
Optimization Module Contents

Module 9.1: nag qp

Linear and Quadratic Programming

nag qp contains a procedure for solving general linear programming and quadratic
programming problems.

Contents

Introduction . 9.1.3

Procedures

nag qp sol . 9.1.5
Solves a linear or quadratic programming problem

nag qp cntrl init . 9.1.17
Initialization procedure for nag qp cntrl wp

Derived Types

nag qp cntrl wp . 9.1.19
Control parameters for nag qp sol

Examples

Example 1: Feasible point problem . 9.1.23

Example 2: Linear programming problem . 9.1.27

Example 3: Quadratic programming problem (explicit H) . 9.1.31

Example 4: Quadratic programming problem (implicit H) . 9.1.35

Mathematical Background . 9.1.39

References . 9.1.43

[NP3245/3/pdf] Module 9.1: nag qp 9.1.1

Module Contents Optimization

9.1.2 Module 9.1: nag qp [NP3245/3/pdf]

Optimization Module Introduction

Introduction
This module contains two procedures and a derived type as follows.

• nag qp sol computes a constrained minimum of a linear or quadratic objective function subject
to a set of general linear constraints and/or bounds on the variables. It may also be used to find
a feasible point for a set of such constraints (in which case the objective function is omitted). It
treats all matrices as dense and hence is not intended for large sparse problems.

• nag qp cntrl init assigns default values to all the components of a structure of the derived type
nag qp cntrl wp.

• nag qp cntrl wp may be used to supply optional parameters to nag qp sol.

[NP3245/3/pdf] Module 9.1: nag qp 9.1.3

Module Introduction Optimization

9.1.4 Module 9.1: nag qp [NP3245/3/pdf]

Optimization nag qp sol

Procedure: nag qp sol

1 Description

nag qp sol is designed to solve a linear or quadratic programming problem — minimizing a linear or
quadratic function subject to constraints on the variables.

The problem is assumed to be stated in the following form:

minimize
x∈Rn

f(x) subject to l ≤
{

x
Ax

}
≤ u, (1)

where f(x) is the (linear or quadratic) objective function, and the constraints are grouped as
follows:

n simple bounds on the variables x;
nL linear constraints, defined by the nL by n constant matrix A.

You must supply an initial estimate of the solution to (1).

It is possible to specify f(x) in a variety of ways depending upon the particular problem to be solved.
The available forms for f(x) are listed below, where the prefixes F, L, S and T stand for ‘feasible’
(point), ‘linear’ (programming), ‘symmetric’ (quadratic programming) and ‘trapezoidal’ (quadratic
programming) respectively, and c is an n-element vector.

Problem type f(x) Vector c Matrix H

F Not applicable Not applicable Not applicable
L cTx May be zero Not applicable
S cTx + 1

2x
THx May be zero n by n symmetric

T cTx + 1
2x

THTHx May be zero m by n upper trapezoidal (m ≤ n)

There is no restriction on H or HTH apart from symmetry. If the quadratic function is convex, a
global minimum is found; otherwise, a local minimum is found. The default problem type is F, in which
the objective function is omitted and this procedure attempts to find a feasible point for the set of
constraints. Objective functions are selected by using the optional argument prob type (see Section
3.2).

The defining feature of a quadratic function f(x) is that the second-derivative matrix ∇2f(x) (the Hessian
matrix) is constant. For problems of type S, ∇2f(x) = H ; for problems of type T, ∇2f(x) = HTH ; and
for problems of type L, ∇2f(x) = 0. For problems of type S and T, you may supply H either explicitly
as a matrix (via the optional argument h; see Section 3.2), or implicitly in a procedure (via the optional
argument qp hx; see Section 3.2) that computes the product Hx or HTHx (as appropriate) for any given
vector x.

The simple bounds on the variables and the linear constraints are distinguished from one another for
reasons of computational efficiency (although the simple bounds could have been included in the definition
of the linear constraints). There may be no linear constraints, in which case the matrix A is empty
(nL = 0).

Upper bounds and/or lower bounds can be specified separately for the variables and constraints. An
equality constraint can be specified by setting li = ui. If certain bounds are not present, the associated
elements of l and u can be set to special values that will be treated as −∞ or +∞.

In general, a successful run of this procedure will indicate one of three situations: (i) a minimizer has
been found; (ii) the algorithm has terminated at a so-called dead-point ; or (iii) the problem has no
bounded solution. If a minimizer is found, and ∇2f(x) is positive definite or positive semi-definite, this
procedure will obtain a global minimizer; otherwise, the solution will be a local minimizer (which may or
may not be a global minimizer). A dead-point is a point at which the necessary conditions for optimality
are satisfied but the sufficient conditions are not. At such a point, a feasible direction of decrease may or
may not exist, so the point is not necessarily a local solution of the problem. Verification of optimality
in such instances requires further information, and is in general an NP-hard problem (see Pardalos and

[NP3245/3/pdf] Module 9.1: nag qp 9.1.5

nag qp sol Optimization

Schnitger [7]). Termination at a dead-point can occur only if ∇2f(x) is not positive definite. If ∇2f(x)
is positive semi-definite the dead-point will be a weak minimizer (i.e., with a unique optimal objective
value, but an infinite set of optimal x).

Several options are available for controlling the operation of this procedure, covering facilities such
as:

printed output, at the end of each iteration and at the final solution;
algorithmic parameters, such as tolerances and iteration limits.

These options are grouped together in the optional argument control, which is a structure of the derived
type nag qp cntrl wp.

The method used by this procedure is described in detail in the Mathematical Background section of
this module document. It is most efficient when many bounds or linear constraints are active at the
solution.

2 Usage

USE nag qp

CALL nag qp sol(x, obj f [, optional arguments])

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

n ≥ 1 — the number of variables
nL ≥ 0 — the number of linear constraints

3.1 Mandatory Arguments

x(n) — real(kind=wp), intent(inout)
Input: an initial estimate of the solution.
Output: the point at which this procedure terminated. If error%code = 0 or 101, x contains an
estimate of the solution.

obj f — real(kind=wp), intent(out)
Output: the value of the objective function at x if x is feasible, or the sum of infeasibilities at x
otherwise. If prob type = 'F' (the default; see Section 3.2) and x is feasible, obj f is set to zero.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

prob type — character(len=1), intent(in), optional
Input: specifies the type of objective function, f(x), to be minimized as follows.

9.1.6 Module 9.1: nag qp [NP3245/3/pdf]

Optimization nag qp sol

prob type f(x) Vector c Matrix H

'F' or 'f' Not applicable Not applicable Not applicable
'L' or 'l' cTx Must be supplied in c Not applicable
'S' or 's' cTx + 1

2x
THx May be zero; used if

supplied in c
n by n symmetric; may be
supplied either explicitly (in h)
or implicitly (via qp hx)

'T' or 't' cTx + 1
2x

THTHx May be zero; used if
supplied in c

m by n upper trapezoidal
(where m ≤ n); may be
supplied either explicitly (in h)
or implicitly (via qp hx)

Constraints: prob type = 'F', 'f', 'L', 'l', 'S', 's', 'T' or 't'.
Default: prob type = 'F'.

x lower(n) — real(kind=wp), intent(in), optional
x upper(n) — real(kind=wp), intent(in), optional

Input: the lower and upper bounds on all the variables. To specify a non-existent lower bound (i.e.,
lj = −∞), set x lower(j) ≤ −control%inf bound; to specify a non-existent upper bound (i.e.,
uj = +∞), set x upper(j) ≥ +control%inf bound (see the type definition for nag qp cntrl wp).
Constraints:

x lower(j) ≤ x upper(j) for j = 1, 2, . . . , n;
| β | < control%inf bound when x lower(j) = x upper(j) = β.

Default: x lower = −control%inf bound; x upper = +control%inf bound.

a(nL, n) — real(kind=wp), intent(in), optional
Input: the ith row of a must contain the coefficients of the ith linear constraint, for i = 1, 2, . . . , nL.
Default: the problem contains no linear constraints.

ax lower(nL) — real(kind=wp), intent(in), optional
ax upper(nL) — real(kind=wp), intent(in), optional

Input: the lower and upper bounds on all the linear constraints. To specify a non-existent lower
bound (i.e., lj = −∞), set ax lower(j) ≤ −control%inf bound; to specify a non-existent upper
bound (i.e., uj = +∞), set ax upper(j) ≥ +control%inf bound (see the type definition for
nag qp cntrl wp).
Constraints:

ax lower and ax upper must not be present unless a is present;
ax lower(j) ≤ ax upper(j) for j = 1, 2, . . . , nL;
| β | < control%inf bound when ax lower(j) = ax upper(j) = β.

Default: ax lower = −control%inf bound; ax upper = +control%inf bound.

c(n) — real(kind=wp), intent(in), optional
Input: the coefficients of the explicit linear term, c, of the objective function.
Constraints: if prob type = 'L', c must be present. If prob type = 'F' (the default), c must not
be present.
Default: the objective function does not contain an explicit linear term.

[NP3245/3/pdf] Module 9.1: nag qp 9.1.7

nag qp sol Optimization

h(nH , n) — real(kind=wp), intent(in), optional
Input: h may be used to store the quadratic term H of the objective function if desired. In some
cases, you need not use h to store H explicitly (see the description of the optional procedure
qp hx).

If prob type = 'S', h must contain the upper triangle of the nH (= n) by n symmetric
Hessian matrix. Elements of the array below the diagonal are not referenced.
If prob type = 'T', h must contain an nH (= m) by n upper trapezoidal factor of the Hessian
matrix. The factor need not be of full rank, i.e., some of the diagonal elements may be zero.
However, as a general rule, the larger the dimension of the leading non-singular sub-matrix of
H , the fewer iterations will be required. Elements of the array outside the upper trapezoidal
part are not referenced.

Constraints: if prob type = 'S' or 'T', either h or qp hx must be present. If prob type = 'F'
(the default) or 'L', h must not be present.
Default: the objective function does not contain an explicit quadratic term unless qp hx is present.

qp hx — subroutine, optional
The procedure qp hx may be used to calculate either the product of H and a vector x if prob type
= 'S', or the product of HTH and a vector x if prob type = 'T'.

