
Curve and Surface Fitting Module Contents

Module 8.3: nag spline 2d

Two-dimensional Spline Fitting

nag spline 2d provides procedures for computing and evaluating spline approximations
to arbitrary data sets in two dimensions.

Contents

Introduction . 8.3.3

Procedures

nag spline 2d auto fit . 8.3.5
Generates a bicubic spline approximation to a 2-d data set, with automatic knot
selection

nag spline 2d lsq fit . 8.3.11
Generates a minimal, weighted least-squares bicubic spline surface fit to a given set of
data points, with given interior knots

nag spline 2d interp . 8.3.15
Generates a bicubic spline interpolating surface through a set of data values, given on
a rectangular grid of the xy plane

nag spline 2d eval . 8.3.19
Computes values of a bicubic spline

nag spline 2d intg . 8.3.23
Computes the definite integral of a bicubic spline

nag spline 2d set . 8.3.25
Initializes a bicubic spline with given interior knots and B-spline coefficients

nag spline 2d extract . 8.3.27
Extracts details of a bicubic spline from a structure of type nag spline 2d comm wp

Derived Types

nag spline 2d comm wp . 8.3.29
Represents a 2-d bicubic spline in B-spline series form

Examples

Example 1: Spline fitting with automatic knot selection . 8.3.31

Example 2: Least-squares spline fitting . 8.3.35

Example 3: Spline interpolation . 8.3.39

Example 4: Initializing a spline . 8.3.41

Further Details . 8.3.43

References . 8.3.44

[NP3245/3/pdf] Module 8.3: nag spline 2d 8.3.1

Module Contents Curve and Surface Fitting

8.3.2 Module 8.3: nag spline 2d [NP3245/3/pdf]

Curve and Surface Fitting Module Introduction

Introduction
This module is concerned with a two-dimensional bicubic spline s(x, y), which is defined for (x, y) ∈
[a, b]× [c, d], and expressed in its B-spline series representation

s(x, y) =
p−4∑
i=1

q−4∑
j=1

κijMi(x)Nj(y),

where Mi(x) and Nj(y) denote normalized cubic B-splines (see Hayes [11]), the former defined on the
knots λi, λi+1, . . . , λi+4, and the latter on the knots µj , µj+1, . . . , µj+4. The module defines the derived
type nag spline 2d comm wp to represent s(x, y) in the above form.

Such a spline may be used to interpolate (pass exactly through) a given set of data points (xi, yi, fi),
for i = 1, 2, . . . ,m. The procedure nag spline 2d interp generates such an interpolant for data points
lying on a rectangular mesh. Alternatively, a spline may be used to approximate the points, without
actually passing through them. In the latter case it is useful to have some measure of the accuracy of
the fit. For this purpose we define the sum of squares of the weighted residuals

θ =
m∑

i=1

w2
i (fi − s(xi, yi))2,

where the weights wi, i = 1, 2, . . . ,m may be used to ensure that f -values known to be more accurate
than others have a greater influence on θ.

A least-squares spline approximation is one for which the coefficients κij have been chosen in order to
minimise θ. Typically, a least-squares spline approximation involves significantly fewer coefficients than
the corresponding interpolating spline. Its use is much less liable to produce unwanted fluctuations,
and so can often provide a better approximation to the function underlying the data. The procedure
nag spline 2d lsq fit computes a weighted least-squares fit with given interior knots.

A much more automatic fitting procedure can be derived by choosing both the interior knots and the
coefficients κij in order to optimise some measure of the smoothness of s(x, y), subject to θ being less than
a given threshold. An algorithm of this type is implemented by nag spline 2d auto fit for scattered
or regular data.

The spline is assumed to have a total of p knots λ1, λ2, . . . , λp in the x-direction, and q knots µ1, µ2, . . . , µq

in the y-direction. Of these, the first four and the last four in each direction are defined by

λ1 = λ2 = λ3 = λ4 = a, λp−3 = λp−2 = λp−1 = λp = b,

µ1 = µ2 = µ3 = µ4 = c, µq−3 = µq−2 = µq−1 = µq = d.

