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Procedure: nag cheb 1d fit

1 Description

nag cheb 1d fit computes weighted least-squares polynomial approximations of degrees 0, 1, . . . , n, in
Chebyshev-series form ai,j , for i = 0, 1, . . . , n; j = 0, 1, . . . , i, to the set of data points (xr, fr) with
weights wr, for r = 1, 2, . . . ,m. The weights are by default set to unity, but you may specify non-default
values by supplying the optional argument wt.

The polynomial approximation of degree i is represented as

pi(x) = 0.5ai,0T0(x̄) + ai,1T1(x̄) + ai,2T2(x̄) + · · ·+ ai,iTi(x̄),

where Tj(x̄) is the Chebyshev polynomial of the first kind of degree j with normalised argument x̄. This
argument lies in the range −1 to +1 and is related to the original variable x by the linear transformation

x̄ = (2x− (xmax + xmin))/(xmax − xmin).

Here xmax and xmin are respectively the largest and smallest values of xr.

2 Usage

USE nag cheb 1d

CALL nag cheb 1d fit(x, f, coeff [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

m ≥ 2 — the number of data points

0 ≤ n < m — the maximum degree required

3.1 Mandatory Arguments

x(m) — real(kind=wp), intent(in)

Input: the data points (the independent variables) xr, for r = 1, 2, . . . ,m.

Constraints: the elements of x must be in an increasing order.

f(m) — real(kind=wp), intent(in)

Input: the values of the dependent variables fr, for r = 1, 2, . . . ,m.

coeff(0 : n, 0 : n) — real(kind=wp), intent(out)

Output: the coefficients of Tj(x̄) in the approximating polynomial of degree i. coeff(i, j) contains
the coefficient ai,j , for i = 0, 1, . . . , n; j = 0, 1, . . . , i.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.
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wt(m) — real(kind=wp), intent(in), optional

Input: the values wr of the weights, for r = 1, 2, . . . ,m.

Note: advice on the choice of weights is given in Section 3.3 of the Chapter Introduction.

Default: wt = 1.0.

Constraints: wt(i) > 0.0, for i = 1, 2, . . . ,m.

resid(0 : n) — real(kind=wp), intent(out), optional

Output: resid(i) contains the root mean square residual si, for i = 0, 1, . . . , n, as described in
Section 6.1. In a satisfactory case, these si will decrease steadily as i increases and then settle
down to a fairly constant value. If the si values settle down in this way, it indicates that the closest
polynomial approximation justified by the data has been achieved. The degree which first gives
the approximately constant value of si the appropriate degree to select. For more detail, see the
Further Details section of this module document.

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

320 The procedure was unable to allocate enough memory.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The polynomial approximation of degree i is represented as

pi(x) = 0.5ai,0T0(x̄) + ai,1T1(x̄) + ai,2T2(x̄) + · · ·+ ai,iTi(x̄),

where Tj(x̄) is the Chebyshev polynomial of the first kind of degree j with normalised argument x̄.

The approximation of degree i has the property that it minimizes σi the sum of squares of the weighted
residuals εr, where

εr = wr(fr − pi(xr))

and pi(xr) is the value of the polynomial approximation of degree i at the rth data point.

For i = 0, 1, . . . , n, the procedure produces the values of ai,j , for j = 0, 1, . . . , i, together with the value

of the root mean square residual si =
√

σi

m−i−1 . In the case m = i + 1 the procedure sets the value

of si to zero. The root-mean-square residual are provided to assist the user in deciding the degree of
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polynomial which satisfactorily fits the data (for more details see the Further Details section of this
module document).

The method employed is due to Forsythe [6] and is based upon the generation of a set of polynomials
orthogonal with respect to summation over the normalised data set. The extensions due to Clenshaw
[1] to represent these polynomials as well as the approximating polynomials in their Chebyshev-series
forms are incorporated. The modifications suggested by Reinsch and Gentleman (see [7]) to the method
originally employed by Clenshaw for evaluating the orthogonal polynomials from their Chebyshev-series
representations are used to give greater numerical stability.

For further details of the algorithm and its use see [4] and [5].

Subsequent evaluation of the Chebyshev-series representations of the polynomial approximations should
be carried out using nag cheb 1d eval.

The approximating polynomials may exhibit undesirable oscillations (particularly near the ends of the
range) if the maximum degree n exceeds a critical value which depends on the number of data points m
and their relative positions. As a rough guide, for equally-spaced data, this critical value is about 2

√
m.

For further details see Hayes [8] page 60.

6.2 Timing

The time taken by the procedure is approximately proportional to mn(n+ 10).
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Procedure: nag cheb 1d interp

1 Description

nag cheb 1d interp computes the coefficients aj , for j = 0, 1, . . . , n, in the Chebyshev-series

0.5a0T0(x̄) + a1T1(x̄) + a2T2(x̄) + · · ·+ anTn(x̄),

which interpolates the data fr at the points

x̄r = cos(rπ/n), r = 0, 1, . . . , n.

Here Tj(x̄) denotes the Chebyshev polynomial of the first kind of degree j with argument x̄. The use of
these points minimizes the risk of unwanted fluctuations in the polynomial and is recommended when the
data abscissae can be chosen by the user, e.g., when the data is given as a graph. For further advantages
of this choice of points, see Clenshaw [3].

In terms of the user’s original variables, x say, the values of x at which the data fr are to be provided
are

xr = 0.5(xmax − xmin) cos(rπ/n) + 0.5(xmax + xmin), r = 0, 1, . . . , n

where xmax and xmin are respectively the upper and lower ends of the range of x over which the user
wishes to interpolate.

Truncation of the resulting series after the term involving ai, say, yields a least-squares approximation
to the data. This approximation, p(x̄), say, is the polynomial of degree i which minimizes

0.5ε20 + ε21 + ε22 + · · ·+ ε2n−1 + 0.5ε2n,

where the residual εr = p(x̄r)− fr, for r = 0, 1, . . . , n.