Its specification is:

subroutine qp hx(col, x, hx)

integer, intent(in) :: col

Input: specifies whether or not the vector x is a column of the identity matrix.
If col = j > 0, then the vector x is the jth column of the identity matrix, and hence
Hx or HTHx is the jth column of H or HTH respectively, which may in some cases
require very little computation and qp hx may be coded to take advantage of this.
However, special code is not necessary because x is always stored explicitly in the
array x.
If col = 0, x has no special form.

real(kind=wp), intent(in) :: x(:)
Shape: x has shape (n).
Input: the vector x.

real(kind=wp), intent(inout) :: hx(:)
Shape: hx has shape (n).
Input: the zero vector.
Output: the product Hx if prob type = 'S' or HTHx if prob type = 'T'.

Constraints: if prob type = 'S' or 'T', either qp hx or h must be present. If prob type = 'F'
(the default) or 'L', qp hx must not be present.
Default: the objective function does not contain an explicit quadratic term unless h is present.

cold start — logical, intent(in), optional
Input: specifies how the initial working set is chosen.

With a cold start (i.e., cold start = .true.), this procedure chooses the initial working set
based on the values of the variables and constraints at the initial point. Broadly speaking, the
initial working set will include equality constraints and bounds or inequality constraints that
violate or ‘nearly’ satisfy their bounds (to within control%crash tol; see the type definition
for nag qp cntrl wp).

9.1.8 Module 9.1: nag qp [NP3245/3/pdf]

Optimization nag qp sol

With a warm start (i.e., cold start = .false.), one or both of the arrays x state and
ax state must be supplied and initialized. This procedure will override the contents of these
arrays if necessary, so that a poor choice of the working set will not cause a fatal error. For
instance, any elements of x state or ax state which are set to −2, −1 or 4 will be reset
to zero. A warm start will be advantageous if a good estimate of the initial working set is
available, for example when this procedure is called repeatedly to solve related problems.

Default: cold start = .true..

x state(n) — integer, intent(inout), optional
Input: if cold start = .true. (the default), x state need not be initialized.

If cold start = .false., x state specifies the status of the upper and lower bounds on the
variables at the start of the feasibility phase. Possible values for x state(j) (also used by
ax state) are as follows:

x state(j) Meaning
0 The corresponding constraint should not be in the initial working set.
1 The constraint should be in the initial working set at its lower bound.
2 The constraint should be in the initial working set at its upper bound.
3 The constraint should be in the initial working set as an equality. This value

must not be specified unless the corresponding lower and upper bounds are
equal.

The values −2, −1 and 4 are also acceptable but will be reset to zero by this procedure, which also
adjusts (if necessary) the values supplied in x to be consistent with x state. Note that x state
already contains satisfactory information if it was present in a previous call to this procedure with
the same value of n. (See also the description of cold start.)
Constraints: −2 ≤ x state(j) ≤ 4, for j = 1, 2, . . . , n. If cold start = .false., at least one of
x state and ax state must be present.
Output: the status of the bound constraints in the working set at the point returned in x. The
significance of each possible value of x state(j) (also used by ax state) is as follows:

x state(j) Meaning
−2 This constraint violates its lower bound by more than the feasibility tolerance.
−1 This constraint violates its upper bound by more than the feasibility tolerance.

0 This constraint is satisfied to within the feasibility tolerance, but is not in the
working set.

1 This constraint is included in the working set at its lower bound.
2 This constraint is included in the working set at its upper bound.
3 This constraint is included in the working set as an equality. This can only occur

when the corresponding upper and lower bounds are equal.
4 This corresponds to optimality being declared with x(j) being temporarily fixed at

its current value. This can only occur when error%code = 101 on exit.
Default: if cold start = .false., x state = 0.

ax state(nL) — integer, intent(inout), optional
Input: if cold start = .true. (the default), ax state need not be initialized.

If cold start = .false., ax state specifies the status of the upper and lower bounds on the
linear constraints at the start of the feasibility phase. Possible values for ax state(j) (also
used by x state) are as follows:

ax state(j) Meaning
0 The corresponding constraint should not be in the initial working set.
1 The constraint should be in the initial working set at its lower bound.
2 The constraint should be in the initial working set at its upper bound.
3 The constraint should be in the initial working set as an equality. This value

must not be specified unless the corresponding lower and upper bounds are
equal.

[NP3245/3/pdf] Module 9.1: nag qp 9.1.9

nag qp sol Optimization

The values −2,−1 and 4 are also acceptable but will be reset to zero by this procedure, which also
adjusts (if necessary) the values supplied in x to be consistent with ax state. Note that ax state
already contains satisfactory information if it was present in a previous call to this procedure with
the same value of nL. (See also the description of cold start.)
Constraints: ax state must not be present unless a is present and −2 ≤ ax state(j) ≤ 4, for
j = 1, 2, . . . , nL. If cold start = .false., at least one of ax state and x state must be present.
Output: the status of the linear constraints in the working set at the point returned in x. The
significance of each possible value of ax state(j) (also used by x state) is as follows:

ax state(j) Meaning
−2 This constraint violates its lower bound by more than the feasibility tolerance.
−1 This constraint violates its upper bound by more than the feasibility tolerance.

0 This constraint is satisfied to within the feasibility tolerance, but is not in the
working set.

1 This constraint is included in the working set at its lower bound.
2 This constraint is included in the working set at its upper bound.
3 This constraint is included in the working set as an equality. This can only occur

when the corresponding upper and lower bounds are equal.
Default: if cold start = .false., ax state = 0.

x lambda(n) — real(kind=wp), intent(out), optional
Output: the values of the Lagrange multipliers for the bound constraints on the variables with
respect to the current working set. If x state(j) = 0, (i.e., constraint j is not in the working
set), x lambda(j) is zero. If x is optimal, x lambda(j) should be non-negative if x state(j) = 1,
non-positive if x state(j) = 2 and zero if x state(j) = 4.

ax lambda(nL) — real(kind=wp), intent(out), optional
Output: the values of the Lagrange multipliers for the linear constraints with respect to the current
working set. If ax state(j) = 0, (i.e., constraint j is not in the working set), ax lambda(j) is zero.
If x is optimal, ax lambda(j) should be non-negative if ax state(j) = 1, non-positive if ax state(j)
= 2.
Constraints: ax lambda must not be present unless a is present.

iter — integer, intent(out), optional
Output: the total number of iterations performed.

ax(nL) — real(kind=wp), intent(out), optional
Output: the final values of the linear constraints Ax.
Constraints: ax must not be present unless a is present.

control — type(nag qp cntrl wp), intent(in), optional
Input: a structure containing scalar components; these are used to alter the default values of
those parameters which control the behaviour of the algorithm and level of printed output.
The initialization of this structure and its use is described in the procedure document for
nag qp cntrl init.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

9.1.10 Module 9.1: nag qp [NP3245/3/pdf]

Optimization nag qp sol

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

304 Invalid presence of an optional argument.

305 Invalid absence of an optional argument.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 The solution appears to be unbounded, i.e., the objective function is not bounded
below in the feasible region.

This occurs if a step larger than control%inf bound (default value = 1020; see the
type definition for nag qp cntrl wp) would have to be taken in order to continue the
algorithm, or the next step would result in an element of x having magnitude larger
than control%inf step (default value = max(control%inf bound, 1020)).

202 No feasible point was found, i.e., it was not possible to satisfy all the constraints to
within the feasibility tolerance.

In this case, the constraint violations at the final x will reveal a value of the tolerance
for which a feasible point will exist, for example when the feasibility tolerance for
each violated constraint exceeds its Slack (see Section 7) at the final point. The
modified problem (with an altered feasibility tolerance) may then be solved using
cold start = .false. (see Section 3.2). You should also check that there are no
constraint redundancies. If the data for the constraints are accurate only to the
absolute precision σ, you should ensure that the value of control%feas tol (default
value = SQRT(EPSILON(1.0 wp)); see the type definition for nag qp cntrl wp) is
greater than σ. For example, if all the elements of A are of order unity and are
accurate only to three decimal places, then control%feas tol should be at least
10−3.

203 The reduced Hessian exceeds its assigned dimension.

The algorithm needed to expand the reduced Hessian when it was already at its
maximum dimension, as specified by control%max deg free (default value = n or
SIZE(h,1); see the type definition for nag qp cntrl wp).

The value of control%max deg free is too small. Rerun this procedure with a larger
value (possibly using cold start = .false. (see Section 3.2) to specify the initial
working set).

Warnings (error%level = 1):

error%code Description

101 The iterations were terminated at a dead-point.

The necessary conditions for optimality are satisfied but the sufficient conditions are
not. (The reduced gradient is negligible, the Lagrange multipliers are optimal, but HR

is singular or there are some very small multipliers.) If ∇2f(x) is not positive definite,
x is not necessarily a local solution of the problem and verification of optimality

[NP3245/3/pdf] Module 9.1: nag qp 9.1.11

nag qp sol Optimization

requires further information. If ∇2f(x) is positive semi-definite or prob type = 'L'
(see Section 3.2), x gives the global minimum value of the objective function, but the
final x is not unique.

102 The limiting number of iterations was reached before normal termination occurred.

The values of control%feas phase iter lim (default value = max(50, 5 ×
(n + nL)); see the type definition for nag qp cntrl wp) and (if appropriate)
control%opt phase iter lim (default value = max(50, 5 × (n + nL)) may be too
small. If the method appears to be making progress (e.g., the objective function
is being satisfactorily reduced), either increase the iterations limit and rerun this
procedure or, alternatively, rerun this procedure using cold start = .false. (see
Section 3.2) to specify the initial working set.

5 Examples of Usage

Complete examples of the use of this procedure appear in Examples 1 to 4 of this module document.

Assume that all relevant arguments have been declared correctly as described in Section 3, and that
input and input/output arguments have been appropriately initialized. The following example illustrates
the use of the optional arguments prob type, c, x lower, a, ax upper and control in order to solve the
linear programming (LP) problem

minimize cTx subject to x ≥ l and Ax ≤ u.