The remaining interior knots λ5, λ6, . . . , λp−4 and µ5, µ6, . . . , µq−4 are either automatically selected or
specified through input arguments, depending on the spline generation procedure used. A knot in the
x-direction is a value of x at which the spline is allowed to be discontinuous in its third derivative with
respect to x, though continuous up to its second derivative. This degree of continuity can be reduced, if
required, by the use of coincident knots, provided that no more than four knots are chosen to coincide
at any value of x. Two, or three, coincident knots allow loss of continuity in, respectively, the second
and first derivatives. Four coincident knots split the spline surface into independent parts. Knots in the
y-direction are similarly defined and constrained.

In addition to the derived type and procedures mentioned above, the module also provides procedures
for the evaluation of the spline at scattered points or on a regular grid, and for computing a definite
integral of the spline.

[NP3245/3/pdf] Module 8.3: nag spline 2d 8.3.3

Module Introduction Curve and Surface Fitting

8.3.4 Module 8.3: nag spline 2d [NP3245/3/pdf]

Curve and Surface Fitting nag spline 2d auto fit

Procedure: nag spline 2d auto fit

1 Description

This procedure determines a smooth bicubic spline approximation s(x, y) to a set of data points in two
dimensions. It is a generic procedure and may be used for either of the following two classes of problem.

• Approximate the scattered data points (xi, yi, fi), with weights wi, for i = 1, 2, . . . ,m. The weights
are by default set to one, but may be set to other values by supplying the optional argument wt.

• Approximate the data points (xj , yk, fjk), with weights wjk = 1, for j = 1, 2, . . . ,mx, and
k = 1, 2, . . . ,my, which lie on a grid . The grid points must satisfy x(1) < x(2) · · · < x(mx)
and y(1) < y(2) · · · < y(my). Non-unit weights are not permitted.

The resulting spline s(x, y) is defined in the region [a, b]× [c, d], where a = min
i
xi, b = max

i
xi, c = min

i
yi

and d = max
i
yi.

The total number of knots in each coordinate direction, and their values are chosen automatically by
the procedure. The balance between closeness of fit and smoothness of the approximation s(x, y) is
controlled by means of the smoothing factor S. If S is too large, the spline will be too smooth and
information will be lost (underfit); for very large S the procedure returns the weighted least-squares
bicubic polynomial. If S is too small, the spline will pick up too much noise (overfit); as S tends to zero
the approximation generated tends to an interpolating spline. Experimenting with values between these
two extremes should result in a good compromise. (See Section 6.4 for advice.) Note, however, that this
procedure, unlike nag spline 1d auto fit, does not allow S to be set exactly to zero.

2 Usage

USE nag spline 2d

CALL nag spline 2d auto fit(start, x, y, f, smooth, spline [, optional arguments])

2.1 Interfaces

Distinct interfaces are provided for the following cases.

Scattered data points / Data points on a grid

Scattered points: x, y and f must all be rank-1 arrays.

Points on a grid: x and y must be rank-1 arrays, and f a rank-2 array.

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

m ≥ 16 — the total number of data points (for scattered points)
mx ≥ 4 — the number of grid points in the x-direction (for points on a grid)
my ≥ 4 — the number of grid points in the y-direction (for points on a grid)

[NP3245/3/pdf] Module 8.3: nag spline 2d 8.3.5

nag spline 2d auto fit Curve and Surface Fitting

3.1 Mandatory Arguments

start — character(len=1), intent(in)
Input: specifies whether a cold or warm start is required.

If start = 'C' or 'c', the procedure will build up the knot set starting from no interior knots.
For this cold start no initialization of the argument spline is required.
If start = 'W' or 'w', the procedure will restart the knot-placing strategy using the knots
found in a previous call to the procedure. For this warm start the structure spline must be
unchanged from that previous call.