2 Usage

USE nag cheb 1d

[value =] nag cheb 1d interp(f [, optional arguments])

The function returns an array-valued result of type real(kind=wp) and the same SIZE as f.
nag cheb 1d interp(0 : n) contains the coefficients of Tj(x̄) in the approximating polynomial of degree
n. Specifically, nag cheb 1d interp(i) contains the coefficient ai, for i = 0, 1, . . . , n.

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

n ≥ 1 — the degree of the interpolating polynomial = number of data points − 1
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3.1 Mandatory Argument

f(0 : n) — real(kind=wp), intent(in)

Input: the values of the function at the special set of points. For r = 0, 1, . . . , n, f(r) must contain
fr the value of the dependent variable (ordinate) corresponding to the value x̄r = cos(rπ/n) of the
independent variable (abscissa) x̄, or equivalently to the value

xr = 0.5(xmax − xmin) cos(rπ/n) + 0.5(xmax + xmin)

of the user’s original variable x. Here xmax and xmin are respectively the upper and lower ends of
the range over which the user wishes to interpolate.

3.2 Optional Argument

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

302 An array argument has an invalid shape.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The method used is based on the application of the three-term recurrence relation due to Clenshaw [1]
for the evaluation of the defining expression for the Chebyshev coefficients (see, e.g., Clenshaw [3]). The
modifications to this recurrence relation suggested by Reinsch and Gentleman (see [7]) are used to give
greater numerical stability.

For further details of the algorithm and its use see [4] and [5].

The algorithm provides the coefficients aj , for j = 0, 1, . . . , n, in the Chebyshev series form of the
polynomial of degree n which interpolates the data. In a satisfactory case, the later coefficients in
this series, after some initial significant ones, will exhibit a random behaviour, some positive and some
negative, with a size about that of the errors in the data or less. All these ‘random’ coefficients should
be discarded, and the remaining (initial) terms of the series be taken as the approximating polynomial.
This truncated polynomial is a least-squares fit to the data, though with the point at each end of the
range given half the weight of each of the other points. The following example illustrates a case in which
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degree 5 or perhaps 6 would be chosen for the approximating polynomial.

j aj
0 9.315
1 −8.030
2 0.303
3 −1.483
4 0.256
5 −0.386
6 0.076
7 0.022
8 0.014
9 0.005

10 0.011
11 −0.040
12 0.017
13 −0.054
14 0.010
15 −0.034
16 −0.001

Basically, the value of n used needs to be large enough to exhibit the type of behaviour illustrated in
the above example. A value of 16 is suggested as being satisfactory for very many practical problems,
the required cosine values for this value of n being given in Cox and Hayes [4], page 11. If a satisfactory
fit is not obtained, a spline fit should be tried, or, if the user is prepared to accept a higher degree
of polynomial, n should be increased: doubling n is an advantageous strategy, since the set of values
cos(πr/n), for r = 0, 1, . . . , n, contains all the values of cos(πr/2n), for r = 0, 1, . . . , 2n, so that the old
data set will then be re-used in the new one. Thus, for example, increasing n from 16 to 32 will require
only 16 new data points, a smaller number than for any other increase of n. If data points are particularly
expensive to obtain, a smaller initial value than 16 may be tried, provided the user is satisfied that the
number is adequate to reflect the character of the underlying relationship. Again, the number should be
doubled if a satisfactory fit is not obtained.

Subsequent evaluation of the Chebyshev-series representations of the polynomial approximations,
perhaps truncated after an appropriate number of terms, should be performed by nag cheb 1d eval.

6.2 Accuracy

The rounding errors committed are such that the computed coefficients are exact for a slightly perturbed
set of ordinates fi+δfi. The ratio of the sum of the absolute values of the δfi to the sum of the absolute
values of the fi is less than a small multiple of nε, where ε is EPSILON(1.0 wp) used in nag gen mat inv.

6.3 Timing

The time taken by the procedure is approximately proportional to n2 + 30.
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Procedure: nag cheb 1d fit con

1 Description

nag cheb 1d fit con computes least-squares polynomial approximations of degrees up to n, for the
set of data points (xr, fr) with weights wr, for r = 1, 2, . . . ,m. At each of the values con x(r), for
r = 1, 2, . . . , l, of the independent variable x, the approximations and their derivatives up to order cr are
constrained to have the user-specified values con f(r, 0 : cr). If the total number of constraints is given
by nc then the Chebyshev-series coefficients are ai,j , for i = nc, nc+1, . . . , n; j = 0, 1, . . . , i. The weights
are by default set to unity, but you may specify non-default values by supplying the optional argument
wt.

The polynomial approximation of degree i can be written as

pi(x) = 0.5ai,0 + ai,1T1(x̄) + · · ·+ ai,jTj(x̄) + · · ·+ aiiTi(x̄)

where Tj(x̄) is the Chebyshev polynomial of the first kind of degree j with normalised argument x̄. This
argument lies in the range −1 to +1 and is related to the original variable x by the linear transformation

x̄ = (2x− (xmax + xmin))/(xmax − xmin)

where xmin and xmax are respectively the lower and upper end-points of the interval of x over which the
polynomials are to be defined.

The polynomial approximation of degree i can be written as

pi(x) = 0.5ai,0 + ai,1T1(x̄) + · · ·+ ai,jTj(x̄) + · · ·+ aiiTi(x̄)

where Tj(x̄) is the Chebyshev polynomial of the first kind of degree j with normalised argument x̄.

2 Usage

USE nag cheb 1d

CALL nag cheb 1d fit con(x, f, con x, con level, con f, coeff [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

m ≥ 1 — the number of data points

l ≥ 1 — the number of constrained data points

d ≥ 0 — the highest-order derivative constrained (= MAXVAL(con level))

n — the maximum degree required

n must satisfy the constraints

nc ≤ n ≤ nc +md − 1,

where md is the number of distinct values in x with non-zero weights and nc is the total number of
constraints (nc = l + SUM(con level)).
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3.1 Mandatory Arguments

x(m) — real(kind=wp), intent(in)

Input: the data points (the independent variables) xr, for r = 1, 2, . . . ,m.

