index,col_ptr=col_ptr,names=names,x_lower=x_lower, &

x_upper=x_upper,s_lower=s_lower,s_upper=s_upper)

END PROGRAM nag_nlp_sparse_ex01

2 Program Data

Example Program Data for nag_nlp_sparse_ex01

1.0E+25 1 1

1.0E+25 2 1

1.0E+25 3 1

1.0 5 1

-1.0 4 1

1.0E+25 1 2

1.0E+25 2 2

1.0E+25 3 2

-1.0 5 2

1.0 4 2

3.0 6 3

-1.0 1 3

-1.0 2 4

2.0 6 4 : End of a

-0.55 -0.55 0.0 0.0 : End of x_lower

0.55 0.55 1200.0 1200.0 : End of x_upper

-894.8 -894.8 -1294.8 -0.55 -0.55 -1.0E+25 : End of s_lower

-894.8 -894.8 -1294.8 1.0E+25 1.0E+25 1.0E+25 : End of s_upper

0.0 0.0 0.0 0.0 : End of x

3 Program Results

Example Program Results for nag_nlp_sparse_ex01

Parameters

Printing.

list................... .true. lt80_char.............. .true.

unit................... 6 major_print_level...... 10

minor_print_level...... 0

9.6.50 Module 9.6: nag nlp sparse [NP3506/4]

Optimization Example 1

Derivative approximation.

obj_deriv.............. .true. con_deriv.............. .true.

fwd_diff_int........... 5.48E-07 cent_diff_int.......... 6.69E-05

Derivative verification.

cheap_test............. .true.

Frequencies.

check_freq............. 60 expand_freq............ 10000

fac_freq............... 50

QP subproblems.

scale_tol.............. 9.00E-01 minor_feas_tol......... 1.49E-08

scale_opt.............. 1 minor_opt_tol.......... 1.49E-08

part_price............. 1 crash_tol.............. 1.00E-01

pivot_tol.............. 3.25E-11 elastic_wt............. 1.00E+02

crash_opt.............. 0

The SQP method.

minimize............... .true. superbasics_lim........ 4

num_nlin_obj_var....... 4 major_opt_tol.......... 1.49E-08

func_prec.............. 3.00E-13 unbounded_step_size.... 1.00E+20

deriv_linesearch....... .true. unbounded_obj.......... 1.00E+15

major_step_lim......... 2.00E+00 major_iter_lim......... 1000

linesearch_tol......... 9.00E-01 minor_iter_lim......... 500

inf_bound.............. 1.00E+20 iter_lim............... 10000

Hessian approximation.

hess_lim_mem........... .true. hess_upd............... 20

hess_freq.............. 99999999

Nonlinear constraints.

num_nlin_con........... 3 major_feas_tol......... 1.49E-08

num_nlin_jac_var....... 2 violation_lim.......... 1.00E+01

Miscellaneous.

variables.............. 4 linear constraints..... 3

nonlinear variables.... 4 linear variables....... 0

lu_den_tol............. 6.00E-01 lu_fac_tol............. 5.00E+00

lu_sing_tol............ 3.25E-11 lu_upd_tol............. 5.00E+00

eps (machine precision) 2.22E-16 cold_start............. .true.

feas_exit.............. .false. obj_row................ 6

work_factor............ 3.00E+00

Itn 0 -- scale_opt reduced from 1 to 0.

Itn 0 -- Feasible linear rows.

Itn 0 -- Norm(x-x0) minimized. Sum of infeasibilities = 0.00E+00.

con_fun sets 6 out of 6 constraint gradients.

obj_fun sets 4 out of 4 objective gradients.

Cheap test on con_fun...

The Jacobian seems to be OK.

The largest discrepancy was 5.83E-08 in constraint 3.

Cheap test on obj_fun...

The objective gradients seem to be OK.

[NP3506/4] Module 9.6: nag nlp sparse 9.6.51

Example 1 Optimization

Gradient projected in two directions 0.00000000000E+00 0.00000000000E+00

Difference approximations 3.03146585985E-19 7.81305633981E-21

Itn 0 -- All-slack basis B = I selected.

Itn 7 -- Large multipliers.

Elastic mode started with weight = 2.0E+02.