The value of prob type specifies that an LP problem is being solved and control%print level = 1
suppresses all intermediate output. The remaining optional arguments are used to store the problem
data as follows. The matrix A is stored in the array a and the vectors c, l and u are stored in the arrays
c, x lower and ax upper respectively.

...

! Initialize control structure

CALL nag_qp_cntrl_init(control)

! Set required value

control%print_level = 1

CALL nag_qp(x, obj_f, prob_type=’L’, x_lower=x_lower, &

c=c, a=a, ax_upper=ax_upper, control=control)

...

6 Further Comments

6.1 Scaling

Sensible scaling of the problem is likely to reduce the number of iterations required and make the problem
less sensitive to perturbations in the data, thus improving the condition of the problem. In the absence
of better information it usually sensible to make the Euclidean lengths of each constraint of comparable
magnitude. See the Chapter Introduction and Gill et al. [6] for further information and advice.

6.2 Accuracy

This procedure implements a numerically stable active set strategy and returns solutions that are as
accurate as the condition of the problem warrants on the machine.

6.3 Overflow

If the printed output before the overflow error contains a warning about serious ill conditioning in the
working set when adding the jth constraint, it may be possible to avoid the difficulty by increasing
the magnitude of control%feas tol (default value = SQRT(EPSILON(1.0 wp)); see the type definition
for nag qp cntrl wp) and rerunning the program. If the message recurs even after this change, the
offending linearly dependent constraint (with index ‘j’) must be removed from the problem.

9.1.12 Module 9.1: nag qp [NP3245/3/pdf]

Optimization nag qp sol

7 Description of Printed Output

This section describes the intermediate and final printout produced by this procedure. The level of
printed output can be controlled via the components list and print level of the optional argument
control. For example, a listing of the parameter settings to be used by this procedure is output unless
control%list is set to .false.. Note also that the intermediate printout and the final printout are
produced only if control%print level ≥ 10 (the default).

When control%print level ≥ 5 and control%lt80 char = .true. (the default), the following line of
output (< 80 characters) is produced at every iteration. In all cases, the values of the quantities printed
are those in effect on completion of the given iteration.

Itn is the iteration count.
Step is the step taken along the computed search direction. If a constraint is added

during the current iteration, Step will be the step to the nearest constraint. When
prob type = 'L' (see Section 3.2), the step can be greater than one during the
optimality phase.

Ninf is the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.

Sinf/Objective is the value of the current objective function. If x is not feasible, Sinf gives
a weighted sum of the magnitudes of the constraint violations. If x is feasible,
Objective is the value of the objective function. The output line for the final
iteration of the feasibility phase (i.e., the first iteration for which Ninf is zero) will
give the value of the true objective at the first feasible point.

During the optimality phase, the value of the objective function will be non-
increasing. During the feasibility phase, the number of constraint infeasibilities will
not increase until either a feasible point is found, or the optimality of the multipliers
implies that no feasible point exists. Once optimal multipliers are obtained, the
number of infeasibilities can increase, but the sum of infeasibilities will either remain
constant or be reduced until the minimum sum of infeasibilities is found.

Norm Gz is ||ZT
RgFR||, the Euclidean norm of the reduced gradient with respect to ZR (see

Section 2 and Section 4 of the Mathematical Background section of this module
document). During the optimality phase, this norm will be approximately zero after
a unit step.

When control%print level ≥ 5 and control%lt80 char = .false., the following line of output (up
to 120 characters) is produced at every iteration. In all cases, the values of the quantities printed are
those in effect on completion of the given iteration. The following convention is used for numbering
the constraints: indices 1 through n refer to the bounds on the variables, and indices n + 1 through
n + nL refer to the linear constraints (if any). When the status of a constraint changes, the index of
the constraint is printed, along with the designation L (lower bound), U (upper bound), E (equality), F
(temporarily fixed variable) or A (artificial constraint).

Itn (as above)
Jdel is the index of the constraint deleted from the working set. If Jdel is zero, no

constraint was deleted.
Jadd is the index of the constraint added to the working set. If Jadd is zero, no constraint

was added.
Step (as above)
Ninf (as above)
Sinf/Objective (as above)
Bnd is the number of simple bound constraints in the current working set.
Lin is the number of linear constraints in the current working set.
Art is the number of artificial constraints in the working set, i.e., the number of columns

of ZA (see Section 4 of the Mathematical Background section of this module
document).

[NP3245/3/pdf] Module 9.1: nag qp 9.1.13

nag qp sol Optimization

Zr is the number of columns of ZR (see Section 2 of the Mathematical Background
section of this module document). Zr is the dimension of the sub-space in which the
objective function is currently being minimized. The value of Zr is the number
of variables minus the number of constraints in the working set; i.e., Zr = n
−(Bnd+Lin+Art).
The value of nZ , the number of columns of Z (see Section 2 of the Mathematical
Background section of this module document) can be calculated as nZ = n
−(Bnd+Lin). A zero value of nZ implies that x lies at a vertex of the feasible
region.

Norm Gz (as above)
NOpt is the number of non-optimal Lagrange multipliers at the current point. NOpt is not

printed if the current x is infeasible or no multipliers have been calculated. At a
minimizer, NOpt will be zero.

Min Lm is the value of the Lagrange multiplier associated with the deleted constraint. If Min
Lm is negative, a lower bound constraint has been deleted. If Min Lm is positive, an
upper bound constraint has been deleted. If no multipliers are calculated during a
given iteration, Min Lm will be zero.

Cond T is a lower bound on the condition number of the working set.
Cond Rz is a lower bound on the condition number of the triangular factor R (the Cholesky

factor of the current reduced Hessian; see Section 2 of the Mathematical Background
section of this module document). If prob type = 'L' (see Section 3.2), Cond Rz is
not printed.

Rzz is the last diagonal element µ of the matrix D associated with the RTDR
factorization of the reduced Hessian HR (see Section 3 of the Mathematical
Background section of this module document). Rzz is only printed if HR is not
positive definite (in which case µ 	= 1). If the printed value of Rzz is small in
absolute value, then HR is approximately singular. A negative value of Rzz implies
that the objective function has negative curvature on the current working set.

The final printout includes a listing of the status of every variable and constraint.

The following describes the printout for each variable. A full stop (.) is printed for any numerical value
that is zero.

Varbl gives the name (V) and index j, for j = 1, 2, . . . , n of the variable.
State gives the state of the variable (FR if neither bound is in the working set, EQ if a

fixed variable, LL if on its lower bound, UL if on its upper bound, TF if temporarily
fixed at its current value). If Value lies outside the upper or lower bounds by more
than control%feas tol (default value = SQRT(EPSILON(1.0 wp)); see the type
definition for nag qp cntrl wp), State will be ++ or -- respectively.
A key is sometimes printed before State to give additional information about the
state of a variable.

A Alternative optimum possible. The variable is active at one of its bounds, but
its Lagrange multiplier is essentially zero. This means that if the variable
were allowed to start moving away from its bound, there would be no change
to the objective function. The values of the other free variables might change,
giving a genuine alternative solution. However, if there are any degenerate
variables (labelled D), the actual change might prove to be zero, since one of
them would encounter a bound immediately. In either case the values of the
Lagrange multipliers might also change.

D Degenerate. The variable is free, but it is equal to (or very close to) one of its
bounds.

I Infeasible. The variable is currently violating one of its bounds by more than
control%feas tol.

9.1.14 Module 9.1: nag qp [NP3245/3/pdf]

Optimization nag qp sol

Value is the value of the variable at the final iterate.
Lower Bound is the lower bound specified for the variable. None indicates that x lower(j)

≤ −control%inf bound (default value = 1020; see the type definition for
nag qp cntrl wp).

Upper Bound is the upper bound specified for the variable. None indicates that x upper(j) ≥
control%inf bound.

Lagr Mult is the Lagrange multiplier for the associated bound. This will be zero if State is FR
unless x lower(j) ≤ −control%inf bound and x upper(j) ≥ control%inf bound,
in which case the entry will be blank. If x is optimal, the multiplier should be
non-negative if State is LL, and non-positive if State is UL.

Slack is the difference between the variable Value and the nearer of its (finite) bounds
x lower(j) and x upper(j). A blank entry indicates that the associated variable
is not bounded (i.e., x lower(j) ≤ −control%inf bound and x upper(j) ≥
control%inf bound).

The meaning of the printout for linear constraints is the same as that given above for variables,
with ‘variable’ replaced by ‘constraint’, x lower and x upper are replaced by ax lower and ax upper
respectively, and with the following change in the heading:

L Con gives the name (L) and index j, for j = 1, 2, . . . , nL of the linear constraint.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can be
interpreted as allowing the entry in the Slack column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to
this precision.

[NP3245/3/pdf] Module 9.1: nag qp 9.1.15

nag qp sol Optimization

9.1.16 Module 9.1: nag qp [NP3245/3/pdf]

Optimization nag qp cntrl init

Procedure: nag qp cntrl init

1 Description

nag qp cntrl init assigns default values to the components of a structure of the derived type
nag qp cntrl wp.

2 Usage

USE nag qp

CALL nag qp cntrl init(control)

3 Arguments

3.1 Mandatory Argument

control — type(nag qp cntrl wp), intent(out)
Output: a structure containing the default values of those parameters which control the behaviour
of the algorithm and level of printed output. A description of its components is given in the
document for the derived type nag qp cntrl wp.

4 Error Codes

None.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.

[NP3245/3/pdf] Module 9.1: nag qp 9.1.17

nag qp cntrl init Optimization

9.1.18 Module 9.1: nag qp [NP3245/3/pdf]

Optimization Type nag qp cntrl wp

Derived Type: nag qp cntrl wp

Note. The names of derived types containing real/complex components are precision dependent. For double precision the
name of this type is nag qp cntrl dp. For single precision the name is nag qp cntrl sp. Please read the Users’ Note for
your implementation to check which precisions are available.