Constraints: the elements of x must be in non-decreasing order.

f(m) — real(kind=wp), intent(in)

Input: the values of the dependent variables fr, for r = 1, 2, . . . ,m.

con x(l) — real(kind=wp), intent(in)

Input: con x(r) must contain the rth value of the independent variable at which a constraint is
specified, for r = 1, 2, . . . , l.

Constraints: the elements of con x need not be ordered but must be distinct and satisfy xmin ≤
con x(r) ≤ xmax; see the optional arguments x min and x max for the definition of xmin and xmax.

con level(l) — integer, intent(in)

Input: con level(r) must contain cr, the order of the highest-order derivative specified at con x(r)
for r = 1, 2, . . . , l. cr = 0 implies that the value of the approximation at con x(r) is specified, but
not that of any derivative.

Constraints: con level(r) ≥ 0, for r = 1, 2, . . . , l.

con f(l, 0 : d) — real(kind=wp), intent(in)

Input: the values which the approximating polynomials and their derivatives are required to take at
the points specified in con x. For each value of con x(r), con f(r, 0 : cr) contains the required value
of the approximation, its first derivative, second derivative , . . . , crth derivative, for r = 1, 2, . . . , l.

coeff(0 : n, 0 : n) — real(kind=wp), intent(out)

Output: the coefficients of Tj(x̄) in the approximating polynomial of degree i. coeff(i, j) contains
the coefficient ai,j , for i = nc, nc + 1, . . . , n; j = 0, 1, . . . , i.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

x min — real(kind=wp), intent(in), optional

x max — real(kind=wp), intent(in), optional

Input: the lower and upper end-points, respectively, of the interval [xmin, xmax]. Unless there are
specific reasons to the contrary, it is recommended that x min and x max be set respectively to the
lowest and highest value among the x and con x. This avoids the danger of extrapolation provided
there is a constraint point or data point with non-zero weight at each end-point.

Default:

x min = MIN(xf ,MINVAL(con x)), where xf is the first value of x with non-zero weight,

x max = MAX(xl,MAXVAL(con x)), where xl is the last value of x with non-zero weight.

Constraints: x max > x min.

wt(m) — real(kind=wp), intent(in), optional

Input: the values wr of the weights, for r = 1, 2, . . . ,m.

Note: advice on the choice of weights is given in Section 3.3 of the Chapter Introduction.

Default: wt = 1.0.

Constraints: wt(r) ≥ 0.0, for r = 1, 2, . . . ,m.
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resid(0 : n) — real(kind=wp), intent(out), optional

Output: resid(i) contains si, for i = nc, nc+1, . . . , n, the root-mean-square residual corresponding
to the approximating polynomial of degree i. In the case where the number of data points with non-
zero weight is equal to n+1−nc, si is indeterminate: the procedure sets it to zero. In a satisfactory
case, these si will decrease steadily as i increases and then settle down to a fairly constant value. If
the si values settle down in this way, it indicates that the closest polynomial approximation justified
by the data has been achieved. The degree which first gives the approximately constant value of
si the appropriate degree to select. For more information, see the Further Details section of this
module document.

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 The supplied problem is too ill-conditioned.

The polynomials µ(x) and/or ν(x) cannot be determined. This may occur when the
constraint points are very close together, or large in number, or when an attempt is
made to constrain high-order derivatives.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 3 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The polynomial approximation of degree i can be written as

pi(x) = 0.5ai,0 + ai,1T1(x̄) + · · ·+ ai,jTj(x̄) + · · ·+ ai,iTi(x̄)

where Tj(x̄) is the Chebyshev polynomial of the first kind of degree j with normalised argument x̄.

The approximation of degree i has the property that, subject to the imposed constraints, it minimizes
Σi, the sum of the squares of the weighted residuals εr, for r = 1, 2, . . . ,m where

εr = wr(fr − pi(xr))
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and pi(xr) is the value of the polynomial approximation of degree i at the rth data point.

For i = nc, nc + 1, . . . , n, the procedure produces the values of the coefficients ai,j , for j = 0, 1, . . . , i,
together with the value of the root mean square residual, si, defined as

√

∑

i

(md+nc−i−1) ,

where md is the number of distinct data points with non-zero weight. The root-mean-square residual
is provided to assist the user in deciding the degree of polynomial which satisfactorily fits the data (for
more information see Further Details section of this module document).

First the procedure determines a polynomial µ(x̄), of degree nc−1, which satisfies the given constraints,
and a polynomial ν(x̄), of degree nc, which has value (or derivative) zero wherever a constrained value
(or derivative) is specified. It then fits fr − µ(xr), for r = 1, 2, . . . ,m with polynomials of the required
degree in x̄ each with factor ν(x̄). Finally the coefficients of µ(x̄) are added to the coefficients of these
fits to give the coefficients of the constrained polynomial approximations to the data points (xr, fr), for
r = 1, 2, . . . ,m. The method employed is given in Hayes [8]: it is an extension of Forsythe’s orthogonal
polynomials method (see [6]) as modified by Clenshaw [2].

Values of the approximations may subsequently be computed using nag cheb 1d eval.

To carry out a least-squares polynomial fit without constraints, use nag cheb 1d fit.

6.2 Timing

The time taken by the procedure to form the interpolating polynomial is approximately proportional
to nc

3, and that to form the approximating polynomials is very approximately proportional to
m(n+ 1)(n+ 1− nc).

8.5.14 Module 8.5: nag cheb 1d [NP3506/4]



Curve and Surface Fitting nag cheb 1d eval

Procedure: nag cheb 1d eval

1 Description

nag cheb 1d eval evaluates the polynomial

0.5a0T0(x̄) + a1T1(x̄) + a2T2(x̄) + · · ·+ anTn(x̄)

for a single value or an array of values. x̄ is the normalised value and is related to the original x by the
linear transformation

x̄ = (2x− (xmax + xmin))/(xmax − xmin).

x must be in the interval [xmin, xmax].

2 Usage

USE nag cheb 1d

[value =] nag cheb 1d eval(a, x [, optional arguments])

The function result is of type real(kind=wp). If x is a scalar the result will be a scalar. If x is a rank-1
array the result will be a rank-1 array with the same size as x.