Maj Mnr Step Merit Function Feasibl Optimal Cond Hz PD

0 12 0.0E+00 3.199952E+05 1.7E+00 8.0E-01 2.1E+06 FF R i

1 2 1.0E+00 2.463016E+05 1.2E+00 3.2E+03 4.5E+00 FF s

2 1 1.0E+00 1.001802E+04 3.3E-02 9.2E+01 4.5E+00 FF

3 1 1.0E+00 5.253418E+03 6.6E-04 2.5E+01 4.8E+00 FF

4 1 1.0E+00 5.239444E+03 2.0E-06 2.8E+01 1.0E+02 FF

5 1 1.0E+00 5.126208E+03 6.0E-04 5.9E-01 1.1E+02 FF

6 1 1.0E+00 5.126498E+03 4.7E-07 2.9E-02 1.0E+02 FF

7 1 1.0E+00 5.126498E+03 5.9E-10 1.5E-03 1.1E+02 TF

8 1 1.0E+00 5.126498E+03 1.2E-12 7.6E-09 1.1E+02 TT

Exit from nag_nlp_sparse_sol after 8 major iterations,

21 minor iterations.

Variable State Value Lower Bound Upper Bound Lagr Mult Residual

Varble 1 BS 0.118876 -0.55000 0.55000 -1.2529E-07 0.4311

Varble 2 BS -0.396234 -0.55000 0.55000 1.9243E-08 0.1538

Varble 3 BS 679.945 . 1200.0 1.7001E-10 520.1

Varble 4 SBS 1026.07 . 1200.0 -2.1918E-10 173.9

Constrnt State Value Lower Bound Upper Bound Lagr Mult Residual

NlnCon 1 EQ -894.800 -894.80 -894.80 -4.387 3.3646E-09

NlnCon 2 EQ -894.800 -894.80 -894.80 -4.106 6.0049E-10

NlnCon 3 EQ -1294.80 -1294.8 -1294.8 -5.463 3.3556E-09

LinCon 1 BS -0.515110 -0.55000 None . 3.4890E-02

LinCon 2 BS 0.515110 -0.55000 None . 1.065

Free Row BS 4091.97 None None -1.000 4092.

Optimal solution found.

Final objective value = 5126.498

9.6.52 Module 9.6: nag nlp sparse [NP3506/4]

Optimization Example 2

Example 2: Nonlinear Programming Problem

(with bounds but no general constraints)

This is Problem 45 from Hock and Schittkowski [10] and involves the minimization of the nonlinear
function

1

120
× x1x2x3x4x5

subject to the bounds

0 ≤ x1 ≤ 1
0 ≤ x2 ≤ 2
0 ≤ x3 ≤ 3
0 ≤ x4 ≤ 4
0 ≤ x5 ≤ 5.

The initial point, which is infeasible, is

x(0) = (2, 2, 2, 2, 2)T .

The optimal solution is

x∗ = (1, 2, 3, 4, 5)T ,

and F (x∗) = 1. All the bounds are active at the solution.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

MODULE nlp_sparse_ex02_mod

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Default Accessibility ..

PUBLIC

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

CONTAINS

SUBROUTINE obj_fun(first_call,final_call,x,continue,finish,obj_f, &

obj_grad,i_comm,r_comm)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC PRESENT, PRODUCT

! .. Scalar Arguments ..

REAL (wp), INTENT (OUT) :: obj_f

LOGICAL, INTENT (INOUT) :: continue, finish

LOGICAL, INTENT (IN) :: final_call, first_call

! .. Array Arguments ..

INTEGER, OPTIONAL, INTENT (IN) :: i_comm(:)

REAL (wp), OPTIONAL, INTENT (INOUT) :: obj_grad(:)

REAL (wp), OPTIONAL, INTENT (IN) :: r_comm(:)

REAL (wp), INTENT (IN) :: x(:)

! .. Local Scalars ..

REAL (wp) :: sixty = 60.0_wp

REAL (wp) :: two = 2.0_wp

[NP3506/4] Module 9.6: nag nlp sparse 9.6.53

Example 2 Optimization

! .. Executable Statements ..

obj_f = two - PRODUCT(x)/(two*sixty)

IF (PRESENT(obj_grad)) THEN

obj_grad(1) = -PRODUCT(x(2:5))

obj_grad(2) = -x(1)*PRODUCT(x(3:5))

obj_grad(3) = -x(1)*x(2)*x(4)*x(5)

obj_grad(4) = -x(5)*PRODUCT(x(1:3))

obj_grad(5) = -PRODUCT(x(1:4))

obj_grad = obj_grad/(two*sixty)

END IF

END SUBROUTINE obj_fun

END MODULE nlp_sparse_ex02_mod

PROGRAM nag_nlp_sparse_ex02

! Example Program Text for nag_nlp_sparse

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nlp_sparse_ex02_mod, ONLY : obj_fun, wp

USE nag_nlp_sparse, ONLY : nag_nlp_sparse_sol, &

nag_nlp_sparse_cntrl_init, nag_nlp_sparse_cntrl_wp => &

nag_nlp_sparse_cntrl_dp

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Parameters ..