1 Description

A structure of type nag qp cntrl wp is used to supply a number of optional parameters: these govern
the level of printed output and a number of tolerances and limits, which allow you to influence the
behaviour of the algorithm. If this structure is supplied then it must be initialized prior to use by calling
the procedure nag qp cntrl init, which assigns default values to all the structure components. You
may then assign required values to selected components of the structure (as appropriate).

2 Type Definition

The public components are listed below; components are grouped according to their function. A full
description of the purpose of each component is given in Section 3.

type nag qp cntrl wp
! Printing parameters
logical :: list
integer :: unit
logical :: lt80 char
integer :: print level
!
! Algorithm choice and tolerances
integer :: check freq
real(kind=wp) :: crash tol
integer :: expand freq
integer :: feas phase iter lim
real(kind=wp) :: feas tol
real(kind=wp) :: inf bound
real(kind=wp) :: inf step
integer :: max deg free
integer :: opt phase iter lim
real(kind=wp) :: rank tol
logical :: min sum of infeas

end type nag qp cntrl wp

3 Components

3.1 Printing Parameters

list — logical
Controls the printing of the parameter settings in the call to nag qp sol.

If list = .true., then the parameter settings are printed;
if list = .false., then the parameter settings are not printed.

Default: list = .true..

unit — integer
Specifies the Fortran unit number to which all output produced by nag qp sol is sent.

Default: unit = the default Fortran output unit number for your implementation.
Constraints: a valid output unit.

[NP3245/3/pdf] Module 9.1: nag qp 9.1.19

Type nag qp cntrl wp Optimization

lt80 char — logical
Controls the maximum length of each line of output produced by nag qp sol.

If lt80 char = .true., then the output will not exceed 80 characters per line;
if lt80 char = .false., then the output will not exceed 120 characters per line whenever
print level ≥ 5 (the default).

Default: lt80 char = .true..

print level — integer
Controls the amount of output produced by nag qp sol, as indicated below. A detailed description
of the printed output is given in Section 7 of the procedure document for nag qp sol.

If lt80 char = .true. (the default), the following output is sent to the Fortran unit number
defined by unit:

0 No output.
1 The final solution only.

≥ 5 One line of summary output (< 80 characters) for each iteration (no printout of the
final solution).

≥ 10 The final solution and one line of summary output for each iteration.

If lt80 char = .false., the following output is sent to the Fortran unit number defined by unit:

0 No output.
1 The final solution only.

≥ 5 One long line of output (up to 120 characters) for each iteration (no printout of the
final solution).

≥ 10 The final solution and one long line of output for each iteration.
≥ 20 At each iteration, the Lagrange multipliers, the variables x, the constraint values Ax

and the constraint status.
≥ 30 At each iteration, the diagonal elements of the upper triangular matrix T associated

with the TQ factorization (4) of the working set (see Section 2 of the Mathematical
Background section of this module document), and the diagonal elements of the upper
triangular matrix R.

Default: print level = 10.

3.2 Algorithm Choice and Tolerances

check freq — integer
Every check freq iterations, a numerical test is made to see if the current solution x satisfies the
constraints in the working set. If the largest residual of the constraints in the working set is judged
to be too large, the current working set is refactorized and the variables are recomputed to satisfy
the constraints more accurately.

Default: check freq = 50.
Constraints: check freq ≥ 1.

crash tol — real(kind=wp)
crash tol is used in conjunction with the optional argument cold start (see Section 3.2 of the
procedure document for nag qp sol) in order to select an initial working set.

If cold start = .true. (the default), the initial working set will include (if possible) bounds or
general inequality constraints that lie within crash tol of their bounds. In particular, a constraint
of the form aT

j x ≥ l will be included in the working set if |aT
j x− l| ≤ crash tol × (1 + |l|).

Default: crash tol = 0.01.
Constraints: 0.0 ≤ crash tol ≤ 1.0.

9.1.20 Module 9.1: nag qp [NP3245/3/pdf]

Optimization Type nag qp cntrl wp

expand freq — integer
This forms part of an anti-cycling procedure designed to guarantee progress even on highly
degenerate problems.

The strategy is to force a positive step at every iteration, at the expense of violating the constraints
by a small amount. Over a period of expand freq iterations, the feasibility tolerance actually used
by nag qp sol (i.e., the working feasibility tolerance) increases from 0.5 × feas tol to feas tol
(in steps of 0.5 × feas tol/expand freq).

At certain stages the following ‘resetting procedure’ is used to remove constraint infeasibilities.
First, all variables whose upper or lower bounds are in the working set are moved exactly onto
their bounds. A count is kept of the number of non-trivial adjustments made. If the count is
positive, iterative refinement is used to give variables that satisfy the working set to (essentially)
EPSILON(1.0 wp). Finally, the working feasibility tolerance is reinitialized to 0.5 × feas tol.

If a problem requires more than expand freq iterations, the resetting procedure is invoked and
a new cycle of expand freq iterations is started with expand freq incremented by 10. (The
decision to resume the feasibility phase or optimality phase is based on comparing any constraint
infeasibilities with feas tol.)

The resetting procedure is also invoked when nag qp sol reaches an apparently optimal, infeasible
or unbounded solution, unless this situation has already occurred twice. If any non-trivial
adjustments are made, iterations are continued.

Default: expand freq = 5.
Constraints: 0 < expand freq < 107.

feas tol — real(kind=wp)
feas tol defines the maximum acceptable absolute violation in each constraint at a ‘feasible’ point.
For example, if the variables and coefficients are of order unity, and the latter are correct to about
6 decimal digits, it would be appropriate to specify feas tol as 10−6.

nag qp sol attempts to find a feasible solution before optimizing the objective function. If the sum
of infeasibilities cannot be reduced to zero, min sum of infeas can be used to find the minimum
value of the sum. Let Sinf be the corresponding sum of infeasibilities. If Sinf is quite small, it
may be appropriate to raise feas tol by a factor of 10 or 100. Otherwise, some error in the data
should be suspected.

Note that a ‘feasible solution’ is a solution that satisfies the current constraints to within the
tolerance feas tol.

Default: feas tol = SQRT(EPSILON(1.0 wp)).
Constraints: feas tol ≥ EPSILON(1.0 wp).

inf bound — real(kind=wp)
inf bound defines the ‘infinite’ bound size in the definition of the problem constraints. Any upper
bound greater than or equal to inf bound will be regarded as +∞ (and similarly any lower bound
less than or equal to −inf bound will be regarded as −∞).

Default: inf bound = 1020.
Constraints: inf bound > 0.0.

inf step — real(kind=wp)
inf step specifies the magnitude of the change in variables that will be considered a step to an
unbounded solution. (Note that an unbounded solution can only occur when the Hessian is not
positive definite.) If the change in x during an iteration would exceed the value of inf step, the
objective function is considered to be unbounded below in the feasible region.

Default: inf step = max(inf bound, 1020).
Constraints: inf step ≥ inf bound.

[NP3245/3/pdf] Module 9.1: nag qp 9.1.21

Type nag qp cntrl wp Optimization

max deg free — integer
Note: max deg free does not apply to feasible point or linear programming problems.
It places a limit on the storage allocated for the triangular factor R of the reduced Hessian HR (see
Section 2 of the Mathematical Background section of this module document). Ideally, max deg free
should be set slightly larger than the value of nR expected at the solution (where 1 ≤ nR ≤
number of variables). It need not be larger than nN + 1, where nN is the number of variables that
appear nonlinearly in the quadratic objective function. For many problems it can be much smaller
than nN.

Default: max deg free = number of variables if the optional argument qp hx has been supplied,
and SIZE(h,1) otherwise (see Section 3.2 of the procedure document for nag qp sol).
Constraints: 1 ≤ max deg free ≤ number of variables.

feas phase iter lim — integer
For a quadratic programming problem feas phase iter lim specifies the maximum number
of iterations allowed in the feasibility phase. For a feasible point problem it specifies the
maximum number of iterations allowed before termination. For a linear programming problem the
maximum number of iterations allowed before termination is taken as max(feas phase iter lim,
opt phase iter lim).

If you wish to check that a call to nag qp sol is correct before attempting to solve the problem in full
then feas phase iter lim may be set to 0. No iterations will be performed but the initialization
stages prior to the first iteration will be processed and a listing of parameter settings output if list
= .true. (the default).

Default: feas phase iter lim=max(50,5× (number of variables+number of linear constraints)).
Constraints: feas phase iter lim ≥ 0.

opt phase iter lim — integer
Note: opt phase iter lim does not apply to feasible point problems.
For a linear programming problem the maximum number of iterations allowed before termination is
taken as max(feas phase iter lim, opt phase iter lim). For a quadratic programming problem
it specifies the maximum number of iterations allowed in the optimality phase.

Default: opt phase iter lim = max(50, 5×(number of variables + number of linear constraints)).
Constraints: opt phase iter lim ≥ 0.

rank tol — real(kind=wp)
Note: rank tol does not apply to feasible point or linear programming problems.
It enables you to control the condition number of the triangular factor R (see Section 4 of the
Mathematical Background section of this module document). If ρi = max{|R11|, |R22|, . . . , |Rii|},
the dimension of R is defined to be the smallest index i such that |Ri+1,i+1| ≤

√
rank tol× |ρi+1|.

Default: rank tol = 100 × EPSILON(1.0 wp).
Constraints: rank tol > 0.0.

min sum of infeas — logical
It enables you to control whether or not nag qp sol will calculate a point that minimizes the
constraint violations when no feasible point exists.

If min sum of infeas = .false., termination will occur as soon as it is evident that no
feasible point exists for the constraints. The final point will generally not be the point at
which the sum of infeasibilities is minimized.
If min sum of infeas = .true., termination will occur either after the sum of infeasibilities
has been minimized or the iteration limit has been reached, whichever occurs first.

Default: min sum of infeas = .false..