Note: a warm start can save much time in searching for a satisfactory value of smooth.
Constraints: start = 'C' or 'c' on the first call to the procedure; start = 'C', 'c', 'W', or 'w'
on subsequent calls.

x(m) / x(mx) — real(kind=wp), intent(in)
Input: the x-coordinates of the data points.
Constraints:

If f is a rank-1 array, SIZE(x) must equal SIZE(f), and the elements of x must not all be
equal;
if f is a rank-2 array, SIZE(x) must equal SIZE(f,1), and the elements of x must be strictly
increasing.

y(m) / y(my) — real(kind=wp), intent(in)
Input: the y-coordinates of the data points.
Constraints:

If f is a rank-1 array, SIZE(y) must equal SIZE(f), and the elements of y must not all be
equal;
if f is a rank-2 array, SIZE(y) must equal SIZE(f,2), and the elements of y must be strictly
increasing.

f(m) / f(mx,my) — real(kind=wp), intent(in)
Input: the f -values at the data points.

If f is a rank-1 array (scattered data points), f(i) is the f -value corresponding to the data
point (x(i), y(i)), for i = 1, 2, . . . ,m;
if f is a rank-2 array (data points on a grid), f(j, k) is the f -value corresponding to the data
point (x(j), y(k)), for j = 1, 2, . . . ,mx and k = 1, 2, . . . ,my.

smooth — real(kind=wp), intent(in)
Input: the smoothing factor S.
Note: for advice on the choice of smooth see Section 6.4.
Constraints: smooth > 0.0.

spline — type(nag spline 2d comm wp), intent(inout)
Input: a structure representing the spline.

If start = 'C' or 'c', no initialization of spline is required.
If start = 'W' or 'w', the structure must be as output from a previous call to
this procedure.

8.3.6 Module 8.3: nag spline 2d [NP3245/3/pdf]

Curve and Surface Fitting nag spline 2d auto fit

Output: a structure containing details of the spline s(x, y) generated. This structure may be passed
to the procedure nag spline 2d eval to evaluate s(x, y) at given points, or to nag spline 2d intg
to compute its definite integral.
Note: to reduce the risk of corrupting the data accidentally, the components of this structure are
private; details of the spline may be extracted by calling nag spline 2d extract.

The procedure allocates a maximum of roughly 11m(
√
m+ 10) real(kind=wp) elements of storage

to the structure when fitting to data at m scattered points, and roughly 2(mx + 12)(my + 10)
elements when fitting to data on an mx × my grid. If you wish to deallocate this storage when
the structure is no longer required, you must call the procedure nag deallocate, as illustrated in
Example 1 of this module document.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

wt(m) — real(kind=wp), intent(in), optional
Input: the values wi of the weights, for i = 1, 2, . . . ,m.
Note: zero weights are permitted and the corresponding points will be ignored, except when
determining the region of definition of the spline. Section 3.3 of the Chapter Introduction gives
advice on the choice of weights.
Default: wt = 1.0.
Constraints: this argument may only be supplied to the interface for scattered data points (f of
rank-1).

wt(i) ≥ 0.0, for i = 1, 2, . . . ,m.

The number of strictly positive weights must be at least 16.

p — integer, intent(out), optional
Output: the total number of knots p chosen by this procedure in the x-direction.

q — integer, intent(out), optional
Output: the total number of knots q chosen by this procedure in the y-direction.

theta — real(kind=wp), intent(out), optional
Output: the sum of squares of weighted residuals θ, as described in the Module Introduction.
Note: if theta = 0.0, this is an interpolating spline. theta should equal smooth within a relative
tolerance of 0.001 unless p = q = 8, when the spline has no interior knots and so is simply a bicubic
polynomial. For knots to be inserted, smooth must be set to a value below the value of theta
produced in this case.

rank — integer, intent(out), optional
Output: the rank of the system of equations used to compute the final spline (as determined by a
suitable machine-dependent threshold).
Note: when rank = (p−4)(q−4) the solution is unique; otherwise the system is rank-deficient and
the minimum norm solution is computed. The latter case may be caused by too small a value of S.
Constraints: this argument may only be supplied to the interface for scattered data points (f of
rank-1).

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

[NP3245/3/pdf] Module 8.3: nag spline 2d 8.3.7

nag spline 2d auto fit Curve and Surface Fitting

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 An iterative process has failed to converge.