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

n ≥ 1 — the degree of the polynomial

m ≥ 1 — the number of evaluation points

3.1 Mandatory Arguments

a(0 : n) — real(kind=wp), intent(in)

Input: the coefficients of Tj(x̄) in the approximating polynomial of degree n. a(i) contains the
coefficient ai, for i = 0, 1, . . . , n.

x(m) / x — real(kind=wp), intent(in)

Input: the point(s) xr, for r = 1, 2, . . . ,m, at which the polynomial is to be evaluated.

Note: if n = 1, x may be declared as a scalar.

Constraints: x min ≤ x ≤ x max.

x min — real(kind=wp), intent(in)

x max — real(kind=wp), intent(in)

Input: the lower and upper end-points, respectively, of the interval [xmin, xmax].

Constraints: x max > x min.
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3.2 Optional Argument

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

304 Invalid presence of an optional argument.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.
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Procedure: nag cheb 1d deriv

1 Description

nag cheb 1d deriv determines the coefficients in the Chebyshev-series representation of the derivative
of a polynomial given in Chebyshev-series form.

Given the coefficients ai, for i = 0, 1, . . . , n, of a polynomial p(x) of degree n, where

p(x) = 0.5a0 + a1T1(x̄) + · · ·+ anTn(x̄)

the procedure returns the coefficients āi, for i = 0, 1, . . . , n− 1, of the polynomial q(x) of degree n− 1,
where

q(x) =
dp(x)

dx
= 0.5ā0 + ā1T1(x̄) + · · ·+ ān−1Tn−1(x̄).

Here Tj(x̄) denotes the Chebyshev polynomial of the first kind of degree j with argument x̄. It is assumed
that the normalised variable x̄ in the interval [−1,+1] was obtained from the user’s original variable x
in the interval [xmin, xmax] by the linear transformation

x̄ = (2x− (xmax + xmin))/(xmax − xmin)

and that the user requires the derivative to be with respect to the variable x. If the derivative with
respect to x̄ is required, set xmax = 1 and xmin = −1.

2 Usage

USE nag cheb 1d

[value =] nag cheb 1d deriv(a, x min, x max [, optional arguments])

The function returns an array-valued result of type real(kind=wp) with SIZE(a) − 1 elements.
nag cheb 1d deriv(0 : n − 1) contains the Chebyshev coefficients of the derived polynomial q(x) (the
differentiation is with respect to the variable x); see Section 6.1. Specifically, nag cheb 1d deriv(i)
contains the coefficient āi, for i = 0, 1, . . . , n− 1.

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

n ≥ 0 — the degree of the polynomial

3.1 Mandatory Arguments

a(0 : n) — real(kind=wp), intent(in)

Input: the coefficients of Tj(x̄) in the approximating polynomial of degree n. a(i) contains the
coefficient ai, for i = 0, 1, . . . , n.

x min — real(kind=wp), intent(in)

x max — real(kind=wp), intent(in)

Input: the lower and upper end-points, respectively, of the interval [xmin, xmax].

Constraints: x max > x min.
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3.2 Optional Argument

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The method employed is that of [9], Chapter 8, modified to obtain the derivative with respect to x.
Initially setting ān+1 = ān = 0, the procedure forms successively

āi−1 = āi+1 +
2

xmax − xmin
2iai, i = n, n− 1, . . . , 1.

Values of the derivative can subsequently be computed, from the coefficients obtained, by using
nag cheb 1d eval.

6.2 Accuracy

There is always a loss of precision in numerical differentiation, in this case associated with the
multiplication by 2i in the above formula for āi−1.

6.3 Timing

The time taken by the procedure to form the interpolating polynomial is approximately proportional to
n.
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Procedure: nag cheb 1d intg

1 Description

nag cheb 1d intg determines the coefficients in the Chebyshev-series representation of the indefinite
integral of a polynomial given in Chebyshev-series form.

Given the coefficients ai, for i = 0, 1, . . . , n, of a polynomial p(x) of degree n, where

p(x) = 0.5a0 + a1T1(x̄) + · · ·+ anTn(x̄),

this procedure returns the coefficients a′i, for i = 0, 1, . . . , n+ 1, of the polynomial q(x) of degree n+ 1,
where

q(x) = 0.5a′0 + a′1T1(x̄) + · · ·+ a′n+1Tn+1(x̄),

and

q(x) =

∫

p(x) dx.

Here Tj(x̄) denotes the Chebyshev polynomial of the first kind of degree j with argument x̄. It is assumed
that the normalised variable x̄ in the interval [−1,+1] was obtained from the user’s original variable x
in the interval [xmin, xmax] by the linear transformation

x̄ = (2x− (xmax + xmin))/(xmax − xmin)

and that the user requires the integral to be with respect to the variable x. If the integral with respect
to x̄ is required, set xmax = 1 and xmin = −1.

2 Usage

USE nag cheb 1d

[value =] nag cheb 1d intg(a, x min, x max [, optional arguments])

The function returns an array-valued result of type real(kind=wp) with SIZE(a) + 1 elements.
nag cheb 1d intg(0 : n+ 1) contains the Chebyshev coefficients of the integral q(x) (the integration is
with respect to the variable x); see Section 6.1. Specifically, nag cheb 1d intg(i) contains the coefficient
a′i, for i = 0, 1, . . . , n+ 1.

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

n ≥ 0 — the degree of the polynomial

3.1 Mandatory Arguments

a(0 : n) — real(kind=wp), intent(in)

Input: the coefficients of Tj(x̄) in the approximating polynomial of degree n. a(i) contains the
coefficient ai, for i = 0, 1, . . . , n.
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x min — real(kind=wp), intent(in)

x max — real(kind=wp), intent(in)

Input: the lower and upper end-points, respectively, of the interval [xmin, xmax].

Constraints: x max > x min.

3.2 Optional Argument

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The method employed is that of Chebyshev-series [9], Chapter 8, modified for integrating with respect
to x. Initially taking an+1 = an+2 = 0, the procedure forms successively

a′i =
ai−1 − ai+1

2i
×
xmax − xmin

2
, i = n+ 1, n, . . . , 1.