9.1.22 Module 9.1: nag qp [NP3245/3/pdf]

Optimization Example 1

Example 1: Feasible point problem

To find a feasible point for the bounds

−0.01 ≤ x1 ≤ 0.01
−0.10 ≤ x2 ≤ 0.15
−0.01 ≤ x3 ≤ 0.03
−0.04 ≤ x4 ≤ 0.02
−0.10 ≤ x5 ≤ 0.05
−0.01 ≤ x6

−0.01 ≤ x7

and the linear constraints

x1 + x2 + x3 + x4 + x5 + x6 + x7 = −0.1300
0.15x1 + 0.04x2 + 0.02x3 + 0.04x4 + 0.02x5 + 0.01x6 + 0.03x7 ≤ −0.0049
0.03x1 + 0.05x2 + 0.08x3 + 0.02x4 + 0.06x5 + 0.01x6 ≤ −0.0064
0.02x1 + 0.04x2 + 0.01x3 + 0.02x4 + 0.02x5 ≤ −0.0037
0.02x1 + 0.03x2 + 0.01x5 ≤ −0.0012

−0.0992 ≤ 0.70x1 + 0.75x2 + 0.80x3 + 0.75x4 + 0.80x5 + 0.97x6

−0.0030 ≤ 0.02x1 + 0.06x2 + 0.08x3 + 0.12x4 + 0.02x5 + 0.01x6 + 0.97x7 ≤ 0.0020

The initial point is

x(0) = (−0.01, −0.03, 0.0, −0.01, −0.1, 0.02, 0.01)T .

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_qp_ex01

! Example Program Text for nag_qp

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_qp, ONLY : nag_qp_sol

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, m, n

REAL (wp) :: obj_f

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: a(:,:), ax_lower(:), ax_upper(:), x(:), &

x_lower(:), x_upper(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_qp_ex01’

READ (nag_std_in,*) ! Skip heading in data file

! Read number of linear constraints (m) and variables (n)

READ (nag_std_in,*) m, n

ALLOCATE (a(m,n),ax_lower(m),ax_upper(m),x(n),x_lower(n), &

x_upper(n)) ! Allocate storage

[NP3245/3/pdf] Module 9.1: nag qp 9.1.23

Example 1 Optimization

! Read in problem data

READ (nag_std_in,*) (a(i,:),i=1,m)

READ (nag_std_in,*) x_lower

READ (nag_std_in,*) ax_lower

READ (nag_std_in,*) x_upper

READ (nag_std_in,*) ax_upper

READ (nag_std_in,*) x

! Solve the problem

CALL nag_qp_sol(x,obj_f,a=a,ax_lower=ax_lower,ax_upper=ax_upper, &

x_lower=x_lower,x_upper=x_upper)

DEALLOCATE (a,ax_lower,ax_upper,x,x_lower,x_upper) ! Deallocate storage

END PROGRAM nag_qp_ex01

2 Program Data
Example Program Data for nag_qp_ex01

7 7 :Values of m and n

1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.15 0.04 0.02 0.04 0.02 0.01 0.03

0.03 0.05 0.08 0.02 0.06 0.01 0.00

0.02 0.04 0.01 0.02 0.02 0.00 0.00

0.02 0.03 0.00 0.00 0.01 0.00 0.00

0.70 0.75 0.80 0.75 0.80 0.97 0.00

0.02 0.06 0.08 0.12 0.02 0.01 0.97 :End of a

-0.01 -0.10 -0.01 -0.04 -0.10 -0.01 -0.01 :End of x_lower

-0.13 -1.0e+25 -1.0e+25 -1.0e+25 -1.0e+25 -9.92e-02 -3.0e-03 :End of ax_lower

0.01 0.15 0.03 0.02 0.05 1.0e+25 1.0e+25 :End of x_upper

-0.13 -4.9e-03 -6.4e-03 -3.7e-03 -1.2e-03 1.0e+25 2.0e-03 :End of ax_upper

-0.01 -0.03 0.00 -0.01 -0.10 0.02 0.01 :End of x

3 Program Results
Example Program Results for nag_qp_ex01

Parameters

prob_type.............. F (feasible point problem)

linear constraints..... 7 variables.............. 7

list................... .true. lt80_char.............. .true.

print_level............ 10

feas_tol............... 1.49E-08 crash_tol.............. 1.00E-02

inf_bound.............. 1.00E+20 cold_start............. .true.

inf_step............... 1.00E+20 eps (machine precision) 2.22E-16

check_freq............. 50 feas_phase_iter_lim.... 70

expand_freq............ 5 unit................... 6

min_sum_of_infeas...... .false.

Itn Step Ninf Sinf/Objective Norm Gz

9.1.24 Module 9.1: nag qp [NP3245/3/pdf]

Optimization Example 1

0 0.0E+00 3 1.038000E-01 0.0E+00

1 4.1E-02 1 3.000000E-02 0.0E+00

2 4.2E-02 0 0.000000E+00 0.0E+00

Varbl State Value Lower Bound Upper Bound Lagr Mult Slack

V 1 A LL -1.000000E-02 -1.000000E-02 1.000000E-02 . .

V 2 FR -1.500000E-02 -0.100000 0.150000 . 8.5000E-02

V 3 A LL -1.000000E-02 -1.000000E-02 3.000000E-02 . .

V 4 A LL -4.000000E-02 -4.000000E-02 2.000000E-02 . .

V 5 A LL -0.100000 -0.100000 5.000000E-02 . .

V 6 FR 3.819588E-02 -1.000000E-02 None . 4.8196E-02

V 7 FR 6.804124E-03 -1.000000E-02 None . 1.6804E-02

L Con State Value Lower Bound Upper Bound Lagr Mult Slack

L 1 A EQ -0.130000 -0.130000 -0.130000 . .

L 2 FR -5.313918E-03 None -4.900000E-03 . 4.1392E-04

L 3 FR -8.268041E-03 None -6.400000E-03 . 1.8680E-03

L 4 A UL -3.700000E-03 None -3.700000E-03 . -4.3368E-19

L 5 FR -1.650000E-03 None -1.200000E-03 . 4.5000E-04

L 6 A LL -9.920000E-02 -9.920000E-02 None . 2.7756E-17

L 7 FR -1.718041E-03 -3.000000E-03 2.000000E-03 . 1.2820E-03

Exit nag_qp_sol - Feasible point found.

Exit from nag_qp_sol after 2 iterations.

[NP3245/3/pdf] Module 9.1: nag qp 9.1.25

Example 1 Optimization

9.1.26 Module 9.1: nag qp [NP3245/3/pdf]

Optimization Example 2

Example 2: Linear programming problem

To minimize the linear function

−0.02x1 − 0.2x2 − 0.2x3 − 0.2x4 − 0.2x5 + 0.04x6 + 0.04x7

using the set of constraints given in Example 1.

The initial point, which is infeasible, is

x(0) = (−0.01, −0.03, 0.0, −0.01, −0.1, 0.02, 0.01)T .

The optimal solution (to five figures) is

x∗ = (−0.01, −0.1, 0.03, 0.02, −0.067485, −0.0022801, −0.00023453)T .

Four bound constraints and three linear constraints are active at the solution.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_qp_ex02

! Example Program Text for nag_qp

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_qp, ONLY : nag_qp_sol, nag_qp_cntrl_init, &

nag_qp_cntrl_wp => nag_qp_cntrl_dp

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, m, n

REAL (wp) :: obj_f

TYPE (nag_qp_cntrl_wp) :: control

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: a(:,:), ax_lower(:), ax_upper(:), c(:), x(:), &

x_lower(:), x_upper(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_qp_ex02’

READ (nag_std_in,*) ! Skip heading in data file

! Read number of linear constraints (m) and variables (n)

READ (nag_std_in,*) m, n

ALLOCATE (a(m,n),ax_lower(m),ax_upper(m),c(n),x(n),x_lower(n), &

x_upper(n)) ! Allocate storage

! Read in problem data

READ (nag_std_in,*) c

READ (nag_std_in,*) (a(i,:),i=1,m)

READ (nag_std_in,*) x_lower

READ (nag_std_in,*) ax_lower

READ (nag_std_in,*) x_upper

[NP3245/3/pdf] Module 9.1: nag qp 9.1.27

Example 2 Optimization

READ (nag_std_in,*) ax_upper

READ (nag_std_in,*) x

! initialize control structure and set required control parameters

CALL nag_qp_cntrl_init(control)

control%print_level = 1

! Solve the problem

CALL nag_qp_sol(x,obj_f,prob_type=’L’,a=a,ax_lower=ax_lower, &

ax_upper=ax_upper,c=c,x_lower=x_lower,x_upper=x_upper,control=control)

DEALLOCATE (a,ax_lower,ax_upper,c,x,x_lower,x_upper) ! Deallocate storage

END PROGRAM nag_qp_ex02

2 Program Data
Example Program Data for nag_qp_ex02

7 7 :Values of m and n

-0.02 -0.20 -0.20 -0.20 -0.20 0.04 0.04 :End of c

1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.15 0.04 0.02 0.04 0.02 0.01 0.03

0.03 0.05 0.08 0.02 0.06 0.01 0.00

0.02 0.04 0.01 0.02 0.02 0.00 0.00

0.02 0.03 0.00 0.00 0.01 0.00 0.00

0.70 0.75 0.80 0.75 0.80 0.97 0.00

0.02 0.06 0.08 0.12 0.02 0.01 0.97 :End of a

-0.01 -0.10 -0.01 -0.04 -0.10 -0.01 -0.01 :End of x_lower

-0.13 -1.0e+25 -1.0e+25 -1.0e+25 -1.0e+25 -9.92e-02 -3.0e-03 :End of ax_lower

0.01 0.15 0.03 0.02 0.05 1.0e+25 1.0e+25 :End of x_upper

-0.13 -4.9e-03 -6.4e-03 -3.7e-03 -1.2e-03 1.0e+25 2.0e-03 :End of ax_upper

-0.01 -0.03 0.00 -0.01 -0.10 0.02 0.01 :End of x

3 Program Results
Example Program Results for nag_qp_ex02

Parameters

prob_type.............. L (linear programming problem)

linear constraints..... 7 variables.............. 7

list................... .true. lt80_char.............. .true.

print_level............ 1

feas_tol............... 1.49E-08 crash_tol.............. 1.00E-02

inf_bound.............. 1.00E+20 cold_start............. .true.

inf_step............... 1.00E+20 eps (machine precision) 2.22E-16

check_freq............. 50 feas_phase_iter_lim.... 70

min_sum_of_infeas...... .false. opt_phase_iter_lim..... 70

expand_freq............ 5 unit................... 6

Varbl State Value Lower Bound Upper Bound Lagr Mult Slack

9.1.28 Module 9.1: nag qp [NP3245/3/pdf]

Optimization Example 2

V 1 LL -1.000000E-02 -1.000000E-02 1.000000E-02 0.3301 .