The iterative process used to compute the coefficients of the approximating spline has
failed to converge. This error exit may occur if smooth has been set very small. If
the error persists with increased smooth consult NAG.

202 The termination criteria could not be met.

No more knots can be added because the number of B-spline coefficients (p−4)(q−4)
already exceeds the number of data points m. This error exit may occur if either of
S or m is too small.

203 The termination criteria could not be met.

No more knots can be added because the additional knot would be indistinguishable
from an old one. This error exit may occur if too large a weight has been given to an
inaccurate data point, or if smooth is too small.

If error%level = 2 a spline approximation is computed, but fails to satisfy the fitting criterion (see
Section 6.1) — perhaps by only a small amount, however. If you wish to use this approximation you
must supply the optional argument error with error%halt level set to 3.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The B-spline coefficients κij are determined as the solution of the following constrained minimisation
problem:

minimize η, subject to θ ≤ S,

where θ, the sum of squares of weighted residuals, is defined as

θ =




m∑
i=1

w2
i (fi − s(xi, yi))2 Scattered data points (f of rank-1)

mx∑
j=1

my∑
k=1

(fjk − s(xj , yk))2 Data points on a grid (f of rank-2)

and η is a measure of the lack of smoothness of s(x, y). The value of η depends on the discontinuity
jumps in s(x, y) across lines joining the knots. It is zero only when there are no discontinuities and is
positive otherwise, increasing with the size of the jumps (see Dierckx [6] for details).

8.3.8 Module 8.3: nag spline 2d [NP3245/3/pdf]

Curve and Surface Fitting nag spline 2d auto fit

By means of the parameter S > 0, the smoothing factor , you may control the balance between smoothness
and closeness of fit, as measured by θ.

Suitable knot sets are built up in stages (starting with no interior knots in the case of a cold start but
with the knot sets found in a previous call if a warm start is chosen). At each stage, a bicubic spline
is fitted to the data by least-squares and θ is computed. If θ > S, a new knot is added to one knot set
or the other so as to reduce θ at the next stage. The new knot is located in an interval where the fit is
particularly poor. At some point in the computation the condition θ ≤ S will be satisfied, and at that
point the knot sets are accepted. The procedure then goes on to compute a spline which has these knot
sets and which satisfies the full fitting criterion specified above. This spline is unique for data points
lying on a rectangular grid. The theoretical solution has θ = S. The spline is computed by an iterative
scheme which is ended when θ = S within a relative tolerance of 0.001. The main part of each iteration
consists of a linear least-squares computation of special form, done in a similarly stable and efficient
manner as in nag spline 2d lsq fit.

An exception occurs when the procedure finds at the start that, even with no interior knots (p = 8,
q = 8), the least-squares spline already has a value of θ ≤ S. In this case, since this spline (which is
simply a bicubic polynomial) also has an optimal value for the smoothness measure η, namely zero, it is
returned at once as the trivial solution. It will usually mean that S has been chosen too large.

For further details of the algorithm and its use, see Dierckx [6], Dierckx [7].

6.2 Accuracy

On successful exit, the approximation returned is such that its residual norm is equal to the smoothing
factor S, up to a relative tolerance of 0.001, except that if p = 8 and q = 8, it may be significantly
less than S: in this case the computed spline is simply a weighted least-squares bicubic polynomial
approximation, i.e., a spline with no interior knots.

6.3 Timing

The time taken for a call of this procedure depends on the complexity of the shape of the data, the value
of the smoothing factor S, and the number of data points. If the procedure is to be called for different
values of S, much time can be saved by setting start = 'W' after the first call.

It should be noted that choosing S very small considerably increases computation time.