The constant coefficient a′0 is chosen so that q(xmin) is equal to zero.

Values of definite integrals can subsequently be computed, from the coefficients obtained, by using
nag cheb 1d eval twice.

6.2 Accuracy

In general there is a gain in precision in numerical integration, in this case associated with the division
by 2i in the above formula for a′i.

6.3 Timing

The time taken by the procedure to form the interpolating polynomial is approximately proportional to
n.
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Example 1: Polynomial Fit, Arbitrary Data Points

Determine weighted least-squares polynomial approximations of degrees n = 0, 1, 2, 3 and 4, in
Chebyshev-series form, to a set of m = 11 prescribed data points.

For the approximation of degrees 4 and 3, determine the Chebyshev-series for first derivatives, second
derivatives and indefinite integral. It then tabulates the data and the corresponding values of the
approximating polynomial, together with the residual errors, and also the values of the approximating
polynomial at points half-way between each pair of adjacent data points. The first and second derivatives
are also tabulated for all the points. Finally, evaluate the integral of the polynomials from x1 to xm−1.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_cheb_1d_ex01

! Example Program Text for nag_cheb_1d

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_cheb_1d, ONLY : nag_cheb_1d_eval, nag_cheb_1d_fit, &

nag_cheb_1d_deriv, nag_cheb_1d_intg

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC ABS, KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, j, k, l, m, n

REAL (wp) :: deriv_1, deriv_2, f_calc, x_max, x_min, x_var

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: a_deriv_1(:), a_deriv_2(:), a_intg(:), &

coeff(:,:), f(:), resid(:), wt(:), x(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_cheb_1d_ex01’

READ (nag_std_in,*) ! Skip heading in data file

! Read the size of data

READ (nag_std_in,*) m

! Read the maximum degree of the polynomial

READ (nag_std_in,*) n

ALLOCATE (coeff(0:n,0:n),f(m),x(m),wt(m),resid(0:n),a_deriv_1(0:n-1), &

a_deriv_2(0:n-2),a_intg(0:n+1)) ! Allocate storage

! Read in problem data

DO i = 1, m

READ (nag_std_in,*) x(i), f(i), wt(i)

END DO

! Determine the fit for degrees up to n

CALL nag_cheb_1d_fit(x,f,coeff,wt=wt,resid=resid)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’ Degree R.M.S. Chebyshev coeff A(j)’

WRITE (nag_std_out,*) ’ residual j=0 &
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& j=1 j=2 j=3 j=4’

DO i = 0, n

WRITE (nag_std_out,’(I6,1p,e14.2,2x,0p,6F10.4)’) i, resid(i), &

(coeff(i,j),j=0,i)

END DO

x_min = x(1)

x_max = x(m)

l = n

DO k = 1, 2

! Determine coefficients for first derivatives

a_deriv_1(:l-1) = nag_cheb_1d_deriv(coeff(l,:l),x_min,x_max)

! Determine coefficients for second derivatives

a_deriv_2(:l-2) = nag_cheb_1d_deriv(a_deriv_1(:l-1),x_min,x_max)

! Determine coefficients for indefinite integral

a_intg(:l+1) = nag_cheb_1d_intg(coeff(l,:l),x_min,x_max)

WRITE (nag_std_out,’(//A,i3)’) ’ Using degree ’, l

WRITE (nag_std_out,’(A)’) ’ ================’

WRITE (nag_std_out,’(/A,6I10)’) ’ Coefficients of ’, (j,j=0,l+1)

WRITE (nag_std_out,’(A,I2,A,5F10.4)’) ’ Polynomial of degree’, l, &

’ ’, coeff(l,:l)

WRITE (nag_std_out,’(A,5F10.4)’) ’ It’’s first derivatives ’, &

a_deriv_1(:l-1)

WRITE (nag_std_out,’(A,5F10.4)’) ’ It’’s second derivatives ’, &

a_deriv_2(:l-2)

WRITE (nag_std_out,’(A,6F10.4)’) ’ It’’s indefinite integral’, &

a_intg(:l+1)

WRITE (nag_std_out,*)

WRITE (nag_std_out,’(1x,A,I4)’) &

’Polynomial approximation, residuals and derivatives using degree’, l

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’ Abscissa Weight Ordinate &

& Polynomial Residual 1st Deriv 2nd Deriv’

DO i = 1, m

x_var = x(i)

f_calc = nag_cheb_1d_eval(coeff(l,:l),x_var,x_min,x_max)

deriv_1 = nag_cheb_1d_eval(a_deriv_1(:l-1),x_var,x_min,x_max)

deriv_2 = nag_cheb_1d_eval(a_deriv_2(:l-2),x_var,x_min,x_max)

WRITE (nag_std_out,’(4f11.4,e11.2,2f11.4)’) x_var, wt(i), f(i), &

f_calc, ABS(f(i)-f_calc), deriv_1, deriv_2

IF (i==m) EXIT

x_var = 0.5_wp*(x(i)+x(i+1))

f_calc = nag_cheb_1d_eval(coeff(l,:l),x_var,x_min,x_max)

deriv_1 = nag_cheb_1d_eval(a_deriv_1(:l-1),x_var,x_min,x_max)

deriv_2 = nag_cheb_1d_eval(a_deriv_2(:l-2),x_var,x_min,x_max)

WRITE (nag_std_out,’(f11.4,22x,f11.4,11x,2f11.4)’) x_var, f_calc, &

deriv_1, deriv_2

END DO

WRITE (nag_std_out,*)