INTEGER, PARAMETER :: m = 1, n = 5

INTEGER, PARAMETER :: nname = n + m

INTEGER, PARAMETER :: num_nlin_obj_var = 5

! .. Local Scalars ..

INTEGER :: i

REAL (wp) :: obj_f

TYPE (nag_nlp_sparse_cntrl_wp) :: control

! .. Local Arrays ..

REAL (wp) :: s(m), x(n), x_lower(n), x_upper(n)

CHARACTER (8) :: names(n+m) = (/ ’Varble 1’, ’Varble 2’, ’Varble 3’, &

’Varble 4’, ’Varble 5’, ’DummyRow’/)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_nlp_sparse_ex02’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) (x_lower(i),i=1,n)

READ (nag_std_in,*) (x_upper(i),i=1,n)

READ (nag_std_in,*) (x(i),i=1,n)

! Initialize control structure and set required control parameters

CALL nag_nlp_sparse_cntrl_init(control)

control%major_iter_lim = 25

control%minor_iter_lim = 10

control%major_step_lim = 5.0_wp

! Solve the problem

CALL nag_nlp_sparse_sol(x,s,obj_f,obj_fun=obj_fun, &

num_nlin_obj_var=num_nlin_obj_var,names=names,x_lower=x_lower, &

9.6.54 Module 9.6: nag nlp sparse [NP3506/4]

Optimization Example 2

x_upper=x_upper,control=control)

END PROGRAM nag_nlp_sparse_ex02

2 Program Data

Example Program Data for nag_nlp_sparse_ex02

0.0 0.0 0.0 0.0 0.0 : End of x_lower

1.0 2.0 3.0 4.0 5.0 : End of x_upper

2.0 2.0 2.0 2.0 2.0 : End of x

3 Program Results

Example Program Results for nag_nlp_sparse_ex02

Parameters

Printing.

list................... .true. lt80_char.............. .true.

unit................... 6 major_print_level...... 10

minor_print_level...... 0

Derivative approximation.

obj_deriv.............. .true. con_deriv.............. .true.

fwd_diff_int........... 5.48E-07 cent_diff_int.......... 6.69E-05

Derivative verification.

cheap_test............. .true.

Frequencies.

check_freq............. 60 expand_freq............ 10000

fac_freq............... 100

QP subproblems.

scale_tol.............. 9.00E-01 minor_feas_tol......... 1.49E-08

scale_opt.............. 2 minor_opt_tol.......... 1.49E-08

part_price............. 10 crash_tol.............. 1.00E-01

pivot_tol.............. 3.25E-11 elastic_wt............. 1.00E+00

crash_opt.............. 3

The SQP method.

minimize............... .true. superbasics_lim........ 5

num_nlin_obj_var....... 5 major_opt_tol.......... 1.49E-08

func_prec.............. 3.00E-13 unbounded_step_size.... 1.00E+20

deriv_linesearch....... .true. unbounded_obj.......... 1.00E+15

major_step_lim......... 5.00E+00 major_iter_lim......... 25

linesearch_tol......... 9.00E-01 minor_iter_lim......... 10

inf_bound.............. 1.00E+20 iter_lim............... 10000

Hessian approximation.

hess_lim_mem........... .true. hess_upd............... 20

hess_freq.............. 99999999

Nonlinear constraints.

num_nlin_con........... 0 num_nlin_jac_var....... 0

Miscellaneous.

variables.............. 5 linear constraints..... 1

nonlinear variables.... 5 linear variables....... 0

lu_den_tol............. 6.00E-01 lu_fac_tol............. 1.00E+02

[NP3506/4] Module 9.6: nag nlp sparse 9.6.55

Example 2 Optimization

lu_sing_tol............ 3.25E-11 lu_upd_tol............. 1.00E+01

eps (machine precision) 2.22E-16 cold_start............. .true.

feas_exit.............. .false. obj_row................ -1

work_factor............ 3.00E+00

Itn 0 -- part_price reduced from 10 to 1.