V 2 LL -0.100000 -0.100000 0.150000 1.4384E-02 .

V 3 UL 3.000000E-02 -1.000000E-02 3.000000E-02 -9.0997E-02 .

V 4 UL 2.000000E-02 -4.000000E-02 2.000000E-02 -7.6612E-02 .

V 5 FR -6.748534E-02 -0.100000 5.000000E-02 . 3.2515E-02

V 6 FR -2.280130E-03 -1.000000E-02 None . 7.7199E-03

V 7 FR -2.345277E-04 -1.000000E-02 None . 9.7655E-03

L Con State Value Lower Bound Upper Bound Lagr Mult Slack

L 1 EQ -0.130000 -0.130000 -0.130000 -1.431 -5.5511E-17

L 2 FR -5.479544E-03 None -4.900000E-03 . 5.7954E-04

L 3 FR -6.571922E-03 None -6.400000E-03 . 1.7192E-04

L 4 FR -4.849707E-03 None -3.700000E-03 . 1.1497E-03

L 5 FR -3.874853E-03 None -1.200000E-03 . 2.6749E-03

L 6 LL -9.920000E-02 -9.920000E-02 None 1.501 1.3878E-17

L 7 LL -3.000000E-03 -3.000000E-03 2.000000E-03 1.517 2.6021E-18

Exit nag_qp_sol - Optimal LP solution.

Final LP objective value = 0.2359648E-01

Exit from nag_qp_sol after 7 iterations.

[NP3245/3/pdf] Module 9.1: nag qp 9.1.29

Example 2 Optimization

9.1.30 Module 9.1: nag qp [NP3245/3/pdf]

Optimization Example 3

Example 3: Quadratic programming problem
(explicit H)

To minimize the quadratic function

f(x) = cTx + 1
2x

THx,

where

c = (−0.02, −0.2, −0.2, −0.2, −0.2, 0.04, 0.04)T

H =




2 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 2 0 0 0
0 0 2 2 0 0 0
0 0 0 0 2 0 0
0 0 0 0 0 −2 −2
0 0 0 0 0 −2 −2




using the set of constraints given in Example 1.

The initial point, which is infeasible, is

x(0) = (−0.01, −0.03, 0.0, −0.01, −0.1, 0.02, 0.01)T .

The optimal solution (to five figures) is

x∗ = (−0.01, −0.069865, 0.018259, −0.24261, −0.62006, 0.013805, 0.0040665)T .

One bound constraint and four linear constraints are active at the solution.

This example uses the optional argument h (see Section 3.2 of the procedure document for nag qp sol)
to store H explicitly.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_qp_ex03

! Example Program Text for nag_qp

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_qp, ONLY : nag_qp_sol

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, m, n

REAL (wp) :: obj_f

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: a(:,:), ax_lower(:), ax_upper(:), c(:), &

h(:,:), x(:), x_lower(:), x_upper(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_qp_ex03’

[NP3245/3/pdf] Module 9.1: nag qp 9.1.31

Example 3 Optimization

READ (nag_std_in,*) ! Skip heading in data file

! Read number of linear constraints (m) and variables (n)

READ (nag_std_in,*) m, n

ALLOCATE (a(m,n),ax_lower(m),ax_upper(m),c(n),h(n,n),x(n),x_lower(n), &

x_upper(n)) ! Allocate storage

! Read in problem data

READ (nag_std_in,*) c

READ (nag_std_in,*) (a(i,:),i=1,m)

READ (nag_std_in,*) x_lower

READ (nag_std_in,*) ax_lower

READ (nag_std_in,*) x_upper

READ (nag_std_in,*) ax_upper

READ (nag_std_in,*) x

READ (nag_std_in,*) (h(i,:),i=1,n)

! Solve the problem

CALL nag_qp_sol(x,obj_f,prob_type=’S’,h=h,a=a,ax_lower=ax_lower, &

ax_upper=ax_upper,c=c,x_lower=x_lower,x_upper=x_upper)

DEALLOCATE (a,ax_lower,ax_upper,c,h,x,x_lower, &

x_upper) ! Deallocate storage

END PROGRAM nag_qp_ex03

2 Program Data
Example Program Data for nag_qp_ex03

7 7 :Values of m and n

-0.02 -0.20 -0.20 -0.20 -0.20 0.04 0.04 :End of c

1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.15 0.04 0.02 0.04 0.02 0.01 0.03

0.03 0.05 0.08 0.02 0.06 0.01 0.00

0.02 0.04 0.01 0.02 0.02 0.00 0.00

0.02 0.03 0.00 0.00 0.01 0.00 0.00

0.70 0.75 0.80 0.75 0.80 0.97 0.00

0.02 0.06 0.08 0.12 0.02 0.01 0.97 :End of a

-0.01 -0.10 -0.01 -0.04 -0.10 -0.01 -0.01 :End of x_lower

-0.13 -1.0e+25 -1.0e+25 -1.0e+25 -1.0e+25 -9.92e-02 -3.0e-03 :End of ax_lower

0.01 0.15 0.03 0.02 0.05 1.0e+25 1.0e+25 :End of x_upper

-0.13 -4.9e-03 -6.4e-03 -3.7e-03 -1.2e-03 1.0e+25 2.0e-03 :End of ax_upper

-0.01 -0.03 0.00 -0.01 -0.10 0.02 0.01 :End of x

2.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 2.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 2.00 2.00 0.00 0.00 0.00

0.00 0.00 2.00 2.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 2.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 -2.00 -2.00

0.00 0.00 0.00 0.00 0.00 -2.00 -2.00 :End of h

9.1.32 Module 9.1: nag qp [NP3245/3/pdf]

Optimization Example 3

3 Program Results
Example Program Results for nag_qp_ex03

Parameters

prob_type.............. S (symmetric QP problem)

linear constraints..... 7 variables.............. 7

list................... .true. lt80_char.............. .true.

print_level............ 10

feas_tol............... 1.49E-08 crash_tol.............. 1.00E-02

inf_bound.............. 1.00E+20 cold_start............. .true.

inf_step............... 1.00E+20 eps (machine precision) 2.22E-16

check_freq............. 50 feas_phase_iter_lim.... 70

expand_freq............ 5 opt_phase_iter_lim..... 70

max_deg_free........... 7 rank_tol............... 2.22E-14

unit................... 6 min_sum_of_infeas...... .false.

Itn Step Ninf Sinf/Objective Norm Gz

0 0.0E+00 3 1.038000E-01 0.0E+00

1 4.1E-02 1 3.000000E-02 0.0E+00

2 4.2E-02 0 0.000000E+00 0.0E+00

Itn 2 -- Feasible point found.

2 0.0E+00 0 4.580000E-02 0.0E+00

3 1.3E-01 0 4.161596E-02 0.0E+00

4 1.0E+00 0 3.936227E-02 0.0E+00

5 4.1E-01 0 3.758935E-02 1.2E-02

6 1.0E+00 0 3.755377E-02 2.8E-17

7 1.0E+00 0 3.703165E-02 4.3E-17

Varbl State Value Lower Bound Upper Bound Lagr Mult Slack

V 1 LL -1.000000E-02 -1.000000E-02 1.000000E-02 0.4700 .

V 2 FR -6.986465E-02 -0.100000 0.150000 . 3.0135E-02

V 3 FR 1.825915E-02 -1.000000E-02 3.000000E-02 . 1.1741E-02

V 4 FR -2.426081E-02 -4.000000E-02 2.000000E-02 . 1.5739E-02

V 5 FR -6.200564E-02 -0.100000 5.000000E-02 . 3.7994E-02

V 6 FR 1.380544E-02 -1.000000E-02 None . 2.3805E-02

V 7 FR 4.066496E-03 -1.000000E-02 None . 1.4066E-02

L Con State Value Lower Bound Upper Bound Lagr Mult Slack

L 1 EQ -0.130000 -0.130000 -0.130000 -1.908 -5.5511E-17

L 2 FR -5.879898E-03 None -4.900000E-03 . 9.7990E-04

L 3 UL -6.400000E-03 None -6.400000E-03 -0.3144 1.7347E-18

L 4 FR -4.537323E-03 None -3.700000E-03 . 8.3732E-04

L 5 FR -2.915996E-03 None -1.200000E-03 . 1.7160E-03

L 6 LL -9.920000E-02 -9.920000E-02 None 1.955 .

L 7 LL -3.000000E-03 -3.000000E-03 2.000000E-03 1.972 -6.0715E-18

Exit nag_qp_sol - Optimal QP solution.

Final QP objective value = 0.3703165E-01

[NP3245/3/pdf] Module 9.1: nag qp 9.1.33

Example 3 Optimization

Exit from nag_qp_sol after 7 iterations.

9.1.34 Module 9.1: nag qp [NP3245/3/pdf]

Optimization Example 4

Example 4: Quadratic programming problem
(implicit H)

This example solves the same problem as Example 3, but uses the optional argument qp hx (see Section
3.2 of the procedure document for nag qp sol) to avoid referencing H explicitly.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

MODULE qp_ex04_mod

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

CONTAINS

SUBROUTINE qp_hx(col,x,hx)

! Procedure to evaluate h*x for some matrix h that defines the

! hessian of the required qp problem. In this version of qp_hx,

! h is implicit.

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Scalar Arguments ..

INTEGER, INTENT (IN) :: col

! .. Array Arguments ..