WRITE (nag_std_out,fmt=’(1x,A,F3.1,A,F3.1,A,F10.4)’) &

’ Definite Integral (’, x(1), ’ .. ’, x(m-1), ’) = ’, &

nag_cheb_1d_eval(a_intg(:l+1),x(m-1),x_min=x_min,x_max=x_max) - &

nag_cheb_1d_eval(a_intg(:l+1),x(1),x_min=x_min,x_max=x_max)

l = l - 1

END DO

8.5.22 Module 8.5: nag cheb 1d [NP3506/4]



Curve and Surface Fitting Example 1

DEALLOCATE (coeff,f,x,wt,resid,a_deriv_1,a_deriv_2, &

a_intg) ! Deallocate storage

END PROGRAM nag_cheb_1d_ex01

2 Program Data

Example Program Data for nag_cheb_1d_ex01

11 : m (size of data)

4 : n (maximum degree of polynomial)

1.00 10.40 1.00 x(1),f(1),wt(1)

2.10 7.90 1.00

3.10 4.70 1.00

3.90 2.50 1.00

4.90 1.20 1.00

5.80 2.20 0.80

6.50 5.10 0.80

7.10 9.20 0.70

7.80 16.10 0.50

8.40 24.50 0.30

9.00 35.30 0.20 x(m),f(m),wt(m)

3 Program Results

Example Program Results for nag_cheb_1d_ex01

Degree R.M.S. Chebyshev coeff A(j)

residual j=0 j=1 j=2 j=3 j=4

0 4.07E+00 12.1740

1 4.28E+00 12.2954 0.2740

2 1.69E+00 20.7345 6.2016 8.1876

3 6.82E-02 24.1429 9.4065 10.8400 3.0589

4 4.71E-02 24.0776 9.3202 10.7729 2.9965 -0.0855

Using degree 4

================

Coefficients of 0 1 2 3 4 5

Polynomial of degree 4 24.0776 9.3202 10.7729 2.9965 -0.0855

It’s first derivatives 9.1549 10.6018 4.4948 -0.1710

It’s second derivatives 5.0443 4.4948 -0.2566

It’s indefinite integral 51.9846 26.6095 6.3236 7.2389 1.4983 -0.0342

Polynomial approximation, residuals and derivatives using degree 4

Abscissa Weight Ordinate Polynomial Residual 1st Deriv 2nd Deriv

1.0000 1.0000 10.4000 10.4095 0.95E-02 -1.3586 -2.2292

1.5500 9.3631 -2.3776 -1.4797

2.1000 1.0000 7.9000 7.8687 0.31E-01 -2.9898 -0.7497

2.6000 6.3072 -3.2023 -0.1029

3.1000 1.0000 4.7000 4.7196 0.20E-01 -3.0954 0.5279

3.5000 3.5369 -2.7852 1.0210

3.9000 1.0000 2.5000 2.5174 0.17E-01 -2.2799 1.5039

4.4000 1.5902 -1.3800 2.0930

4.9000 1.0000 1.2000 1.1858 0.14E-01 -0.1896 2.6661

5.3500 1.3875 1.1236 3.1681

5.8000 0.8000 2.2000 2.2305 0.31E-01 2.6598 3.6572

6.1500 3.3930 4.0050 4.0286

6.5000 0.8000 5.1000 5.0490 0.51E-01 5.4788 4.3921

6.8000 6.8949 6.8424 4.6975
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7.1000 0.7000 9.2000 9.1635 0.36E-01 8.2968 4.9971

7.4500 12.3805 10.1059 5.3393

7.8000 0.5000 16.1000 16.2515 0.15E+00 12.0334 5.6737

8.1000 20.1210 13.7776 5.9540

8.4000 0.3000 24.5000 24.5264 0.26E-01 15.6052 6.2286

8.7000 29.4923 17.5142 6.4974

9.0000 0.2000 35.3000 35.0429 0.26E+00 19.5030 6.7604

Definite Integral (1.0 .. 8.4) = 49.8745

Using degree 3

================

Coefficients of 0 1 2 3 4

Polynomial of degree 3 24.1429 9.4065 10.8400 3.0589

It’s first derivatives 9.2916 10.8400 4.5883

It’s second derivatives 5.4200 4.5883

It’s indefinite integral 51.9108 26.6058 6.3476 7.2267 1.5294

Polynomial approximation, residuals and derivatives using degree 3

Abscissa Weight Ordinate Polynomial Residual 1st Deriv 2nd Deriv

1.0000 1.0000 10.4000 10.4461 0.46E-01 -1.6059 -1.8783

1.5500 9.3106 -2.4655 -1.2474

2.1000 1.0000 7.9000 7.7977 0.10E+00 -2.9781 -0.6165

2.6000 6.2555 -3.1430 -0.0430

3.1000 1.0000 4.7000 4.7025 0.25E-02 -3.0211 0.5306

3.5000 3.5488 -2.7171 0.9894

3.9000 1.0000 2.5000 2.5533 0.53E-01 -2.2296 1.4482

4.4000 1.6435 -1.3621 2.0218

4.9000 1.0000 1.2000 1.2390 0.39E-01 -0.2078 2.5953

5.3500 1.4257 1.0762 3.1115

5.8000 0.8000 2.2000 2.2425 0.42E-01 2.5925 3.6277

6.1500 3.3803 3.9325 4.0292

6.5000 0.8000 5.1000 5.0116 0.88E-01 5.4129 4.4306

6.8000 6.8400 6.7937 4.7748

7.1000 0.7000 9.2000 9.0982 0.10E+00 8.2778 5.1189

7.4500 12.3171 10.1397 5.5204

7.8000 0.5000 16.1000 16.2123 0.11E+00 12.1420 5.9218

8.1000 20.1266 13.9702 6.2660

8.4000 0.3000 24.5000 24.6048 0.10E+00 15.9016 6.6101

8.7000 29.6779 17.9363 6.9542

9.0000 0.2000 35.3000 35.3769 0.77E-01 20.0741 7.2983

Definite Integral (1.0 .. 8.4) = 49.7956
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Example 2: Polynomial Interpolation for Special Data Points

This example is used to determine the Chebyshev coefficients of the polynomial which interpolates the
function f(x) = ex/2−0.3 in the range [−1.4, 2.5]. The function is first evaluated at the data points

xr = 0.5(xmax − xmin) cos(rπ/n) + 0.5(xmax + xmin), r = 0, 1, . . . , n

using n = 10. The procedure nag cheb 1d interp is used to determine the Chebyshev coefficients.