Itn 0 -- Feasible linear rows.

Itn 0 -- Norm(x-x0) minimized. Sum of infeasibilities = 0.00E+00.

obj_fun sets 5 out of 5 objective gradients.

Cheap test on obj_fun...

The objective gradients seem to be OK.

Gradient projected in two directions 1.16666666667E-01 -3.46944695195E-18

Difference approximations 1.16666602172E-01 1.46827081870E-08

Maj Mnr Step Objective Optimal Cond Hz PD

0 3 0.0E+00 1.866667E+00 3.3E-02 1.0E+00 TF R

1 2 1.5E+01 1.550000E+00 7.5E-02 1.0E+00 TF n

2 2 6.7E+00 1.200000E+00 1.0E-01 1.0E+00 TF n

3 1 5.0E+00 1.000000E+00 0.0E+00 1.0E+00 TT n

Exit from nag_nlp_sparse_sol after 3 major iterations,

8 minor iterations.

Variable State Value Lower Bound Upper Bound Lagr Mult Residual

Varble 1 UL 1.00000 . 1.0000 -1.000 .

Varble 2 UL 2.00000 . 2.0000 -0.5000 .

Varble 3 UL 3.00000 . 3.0000 -0.3333 .

Varble 4 UL 4.00000 . 4.0000 -0.2500 .

Varble 5 UL 5.00000 . 5.0000 -0.2000 .

Constrnt State Value Lower Bound Upper Bound Lagr Mult Residual

DummyRow BS 0.00000 None None -1.000 .

Optimal solution found.

Final objective value = 1.000000

9.6.56 Module 9.6: nag nlp sparse [NP3506/4]

Optimization Additional Examples

Additional Examples

Not all example programs supplied with NAG fl90 appear in full in this module document. The following
additional examples, associated with this module, are available.

nag nlp sparse ex03

Solves the nonlinear programming problem described in Section 1 of this module document.

[NP3506/4] Module 9.6: nag nlp sparse 9.6.57

Additional Examples Optimization

9.6.58 Module 9.6: nag nlp sparse [NP3506/4]

Optimization Mathematical Background

Mathematical Background

1 Overview

nag nlp sparse sol is based on the SNOPT package described in Gill et al. [1], which in turn utilizes
routines from the MINOS package (written in Fortran 77; see Murtagh and Saunders [11]).

At a solution of (1), some of the constraints will be active, i.e., satisfied exactly. Let

r(x) =





x
F (x)
Gx





and G denote the set of indices of r(x) corresponding to active constraints at an arbitrary point x. Let
r′j(x) denote the usual derivative of rj(x), which is the row vector of first partial derivatives of rj(x) (see
Ortega and Rheinboldt [12]). The vector r′j(x) comprises the jth row of r′(x) so that

r′(x) =





I
J(x)
G



 ,

where J(x) is the Jacobian of F (x).

A point x is a first-order Kuhn–Karesh–Tucker (KKT) point for (1) (see, e.g., Powell [13]) if the following
conditions hold:

(a) x is feasible;

(b) there exists a vector λ (the Lagrange multiplier vector for the bound and general constraints) such
that

g(x) = r′(x)Tλ = (I J(x)T GT)λ, (4)

where g is the gradient of f evaluated at x;

(c) the Lagrange multiplier λj associated with the jth constraint satisfies λj = 0 if lj < rj(x) < uj ;
λj ≥ 0 if lj = rj(x); λj ≤ 0 if rj(x) = uj ; and λj can have any value if lj = uj .

An equivalent statement of the condition (4) is

ZT g(x) = 0,

where Z is a matrix defined as follows. Consider the set N of vectors orthogonal to the gradients of the
active constraints, i.e.,

N =
{

z | r′j(x)z = 0 for all j ∈ G
}

.

The columns of Z may then be taken as any basis for the vector space N . The vector ZT g is termed
the reduced gradient of f at x. Certain additional conditions must be satisfied in order for a first-order
KKT point to be a solution of (1) (see, e.g., Powell [13]).