REAL (wp), INTENT (INOUT) :: hx(:)

REAL (wp), INTENT (IN) :: x(:)

! .. Executable Statements ..

hx(1) = 2.0_wp*x(1)

hx(2) = 2.0_wp*x(2)

hx(3) = 2.0_wp*(x(3)+x(4))

hx(4) = hx(3)

hx(5) = 2.0_wp*x(5)

hx(6) = -2.0_wp*(x(6)+x(7))

hx(7) = hx(6)

END SUBROUTINE qp_hx

END MODULE qp_ex04_mod

PROGRAM nag_qp_ex04

! Example Program Text for nag_qp

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_qp, ONLY : nag_qp_sol

USE qp_ex04_mod, ONLY : qp_hx, wp

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Local Scalars ..

INTEGER :: i, m, n

[NP3245/3/pdf] Module 9.1: nag qp 9.1.35

Example 4 Optimization

REAL (wp) :: obj_f

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: a(:,:), ax_lower(:), ax_upper(:), c(:), x(:), &

x_lower(:), x_upper(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_qp_ex04’

READ (nag_std_in,*) ! Skip heading in data file

! Read number of linear constraints (m) and variables (n)

READ (nag_std_in,*) m, n

ALLOCATE (a(m,n),ax_lower(m),ax_upper(m),c(n),x(n),x_lower(n), &

x_upper(n)) ! Allocate storage

! Read in problem data

READ (nag_std_in,*) c

READ (nag_std_in,*) (a(i,:),i=1,m)

READ (nag_std_in,*) x_lower

READ (nag_std_in,*) ax_lower

READ (nag_std_in,*) x_upper

READ (nag_std_in,*) ax_upper

READ (nag_std_in,*) x

! Solve the problem

CALL nag_qp_sol(x,obj_f,prob_type=’S’,qp_hx=qp_hx,a=a,ax_lower=ax_lower, &

ax_upper=ax_upper,c=c,x_lower=x_lower,x_upper=x_upper)

DEALLOCATE (a,ax_lower,ax_upper,c,x,x_lower, &

x_upper) ! Deallocate storage

END PROGRAM nag_qp_ex04

2 Program Data
Example Program Data for nag_qp_ex04

7 7 :Values of m and n

-0.02 -0.20 -0.20 -0.20 -0.20 0.04 0.04 :End of c

1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.15 0.04 0.02 0.04 0.02 0.01 0.03

0.03 0.05 0.08 0.02 0.06 0.01 0.00

0.02 0.04 0.01 0.02 0.02 0.00 0.00

0.02 0.03 0.00 0.00 0.01 0.00 0.00

0.70 0.75 0.80 0.75 0.80 0.97 0.00

0.02 0.06 0.08 0.12 0.02 0.01 0.97 :End of a

-0.01 -0.10 -0.01 -0.04 -0.10 -0.01 -0.01 :End of x_lower

-0.13 -1.0e+25 -1.0e+25 -1.0e+25 -1.0e+25 -9.92e-02 -3.0e-03 :End of ax_lower

0.01 0.15 0.03 0.02 0.05 1.0e+25 1.0e+25 :End of x_upper

-0.13 -4.9e-03 -6.4e-03 -3.7e-03 -1.2e-03 1.0e+25 2.0e-03 :End of ax_upper

-0.01 -0.03 0.00 -0.01 -0.10 0.02 0.01 :End of x

3 Program Results
Example Program Results for nag_qp_ex04

Parameters

prob_type.............. S (symmetric QP problem)

9.1.36 Module 9.1: nag qp [NP3245/3/pdf]

Optimization Example 4

linear constraints..... 7 variables.............. 7

list................... .true. lt80_char.............. .true.

print_level............ 10

feas_tol............... 1.49E-08 crash_tol.............. 1.00E-02

inf_bound.............. 1.00E+20 cold_start............. .true.

inf_step............... 1.00E+20 eps (machine precision) 2.22E-16

check_freq............. 50 feas_phase_iter_lim.... 70

expand_freq............ 5 opt_phase_iter_lim..... 70

max_deg_free........... 7 rank_tol............... 2.22E-14

unit................... 6 min_sum_of_infeas...... .false.

Itn Step Ninf Sinf/Objective Norm Gz

0 0.0E+00 3 1.038000E-01 0.0E+00

1 4.1E-02 1 3.000000E-02 0.0E+00

2 4.2E-02 0 0.000000E+00 0.0E+00

Itn 2 -- Feasible point found.

2 0.0E+00 0 4.580000E-02 0.0E+00

3 1.3E-01 0 4.161596E-02 0.0E+00

4 1.0E+00 0 3.936227E-02 0.0E+00

5 4.1E-01 0 3.758935E-02 1.2E-02

6 1.0E+00 0 3.755377E-02 2.8E-17

7 1.0E+00 0 3.703165E-02 4.3E-17

Varbl State Value Lower Bound Upper Bound Lagr Mult Slack

V 1 LL -1.000000E-02 -1.000000E-02 1.000000E-02 0.4700 .

V 2 FR -6.986465E-02 -0.100000 0.150000 . 3.0135E-02

V 3 FR 1.825915E-02 -1.000000E-02 3.000000E-02 . 1.1741E-02

V 4 FR -2.426081E-02 -4.000000E-02 2.000000E-02 . 1.5739E-02

V 5 FR -6.200564E-02 -0.100000 5.000000E-02 . 3.7994E-02

V 6 FR 1.380544E-02 -1.000000E-02 None . 2.3805E-02

V 7 FR 4.066496E-03 -1.000000E-02 None . 1.4066E-02

L Con State Value Lower Bound Upper Bound Lagr Mult Slack

L 1 EQ -0.130000 -0.130000 -0.130000 -1.908 -5.5511E-17

L 2 FR -5.879898E-03 None -4.900000E-03 . 9.7990E-04

L 3 UL -6.400000E-03 None -6.400000E-03 -0.3144 1.7347E-18

L 4 FR -4.537323E-03 None -3.700000E-03 . 8.3732E-04

L 5 FR -2.915996E-03 None -1.200000E-03 . 1.7160E-03

L 6 LL -9.920000E-02 -9.920000E-02 None 1.955 .

L 7 LL -3.000000E-03 -3.000000E-03 2.000000E-03 1.972 -6.0715E-18

Exit nag_qp_sol - Optimal QP solution.

Final QP objective value = 0.3703165E-01

Exit from nag_qp_sol after 7 iterations.

[NP3245/3/pdf] Module 9.1: nag qp 9.1.37

Example 4 Optimization

9.1.38 Module 9.1: nag qp [NP3245/3/pdf]

Optimization Mathematical Background

Mathematical Background

1 Overview

nag qp sol is based on an inertia-controlling method that maintains a Cholesky factorization of the
reduced Hessian. The method is based on that of Gill and Murray [2] and is described in detail by Gill
et al. [5]. Here we briefly summarize the main features of the method. Where possible, explicit reference
is made to the names of variables that are arguments of nag qp sol or appear in the printed output.
nag qp sol has two phases: finding an initial feasible point by minimizing the sum of infeasibilities
(the feasibility phase), and minimizing the quadratic objective function within the feasible region (the
optimality phase). The computations in both phases are performed by the same procedures. The two-
phase nature of the algorithm is reflected by changing the function being minimized from the sum of
infeasibilities to the quadratic objective function. The feasibility phase does not perform the standard
simplex method (i.e., it does not necessarily find a vertex), except for problems of type L when nL ≤ n.
Once any iterate is feasible, all subsequent iterates remain feasible.

nag qp sol has been designed to be efficient when used to solve a sequence of related problems, for
example within a sequential quadratic programming method for nonlinearly constrained optimization.
In particular, you may specify the initial working set (the indices of the constraints believed to be satisfied
exactly at the solution); see the discussion of the optional argument cold start in Section 3.2 of the
procedure document for nag qp sol.

In general, an iterative process is required to solve a quadratic program. (For simplicity, we shall always
consider a typical iteration and avoid reference to the index of the iteration.) Each new iterate x̄ is
defined by

x̄ = x + αp, (2)

where the step length α is a non-negative scalar, and p is called the search direction.

At each point x, a working set of constraints is defined to be a linearly independent subset of the
constraints that are satisfied ‘exactly’ (to within the tolerance defined by control%feas tol; see the
type definition for nag qp cntrl wp). The working set is the current prediction of the constraints that
hold with equality at a solution of a linearly constrained QP problem. The search direction is constructed
so that the constraints in the working set remain unaltered for any value of the step length. For a bound
constraint in the working set, this property is achieved by setting the corresponding element of the search
direction to zero. Thus the associated variable is fixed , and specification of the working set induces a
partition of x into fixed and free variables. During a given iteration the fixed variables are effectively
removed from the problem; since the relevant elements of the search direction are zero, the columns of
A corresponding to fixed variables may be ignored.

The constraints involving A are called the general constraints. Let nW denote the number of general
constraints in the working set and let nFX denote the number of variables fixed at one of their bounds
(nW and nFX are the quantities Lin and Bnd in the printed output; see Section 7 of the procedure
document for nag qp sol). Similarly, let nFR (nFR = n − nFX) denote the number of free variables. At
every iteration, the variables are reordered so that the last nFX variables are fixed , with all other relevant
vectors and matrices ordered accordingly.

2 Definition of the Search Direction

Let AFR denote the nW by nFR sub-matrix of general constraints in the working set corresponding to
the free variables, and let pFR denote the search direction with respect to the free variables only. The
general constraints in the working set will be unaltered by any move along p if

AFRpFR = 0. (3)

In order to compute pFR, the TQ factorization of AFR is used:

AFRQFR = (0 T), (4)

[NP3245/3/pdf] Module 9.1: nag qp 9.1.39

Mathematical Background Optimization

where T is a non-singular nW by nW upper triangular matrix (i.e., tij = 0 if i > j), and the non-singular
nFR by nFR matrix QFR is the product of orthogonal transformations (see Gill et al. [3]). If the columns
of QFR are partitioned so that

QFR = (Z Y),

where Y is nFR by nW, then the nZ (nZ = nFR − nW) columns of Z form a basis for the null space of
AFR. Let nR be an integer such that 0 ≤ nR ≤ nZ , and let ZR denote a matrix whose nR columns are
a subset of the columns of Z. (The integer nR is the quantity Zr in the printed output; see Section 7
of the procedure document for nag qp sol. In many cases, ZR will include all the columns of Z.) The
direction pFR will satisfy (3) if

pFR = ZRpR, (5)

where pR is any nR-vector.