6.4 Choice of S

If it is known that the product of the weights and f -values has a standard deviation approximately equal
to some value σ for all data points, then S may be chosen to lie in the range [σ2(m−

√
2m), σ2(m+

√
2m)],

where m is the total number of data points. This choice, due to Reinsch [12], is likely to give a good
start in the search for a satisfactory value. Otherwise, experimenting with different values of S will
be required from the start. In that case, in view of computation time and memory requirements, it is
recommended to start with a value of S which is so large that no interior knots are inserted (p = 8,
q = 8). The spline generated in this case is the least-squares bicubic polynomial, and the value returned
for theta, call it θ0, gives an upper bound for S. Then progressively decrease the value of S to obtain
closer fits, say by a factor of 10 in the beginning, i.e., S = θ0/10, S = θ0/100, and so on, and more
carefully as the approximation shows more details.

Choosing S very small is strongly discouraged. This considerably increases computation time and
memory requirements. It may also cause rank deficiency (as indicated by the optional output argument
rank) and endanger numerical stability.

The number of knots of the spline returned, and their location, generally depend on the value of S and
on the behaviour of the function underlying the data. If this procedure is called with a warm start,
however, the knots returned may also depend on the smoothing factors of the previous calls. Therefore
if, after a number of trials with different values of S and warm starts, a fit can finally be accepted as
satisfactory, it may be worthwhile to call the procedure once more with the selected value for S but now
using start = 'C'. Often, this procedure then returns an approximation with the same quality of fit
but with fewer knots, which is therefore better if data reduction is also important.

[NP3245/3/pdf] Module 8.3: nag spline 2d 8.3.9

nag spline 2d auto fit Curve and Surface Fitting

6.5 Weighting of Data Points

The interface for data points lying on a grid does not allow individual weighting of the data values.
If these values were determined to widely differing accuracies, it may be better to use the alternative
interface for scattered data, which allows non-unit weights. The computation time would generally be
very much longer, however.

8.3.10 Module 8.3: nag spline 2d [NP3245/3/pdf]

Curve and Surface Fitting nag spline 2d lsq fit

Procedure: nag spline 2d lsq fit

1 Description

nag spline 2d lsq fit determines a bicubic spline fit s(x, y) to the set of data points (xi, yi, fi) with
weights wi, for i = 1, 2, . . . ,m. It is defined for (x, y) ∈ [a, b] × [c, d], where a = min

i
xi, b = max

i
xi,

c = min
i
yi and d = max

i
yi. The spline has a total of p knots in the x-direction, of which you must

specify the p− 8 interior knots λ5, λ6, . . . , λp−4. Similarly, there are a total of q knots in the y-direction,
of which you must specify the interior knots µ5, µ6, . . . , µq−4. The knots can be thought of as dividing
the data region of the (x, y) plane into panels. A bicubic spline consists of a separate bicubic polynomial
in each panel, the polynomials joining together with continuity up to the second derivative across the
panel boundaries.

s(x, y) has the property that it minimizes the sum of squares

θ =
m∑

i=1

ε2i

of weighted residuals εi = wi(s(xi, yi) − fi), for i = 1, 2, . . . ,m, over all bicubic splines with the given
knot sets. The procedure produces this minimized value of θ and the coefficients κij in the B-spline
representation of s(x, y).

The least-squares criterion is not always sufficient to determine the bicubic spline uniquely: there may
be a whole family of splines which have the same minimum sum of squares. In these cases, the procedure
selects from this family the spline for which the sum of squares of the coefficients κij is smallest: in other
words, the minimal least-squares solution. This choice, although arbitrary, reduces the risk of unwanted
fluctuations in the spline fit.

2 Usage

USE nag spline 2d

CALL nag spline 2d lsq fit(x, y, f, lambda, mu, spline [, optional arguments])

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

m ≥ 2 — the number of data points
p ≥ 8 — the total number of knots in the x-direction
q ≥ 8 — the total number of knots in the y-direction

3.1 Mandatory Arguments

x(m) — real(kind=wp), intent(in)
Input: the values xi for i = 1, 2, . . . ,m.

y(m) — real(kind=wp), intent(in)
Input: the values yi for i = 1, 2, . . . ,m.