The basic structure of nag nlp sparse sol involves major and minor iterations. The major iterations
generate a sequence of iterates {xk} that satisfy the linear constraints and converge to a point x∗ that
satisfies the first-order KKT optimality conditions. At each iterate a QP subproblem is used to generate
a search direction towards the next iterate (xk+1). The constraints of the subproblem are formed from
the linear constraints Gx− sL = 0 and the nonlinear constraint linearization

F (xk) + F ′(xk)(x− xk)− sN = 0,

where F ′(xk) denotes the Jacobian matrix , whose rows are the first partial derivatives of F (x) evaluated
at the point xk. The QP constraints therefore comprise the m linear constraints

F ′(xk)x − sN = −F (xk) + F ′(xk)xk,
Gx − sL = 0,

[NP3506/4] Module 9.6: nag nlp sparse 9.6.59

Mathematical Background Optimization

where x and s = (sN , sL)
T are bounded above and below by u and l as before. If the m by n matrix A

and m element vector b are defined as

A =

(

F ′(xk)
G

)

and b =

(

−F (xk) + F ′(xk)xk

0

)

,

then the QP subproblem can be written as

minimize
x,s

q(x) subject to Ax− s = b, l ≤
{

x
s

}

≤ u, (5)

where q(x) is a quadratic approximation to a modified Lagrangian function (see Gill et al. [1]).

The linear constraint matrix A is stored in the arrays a, row index and col ptr (see Section 3.2). This
allows you to specify the sparsity pattern of non-zero elements in F ′(x) and G, and identify any non-zero
elements that remain constant throughout the minimization.

Solving the QP subproblem is itself an iterative procedure, with the minor iterations of an SQP method
being the iterations of the QP method. At each minor iteration, the constraints Ax − s = b are
(conceptually) partitioned into the form

BxB + SxS +NxN = b,

where the basis matrix B is square and non-singular. The elements of xB , xS and xN are called the
basic, superbasic and nonbasic variables respectively; they are a permutation of the elements of x and
s. At a QP solution, the basic and superbasic variables will lie somewhere between their bounds, while
the nonbasic variables will be equal to one of their upper or lower bounds. At each minor iteration, xS

is regarded as a set of independent variables that are free to move in any desired direction, namely one
that will improve the value of the QP objective function q(x) or sum of infeasibilities (as appropriate).
The basic variables are then adjusted in order to ensure that (x, s) continues to satisfy Ax− s = b. The
number of superbasic variables (nS say) therefore indicates the number of degrees of freedom remaining
after the constraints have been satisfied. In broad terms, nS is a measure of how nonlinear the problem
is. In particular, nS will always be zero if there are no nonlinear constraints in (1) and f(x) is linear.

If it appears that no improvement can be made with the current definition of B, S and N a nonbasic
variable is selected to be added to S and the process is repeated with the value of nS increased by one.
At all stages, if a basic or superbasic variable encounters one of its bounds, the variable is made nonbasic
and the value of nS decreased by one.

Associated with each of the m equality constraints Ax − s = b is a dual variable πi. Similarly, each
variable in (x, s) has an associated reduced gradient dj (also known as a reduced cost). The reduced
gradients for the variables x are the quantities g − ATπ, where g is the gradient of the QP objective
function q(x); and the reduced gradients for the slack variables s are the dual variables π. The QP
subproblem (5) is optimal if dj ≥ 0 for all nonbasic variables at their lower bounds, dj ≤ 0 for all nonbasic
variables at their upper bounds and dj = 0 for other variables (including superbasics). In practice, an
approximate QP solution is found by slightly relaxing these conditions on dj (see the description of
control%minor opt tol in the type definition for nag nlp sparse cntrl wp).

After a QP subproblem has been solved, new estimates of the solution to (1) are computed using a
linesearch on the augmented Lagrangian merit function

M(x, s, π) = f(x)− πT (F (x)− sN) + 1
2 (F (x)− sN)TD(F (x)− sN), (6)

where D is a diagonal matrix of penalty parameters. If (xk, sk, πk) denotes the current estimate of
the solution and (x̂, ŝ, π̂) denotes the optimal QP solution, the linesearch determines a step αk (where
0 < αk ≤ 1) such that the new point





xk+1

sk+1

πk+1



 =





xk

sk

πk



 + αk





x̂k − xk

ŝk − sk

π̂k − πk





produces a sufficient decrease in the merit function (6). When necessary, the penalties in D are increased
by the minimum-norm perturbation that ensures descent forM (see Gill et al. [2]). As in nag nlp sol,
sN is adjusted to minimize the merit function as a function of s prior to the solution of the QP
subproblem. Further details can be found in Eldersveld [7] and Gill et al. [3].