Evaluate, for comparison with the values of f(xr), the resulting Chebyshev series at xr, for r = 0, 1, . . . , 10
using a truncated polynomial (degree 6).

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_cheb_1d_ex02

! Example Program Text for nag_cheb_1d

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_out

USE nag_cheb_1d, ONLY : nag_cheb_1d_eval, nag_cheb_1d_interp

USE nag_math_constants, ONLY : nag_pi

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC ABS, COS, EXP, KIND, REAL

! .. Parameters ..

INTEGER, PARAMETER :: n = 10

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, j

REAL (wp) :: pi, x_max, x_min

! .. Local Arrays ..

REAL (wp) :: a(0:n), f(0:n), fit(0:n), x(0:n)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_cheb_1d_ex02’

pi = nag_pi(0.0_wp)

x_min = -1.4_wp

x_max = 2.6_wp

! Evaluating

x = 0.5_wp*(x_max-x_min)*COS((pi/REAL(n,kind=wp))*(/(i,i=0,n)/)) + &

0.5_wp*(x_max+x_min)

! Evaluating f(x)

f = EXP(0.5_wp*x-0.3_wp)

a = nag_cheb_1d_interp(f)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’ Chebyshev’

WRITE (nag_std_out,*) ’ j coefficient a(j)’

WRITE (nag_std_out,’(1X,I3,F14.7)’) (j,a(j),j=0,n)

fit = nag_cheb_1d_eval(a(0:6),x,x_min=x_min,x_max=x_max)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’ Fit using polynomial of degree 6’

WRITE (nag_std_out,*) ’ Abscissa Ordinate Fit Residual’
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WRITE (nag_std_out,fmt=’(1x, 3f11.4,E12.3)’) (x(i),f(i),fit(i),ABS(f( &

i)-fit(i)),i=0,n)

END PROGRAM nag_cheb_1d_ex02

2 Program Data

None.

3 Program Results

Example Program Results for nag_cheb_1d_ex02

Chebyshev

j coefficient a(j)

0 2.5321318

1 1.1303182

2 0.2714953

3 0.0443368

4 0.0054742

5 0.0005429

6 0.0000450

7 0.0000032

8 0.0000002

9 0.0000000

10 0.0000000

Fit using polynomial of degree 6

Abscissa Ordinate Fit Residual

2.6000 2.7183 2.7183 0.341E-05

2.5021 2.5884 2.5884 0.205E-05

2.2180 2.2457 2.2457 0.917E-06

1.7756 1.8000 1.8000 0.310E-05

1.2180 1.3621 1.3621 0.274E-05

0.6000 1.0000 1.0000 0.199E-06

-0.0180 0.7342 0.7342 0.242E-05

-0.5756 0.5556 0.5556 0.297E-05

-1.0180 0.4453 0.4453 0.104E-05

-1.3021 0.3863 0.3863 0.173E-05

-1.4000 0.3679 0.3679 0.301E-05
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Example 3: Polynomial Fit, Arbitrary

Data Points and Constraints

The example program reads data in the following order:

• m, n, l and d

the number of data points, the maximum degree required, the number of constrained data points
and the highest-order derivative constrained respectively

• (x(i), f(i), i = 1,m)

the data points.

• (con level(i), con x(i), con f(i, 0 : con level(i)), i = 1, l)

for each variable at which a constraint is specified, con x(i), the value of the highest-order derivative
specified, con level(i), and the values which the approximating polynomials and their derivatives
are required to take con f(i, 0 : con level(i))

The program is written in a generalized form which will read any number of data sets.

The data set supplied specifies 5 data points in the interval [0.0,4.0] with unit weights, to which are to
be fitted polynomials, p, of degrees up to 4, subject to the 3 constraints:
For the approximation of degree 4, the Chebyshev-series for first derivatives is calculated. It then
tabulates the data and the corresponding values of the approximating polynomial, together with the
residual errors, and also the values of the first derivatives for the main data and constraints.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_cheb_1d_ex03

! Example Program Text for nag_cheb_1d

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_cheb_1d, ONLY : nag_cheb_1d_eval, nag_cheb_1d_fit_con, &

nag_cheb_1d_deriv

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC ABS, KIND, MAX, MAXVAL, MIN, MINVAL, SUM

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: d, i, l, m, n, np

REAL (wp) :: deriv, fit, x_max, x_min

! .. Local Arrays ..

INTEGER, ALLOCATABLE :: con_level(:)

REAL (wp), ALLOCATABLE :: a_deriv(:), coeff(:,:), con_f(:,:), con_x(:), &

f(:), resid(:), x(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_cheb_1d_ex03’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) m, n, l, d

ALLOCATE (x(m),f(m),con_x(l),con_f(l,0:d),con_level(l),coeff(0:n,0:n), &

resid(0:n),a_deriv(0:n-1)) ! Allocate storage
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READ (nag_std_in,*) (x(i),f(i),i=1,m)

DO i = 1, l

READ (nag_std_in,*) con_level(i), con_x(i), con_f(i,0:con_level(i))

END DO

CALL nag_cheb_1d_fit_con(x,f,con_x,con_level,con_f,coeff,resid=resid)

x_min = MIN(x(1),MINVAL(con_x))

x_max = MAX(x(m),MAXVAL(con_x))

np = l + SUM(con_level)

a_deriv = nag_cheb_1d_deriv(coeff(n,:),x_min,x_max)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Degree RMS residual’

WRITE (nag_std_out,’(I5,1PE15.2)’) (i,resid(i),i=np,n)

WRITE (nag_std_out,*)

WRITE (nag_std_out,’(A,5I10)’) ’ Coefficients of ’, (i,i=0,n)

WRITE (nag_std_out,’(A,I2,A,5F10.5)’) ’ Fit of degree’, n, ’ ’, &

coeff(n,:)

WRITE (nag_std_out,’(A,5F10.5)’) ’ It’’s first derivatives ’, a_deriv

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) &

’ Evaluation at the data points (using fit of degree 4)’