[NP3245/3/pdf] Module 8.3: nag spline 2d 8.3.11

nag spline 2d lsq fit Curve and Surface Fitting

f(m) — real(kind=wp), intent(in)
Input: the values fi for i = 1, 2, . . . ,m.

lambda(p− 8) — real(kind=wp), intent(in)
Input: lambda(i) must contain the interior knot λi+4, associated with the variable x, for i =
1, 2, . . . , p− 8.
Note: a knot is a value of x at which the spline is allowed to be discontinuous in the third derivative
with respect to x, though continuous up to the second derivative. You can reduce this degree of
continuity, if required, by the use of coincident knots, provided that no more than four knots
are chosen to coincide at any point. Two, or three coincident knots allow loss of continuity in,
respectively, the second and first derivative with respect to x at the value of x at which they
coincide. Four coincident knots split the spline surface into two independent parts. For additional
advice on the choice of knots see the Further Details section of this module document.
Constraints: the knots must be in non-decreasing order, lie strictly within the range covered by the
data values of x, and have multiplicity ≤ 4.

mu(q − 8) — real(kind=wp), intent(in)
Input: mu(j) must contain the interior knot µj+4, associated with the variable y, for j =
1, 2, . . . , q − 8.
Note: the same remarks apply to mu as to lambda above, with y replacing x.
Constraints: the knots must be in non-decreasing order, lie strictly within the range covered by the
data values of y, and have multiplicity ≤ 4.

spline — type(nag spline 2d comm wp), intent(out)
Output: a structure containing details of the spline s(x, y) generated. This structure may
be passed to the procedure nag spline 2d eval to evaluate the spline at given points, or to
nag spline 2d intg to compute its definite integral.
Note: to reduce the risk of corrupting the data accidentally, the components of this structure are
private; details of the spline may be extracted by calling nag spline 2d extract.

The procedure allocates roughly pq real(kind=wp) elements of storage to the structure. If you wish
to deallocate this storage when the structure is no longer required, you must call the procedure
nag deallocate, as illustrated in Example 2 of this module document.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

wt(m) — real(kind=wp), intent(in), optional
Input: the values wi of the weights, for i = 1, 2, . . . ,m.
Note: Section 3.3 of the Chapter Introduction gives advice on the choice of weights.
Default: wt = 1.0.
Constraints: at least one element of wt must be non-zero.

theta — real(kind=wp), intent(out), optional
Output: the sum of squares of weighted residuals θ.

diag((p− 4)(q − 4)) — real(kind=wp), intent(out), optional
Output: diag gives the squares of the diagonal elements of the reduced triangular matrix, divided
by the mean squared weight. It includes those elements, less than ε, which are treated as zero (see
Section 6.1).

8.3.12 Module 8.3: nag spline 2d [NP3245/3/pdf]

Curve and Surface Fitting nag spline 2d lsq fit

thresh — real(kind=wp), intent(in), optional
Input: a threshold ε for determining the effective rank of the system of linear equations. The rank
is determined as the number of elements of the array diag which are considered to be non-zero.
An element of diag is regarded as zero if it is less than ε. The default value EPSILON(1.0 wp) is
a suitable value for ε in most practical applications which have only 2 or 3 decimals accurate in
data. If some coefficients of the fit prove to be very large compared with the data ordinates, this
suggests that ε should be increased so as to decrease the rank. The array diag will give a guide
to appropriate values of ε to achieve this, as well as to the choice of ε in other cases where some
experimentation may be needed to determine a value which leads to a satisfactory fit.
Default: thresh = EPSILON(1.0 wp).
Constraints: thresh > 0.0.

rank — integer, intent(out), optional
Output: the rank of the system as determined by the value of the threshold ε.
Note: when rank = (p− 4)(q − 4), the least-squares solution is unique; in other cases the minimal
least-squares solution is computed.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 A solution does not exist.

The rank of the system was determined as zero.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The B-spline representation of the bicubic spline is

s(x, y) =
p−4∑
i=1

q−4∑
j=1

κijMi(x)Nj(y).

[NP3245/3/pdf] Module 8.3: nag spline 2d 8.3.13

nag spline 2d lsq fit Curve and Surface Fitting

Here Mi(x) and Nj(y) denote normalised cubic B-splines, the former defined on the knots
λi, λi+1, . . . , λi+4 and the latter on the knots µj , µj+1, . . . , µj+4. For further details, see Hayes [11]
for bicubic splines and De Boor [5] for normalised B-splines.