9.6.60 Module 9.6: nag nlp sparse [NP3506/4]

Optimization Mathematical Background

2 Treatment of Constraint Infeasibilities

nag nlp sparse sol makes explicit allowance for infeasible constraints. Infeasible linear constraints are
detected first by solving a problem of the form

minimize
x,v,w

eT (v + w) subject to l ≤
{

x
Gx− v + w

}

≤ u, v ≥ 0, w ≥ 0, (7)

where e = (1, 1, . . . , 1)T . This is equivalent to minimizing the sum of the general linear constraint
violations subject to the simple bounds. (In the linear programming literature, the approach is often
called elastic programming .)

If the linear constraints are infeasible (i.e., v 6= 0 or w 6= 0), the procedure terminates without computing
the nonlinear functions.

If the linear constraints are feasible, all subsequent iterates will satisfy the linear constraints. (Such a
strategy allows linear constraints to be used to define a region in which f(x) and F (x) can be safely
evaluated.) The procedure then proceeds to solve (1) as given, using search directions obtained from
a sequence of QP subproblems (5). Each QP subproblem minimizes a quadratic model of a certain
Lagrangian function subject to linearized constraints. An augmented Lagrangian merit function (6) is
reduced along each search direction to ensure convergence from any starting point.

The procedure enters ‘elastic’ mode if the QP subproblem proves to be infeasible or unbounded (or if
the dual variables π for the nonlinear constraints become ‘large’) by solving a problem of the form

minimize
x,v,w

f̄(x, v, w) subject to l ≤







x
F (x)− v + w

Gx







≤ u, v ≥ 0, w ≥ 0, (8)

where

f̄(x, v, w) = f(x) + γeT (v + w) (9)

is called a composite objective and γ is a non-negative parameter (the elastic weight). If γ is sufficiently
large, this is equivalent to minimizing the sum of the nonlinear constraint violations subject to the
linear constraints and bounds. A similar l1 formulation of (1) is fundamental to the Sl1QP algorithm of
Fletcher [8]. See also Conn [6].

[NP3506/4] Module 9.6: nag nlp sparse 9.6.61

References Optimization

References

[1] Gill P E, MurrayW and Saunders M A (1997) SNOPT: An SQP algorithm for large-scale constrained
optimization Numerical Analysis Report 97–2 Department of Mathematics, University of California,
San Diego

[2] Gill P E, Murray W, Saunders M A and Wright M H (1992) Some theoretical properties of an
augmented Lagrangian merit function Advances in Optimization and Parallel Computing (ed P M
Pardalos) North Holland 101–128

[3] Gill P E, Murray W, Saunders M A and Wright M H (1986) User’s guide for NPSOL (Version 4.0)
Report SOL 86-2 Department of Operations Research, Stanford University

[4] Gill P E, Murray W, Saunders M A and Wright M H (1989) A practical anti-cycling procedure for
linearly constrained optimization Math. Programming 45 437–474

[5] Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

[6] Conn A R (1973) Constrained optimization using a nondifferentiable penalty function SIAM J.
Numer. Anal. 10 760–779

[7] Eldersveld S K (1991) Large-scale sequential quadratic programming algorithms PhD Thesis
Department of Operations Research, Stanford University, Stanford

[8] Fletcher R (1984) An `1 penalty method for nonlinear constraints Numerical Optimization 1984 (ed
P T Boggs, R H Byrd and R B Schnabel) SIAM Philadelphia 26–40

[9] Fourer R (1982) Solving staircase linear programs by the simplex method Math. Prgramming 23
274–313

[10] Hock W and Schittkowski K (1981) Test Examples for Nonlinear Programming Codes. Lecture Notes
in Economics and Mathematical Systems 187 Springer-Verlag

[11] Murtagh B A and Saunders M A (1995) MINOS 5.4 User’s Guide Report SOL 83-20 Department
of Operations Research, Stanford University

[12] Ortega J M and Rheinboldt W C (1970) Iterative Solution of Nonlinear Equations in Several
Variables Academic Press

[13] Powell M J D (1974) Introduction to constrained optimization Numerical Methods for Constrained
Optimization (ed P E Gill and W Murray) Academic Press 1–28

9.6.62 Module 9.6: nag nlp sparse [NP3506/4]