Let Q denote the n by n matrix

Q =
(
QFR

IFX

)

where IFX is the identity matrix of order nFX. Let HQ and gQ denote the n by n transformed Hessian
and transformed gradient

HQ = QTHQ and gQ = QT (c + Hx)

and let the matrix of first nR rows and columns of HQ be denoted by HR and the vector of the first
nR elements of gQ be denoted by gR. The quantities HR and gR are known as the reduced Hessian
and reduced gradient of f(x), respectively. Roughly speaking, gR and HR describe the first and second
derivatives of an unconstrained problem for the calculation of pR.

At each iteration, a triangular factorization of HR is available. If HR is positive definite, HR = RTR,
where R is the upper triangular Cholesky factor of HR. If HR is not positive definite, HR = RTDR,
where D = diag(1, 1, . . . , 1, µ), with µ ≤ 0.

The computation is arranged so that the reduced-gradient vector is a multiple of eR, a vector of all zeros
except in the last (i.e., nRth) position. This allows the vector pR in (5) to be computed from a single
back-substitution

RpR = γeR, (6)

where γ is a scalar that depends on whether or not the reduced Hessian is positive definite at x. In the
positive-definite case, x+ p is the minimizer of the objective function subject to the constraints (bounds
and general) in the working set treated as equalities. If HR is not positive definite, pR satisfies the
conditions

pT
RHRpR < 0 and gT

RpR ≤ 0,

which allow the objective function to be reduced by any positive step of the form x + αp.

3 The Main Iteration

If the reduced gradient is zero, x is a constrained stationary point in the sub-space defined by Z. During
the feasibility phase, the reduced gradient will usually be zero only at a vertex (although it may be zero
at non-vertices in the presence of constraint dependencies). During the optimality phase, a zero reduced
gradient implies that x minimizes the quadratic objective when the constraints in the working set are
treated as equalities. At a constrained stationary point, Lagrange multipliers λC and λB for the general
and bound constraints are defined from the equations

AT
FRλC = gFR and λB = gFX −AT

FXλC . (7)

Given a positive constant δ of the order of EPSILON(1.0 wp), a Lagrange multiplier λj corresponding to
an inequality constraint in the working set is said to be optimal if λj ≤ δ when the associated constraint

9.1.40 Module 9.1: nag qp [NP3245/3/pdf]

Optimization Mathematical Background

is at its upper bound , or if λj ≥ −δ when the associated constraint is at its lower bound . If a multiplier is
non-optimal, the objective function (either the true objective or the sum of infeasibilities) can be reduced
by deleting the corresponding constraint from the working set.

If optimal multipliers occur during the feasibility phase and the sum of infeasibilities is non-zero, there
is no feasible point, and you can force nag qp sol to continue until the minimum value of the sum of
infeasibilities has been found; see the discussion of control%min sum of infeas in the type definition for
nag qp cntrl wp. At such a point, the Lagrange multiplier λj corresponding to an inequality constraint
in the working set will be such that −(1 + δ) ≤ λj ≤ δ when the associated constraint is at its upper
bound , and −δ ≤ λj ≤ (1 + δ) when the associated constraint is at its lower bound . Lagrange multipliers
for equality constraints will satisfy | λj | ≤ (1 + δ).

If the reduced gradient is not zero, Lagrange multipliers need not be computed and the non-zero elements
of the search direction p are given by ZRpR (see (5) and (6)). The choice of step length is influenced
by the need to maintain feasibility with respect to the satisfied constraints. If HR is positive definite
and x + p is feasible, α will be taken as unity. In this case, the reduced gradient at x̄ will be zero, and
Lagrange multipliers are computed. Otherwise, α is set to αM, the step to the ‘nearest’ constraint (with
index Jadd; see Section 7 of the procedure document for nag qp sol), which is added to the working set
at the next iteration.

Each change in the working set leads to a simple change to AFR: if the status of a general constraint
changes, a row of AFR is altered; if a bound constraint enters or leaves the working set, a column of AFR

changes. Explicit representations are recurred of the matrices T,QFR and R; and of vectors QT g and
QT c. The triangular factor R associated with the reduced Hessian is only updated during the optimality
phase.

One of the most important features of nag qp sol is its control of the working set, whose nearness to
linear dependence is estimated by the ratio of the largest to smallest diagonal elements of the TQ factor
T (the printed value Cond T; see Section 7 of the procedure document for nag qp sol). In constructing
the initial working set, constraints are excluded that would result in a large ratio.

nag qp sol includes a rigorous procedure that prevents the possibility of cycling at a point where the
active constraints are nearly linearly dependent (see Gill et al. [4]). The main feature of the anti-cycling
procedure is that the feasibility tolerance is increased slightly at the start of every iteration. This not
only allows a positive step to be taken at every iteration, but also provides, whenever possible, a choice
of constraints to be added to the working set. Let αM denote the maximum step at which x + αMp does
not violate any constraint by more than its feasibility tolerance. All constraints at a distance α (α ≤ αM)
along p from the current point are then viewed as acceptable candidates for inclusion in the working set.
The constraint whose normal makes the largest angle with the search direction is added to the working
set.

4 Choosing the Initial Working Set

At the start of the optimality phase, a positive definite HR can be defined if enough constraints are
included in the initial working set. (The matrix with no rows and columns is positive definite by
definition, corresponding to the case when AFR contains nFR constraints.) The idea is to include as many
general constraints as necessary to ensure that the reduced Hessian is positive definite.

Let HZ denote the matrix of the first nZ rows and columns of the matrix HQ = QTHQ at the beginning
of the optimality phase. A partial Cholesky factorization is used to find an upper triangular matrix R
that is the factor of the largest positive-definite leading sub-matrix of HZ . The use of interchanges during
the factorization of HZ tends to maximize the dimension of R. (The condition of R may be controlled
using control%rank tol; see the type definition for nag qp cntrl wp.) Let ZR denote the columns of
Z corresponding to R, and let Z be partitioned as Z = (ZR ZA). A working set for which ZR defines
the null space can be obtained by including the rows of ZT

A as ‘artificial constraints’. Minimization of
the objective function then proceeds within the sub-space defined by ZR, as described in Section 2.

The artificially augmented working set is given by

ĀFR =
(

ZT
A

AFR

)
, (8)

[NP3245/3/pdf] Module 9.1: nag qp 9.1.41

Mathematical Background Optimization

so that pFR will satisfy AFRpFR = 0 and ZT
ApFR = 0. By definition of the TQ factorization, ĀFR

automatically satisfies the following:

ĀFRQFR =
(

ZT
A

AFR

)
QFR =

(
ZT

A

AFR

)
(ZR ZA Y) = (0 T̄),

where

T̄ =
(

I 0
0 T

)
,

and hence the TQ factorization of (8) is available trivially from T and QFR without additional expense.

The matrix ZA is not kept fixed, since its role is purely to define an appropriate null space; the TQ
factorization can therefore be updated in the normal fashion as the iterations proceed. No work is
required to ‘delete’ the artificial constraints associated with ZA when ZT

RgFR = 0, since this simply
involves repartitioning QFR. The ‘artificial’ multiplier vector associated with the rows of ZT

A is equal to
ZT

AgFR, and the multipliers corresponding to the rows of the ‘true’ working set are the multipliers that
would be obtained if the artificial constraints were not present. If an artificial constraint is ‘deleted’ from
the working set, an A appears alongside the entry in the Jdel column of the printed output (see Section
7 of the procedure document for nag qp sol).

The number of columns in ZA and ZR, the Euclidean norm of ZT
RgFR, and the condition estimator of

R appear in the printed output as Art, Zr, Norm Gz and Cond Rz respectively (see Section 7 of the
procedure document for nag qp sol).

Under some circumstances, a different type of artificial constraint is used when solving a linear program.
Although the algorithm of nag qp sol does not usually perform simplex steps (in the traditional sense),
there is one exception: a linear program with fewer general constraints than variables (i.e., nL ≤ n). (Use
of the simplex method in this situation leads to savings in storage.) At the starting point, the ‘natural’
working set (the set of constraints exactly or nearly satisfied at the starting point) is augmented with
a suitable number of ‘temporary’ bounds, each of which has the effect of temporarily fixing a variable
at its current value. In subsequent iterations, a temporary bound is treated as a standard constraint
until it is deleted from the working set, in which case it is never added again. If a temporary bound is
‘deleted’ from the working set, an F (for ‘Fixed’) appears alongside the entry in the Jdel column of the
printed output (see Section 7 of the procedure document for nag qp sol).

9.1.42 Module 9.1: nag qp [NP3245/3/pdf]

Optimization References

References

[1] Gill P E, Hammarling S, Murray W, Saunders M A and Wright M H (1986) User’s guide for LSSOL
(Version 1.0) Report SOL 86-1 Department of Operations Research, Stanford University

[2] Gill P E and Murray W (1978) Numerically stable methods for quadratic programming Math.
Programming 14 349–372

[3] Gill P E, Murray W, Saunders M A and Wright M H (1984) Procedures for optimization problems
with a mixture of bounds and general linear constraints ACM Trans. Math. Software 10 282–298

[4] Gill P E, Murray W, Saunders M A and Wright M H (1989) A practical anti-cycling procedure for
linearly constrained optimization Math. Programming 45 437–474

[5] Gill P E, Murray W, Saunders M A and Wright M H (1991) Inertia-controlling methods for general
quadratic programming SIAM Rev. 33 1–36

[6] Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

[7] Pardalos P M and Schnitger G (1988) Checking local optimality in constrained quadratic
programming is NP-hard Operations Research Letters 7 33–35

[NP3245/3/pdf] Module 9.1: nag qp 9.1.43