WRITE (nag_std_out,*) &

’ x f Fit Residual 1st derive’

DO i = 1, m

fit = nag_cheb_1d_eval(coeff(n,:),x(i),x_min,x_max)

deriv = nag_cheb_1d_eval(a_deriv,x(i),x_min,x_max)

WRITE (nag_std_out,’(1X,3F11.4,1PE11.2,0PF11.4)’) x(i), f(i), fit, &

ABS(fit-f(i)), deriv

END DO

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) &

’ Evaluation at the constraints (using fit of degree 4)’

WRITE (nag_std_out,*) &

’ x f Fit Residual 1st derive Residual’

DO i = 1, l

fit = nag_cheb_1d_eval(coeff(n,:),con_x(i),x_min,x_max)

deriv = nag_cheb_1d_eval(a_deriv,con_x(i),x_min,x_max)

IF (con_level(i)==1) THEN

WRITE (nag_std_out,’(1X,3F11.4,1PE11.2,0PF11.4,1PE11.2)’) con_x(i), &

con_f(i,0), fit, ABS(fit-con_f(i,0)), deriv, ABS(deriv-con_f(i,1))

ELSE

WRITE (nag_std_out,’(1X,3F11.4,1PE11.2,0PF11.4)’) con_x(i), &

con_f(i,0), fit, ABS(fit-con_f(i,0)), deriv

END IF

END DO

DEALLOCATE (x,f,con_x,con_f,con_level,coeff,resid, &

a_deriv) ! Deallocate storage

END PROGRAM nag_cheb_1d_ex03
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2 Program Data

Example Program Data for nag_cheb_1d_ex03

5 4 2 1 : m, n, l, d

0.5 0.03

1.0 -0.75

2.0 -1.0

2.5 -0.1

3.0 1.75 : (x(i),f(i),i=1,m)

1 0.0 1.0 -2.0 : con_level(1), con_x(1), con_f(1,1:con_level(1)+1)

0 4.0 9.0 : con_level(2), con_x(2), con_f(2,1:con_level(2)+1)

3 Program Results

Example Program Results for nag_cheb_1d_ex03

Degree RMS residual

3 2.55E-03

4 2.94E-03

Coefficients of 0 1 2 3 4

Fit of degree 4 3.99803 3.49954 3.00100 0.50046 -0.00002

It’s first derivatives 5.00092 6.00193 1.50139 -0.00008

Evaluation at the data points (using fit of degree 4)

x f Fit Residual 1st derive

0.5000 0.0300 0.0310 1.02E-03 -1.8134

1.0000 -0.7500 -0.7508 7.81E-04 -1.2513

2.0000 -1.0000 -1.0020 2.00E-03 0.9991

2.5000 -0.1000 -0.0961 3.95E-03 2.6873

3.0000 1.7500 1.7478 2.17E-03 4.7508

Evaluation at the constraints (using fit of degree 4)

x f Fit Residual 1st derive Residual

0.0000 1.0000 1.0000 0.00E+00 -2.0000 8.88E-16

4.0000 9.0000 9.0000 0.00E+00 10.0037
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Further Details

1 Least-squares Polynomials: Arbitrary Data Points

nag cheb 1d fit fits to arbitrary data points, with arbitrary weights, polynomials of all degrees up to
a user-supplied maximum degree n. If the user is only seeking a low-degree polynomial, up to degree
5 or 6 say, then n = 10 is an appropriate value, providing there are about 20 data points or more. To
assist in deciding the degree of polynomial which satisfactorily fits the data, the procedure provides the
root-mean-square residual si for all degrees i = 0, 1, . . . , n. In a satisfactory case, these si will decrease
steadily as i increases and then settle down to a fairly constant value, as shown in the example:

i si
0 3.5215
1 0.7708
2 0.1861
3 0.0820
4 0.0554
5 0.0251
6 0.0264
7 0.0280
8 0.0277
9 0.0297

10 0.0271

If the si values settle down in this way, it indicates that the closest polynomial approximation justified by
the data has been achieved. The degree which first gives the approximately constant value of si (degree
5 in the example) is the appropriate degree to select. (Users who are prepared to accept a fit higher
than sixth degree should simply find a high enough value of n to enable the type of behaviour indicated
by the example to be detected: thus they should seek values of n for which at least 4 or 5 consecutive
values of si are approximately the same.) If the degree were allowed to go high enough, si would, in
most cases, eventually start to decrease again, indicating that the data points are being fitted too closely
and that undesirable fluctuations are developing between the points. In some cases, particularly with
a small number of data points, this final decrease is not distinguishable from the initial decrease in si.
In such cases, users may seek an acceptable fit by examining the graphs of several of the polynomials
obtained. Failing this, they may (a) seek a transformation of variables which improves the behaviour,
(b) try fitting a spline, or (c) provide more data points. If data can be provided simply by drawing an
approximating curve by hand and reading points from it, use the points discussed in Section 2.

2 Least-squares Polynomials: Selected Data Points

When users are free to choose the x-values of data points, such as when the points are taken from a
graph, it is most advantageous when fitting with polynomials to use the values xr = cos(πr/n), for
r = 0, 1, . . . , n for some value of n, a suitable value for which is discussed at the end of this section.
Note that these xr relate to the variable x after it has been normalised so that its range of interest is
−1 to +1. nag cheb 1d fit may then be used as in Section 1 to seek a satisfactory fit. However, if
the ordinate values are of equal weight, as would often be the case when they are read from a graph,
nag cheb 1d interp is to be preferred, it being simpler to use and faster.

3 Constraints

nag cheb 1d fit con deals with polynomial curves and allows precise values of the fitting function and (if
required) all its derivatives up to a given order to be prescribed at one or more values of the independent
variable.
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4 Evaluation, Differentiation and Integration

nag cheb 1d eval evaluates polynomial curves. Differentiation and integration of polynomial curves
are performed by nag cheb 1d deriv and nag cheb 1d intg respectively. The results are provided
in Chebyshev-series form and so repeated differentiation and integration are provided. Values of the
derivative or integral can then be computed using nag cheb 1d eval.
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