The method employed involves forming a system of m linear equations in the coefficients κij and then
computing its least-squares solution, which will be the minimal least-squares solution when appropriate.
The basis of the method is described in Hayes [11]. The matrix of the equation is formed using
a recurrence relation for B-splines which is numerically stable (see Cox [2] and De Boor [5]; the
former contains the more elementary derivation but, unlike De Boor [5], does not cover the case of
coincident knots). The least-squares solution is also obtained in a stable manner by using orthogonal
transformations, namely a variant of Givens rotation (see Gentleman [10]). This requires only one row
of the matrix to be stored at a time. Advantage is taken of the stepped-band structure which the matrix
possesses when the data points are suitably ordered, there being at most sixteen non-zero elements in
any row because of the definition of B-splines. First the matrix is reduced to upper triangular form and
then the diagonal elements of this triangle are examined in turn. When an element is encountered whose
square, divided by the mean squared weight, is less than a threshold ε, it is replaced by zero and the
rest of the elements in its row are reduced to zero by rotations with the remaining rows. The rank of the
system is taken to be the number of non-zero diagonal elements in the final triangle, and the non-zero
rows of this triangle are used to compute the minimal least-squares solution. If all the diagonal elements
are non-zero, the rank is equal to the number of coefficients κij and the solution obtained is the ordinary
least-squares solution, which is unique in this case.

The fit obtained is not defined outside the rectangle

a = min
i
xi ≤ x ≤ max

i
xi = b, c = min

i
yi ≤ y ≤ max

i
yi = d.

The reason for taking the extreme data values of x and y for the boundary knots is that, as is usual in data
fitting, the fit cannot be expected to give satisfactory values outside the data region. If, nevertheless, you
require values over a larger rectangle, this can be achieved by augmenting the data with two artificial
data points (a, c, 0) and (b, d, 0) with zero weight, where a ≤ x ≤ b, c ≤ y ≤ d defines the enlarged
rectangle. In the case when the data are adequate to make the least-squares solution unique (rank =
(p − 4)(q − 4)), this enlargement will not affect the fit over the original rectangle, except for possibly
enlarged rounding errors, and will simply continue the bicubic polynomials in the panels bordering the
rectangle out to the new boundaries; in other cases the fit will be affected. Even using the original
rectangle there may be regions within it, particularly at its corners, which lie outside the data region
and where, therefore, the fit will be unreliable.

6.2 Accuracy

The computation of the B-splines and reduction of the observation matrix to triangular form are both
numerically stable.

6.3 Timing

The time taken by this procedure is approximately proportional to the number of data points, m, and
to (3(q − 4) + 4)2.

6.4 Choice of Knots

The choice of the interior knots, which help to determine the spline’s shape, must largely be a matter of
trial and error. It is usually best to start with a small number of knots and, examining the fit at each
stage, add a few knots at a time at places where the fit is particularly poor. In intervals of x or y where
the surface represented by the data changes rapidly, in function value or derivatives, more knots will be
needed than elsewhere. In some cases guidance can be obtained by analogy with the case of coincident
knots: for example, just as three coincident knots can produce a discontinuity in slope, three close knots
can produce rapid change in slope. Of course, such rapid changes in behaviour must be adequately
represented by the data points, as indeed must the behaviour of the surface generally, if a satisfactory
fit is to be achieved. When there is no rapid change in behaviour, equally spaced knots will often suffice.

In all cases the fit should be examined graphically before it is accepted as satisfactory.

8.3.14 Module 8.3: nag spline 2d [NP3245/3/pdf]

Curve and Surface Fitting nag spline 2d interp

Procedure: nag spline 2d interp

1 Description

nag spline 2d interp determines a bicubic spline s(x, y) which interpolates (passes exactly through)
the set of data points (xj , yk, fjk), for j = 1, 2, . . . ,mx, k = 1, 2, . . . ,my. The data points are assumed
to be ordered such that x1 < x2 < · · · < xmx and y1 < y2 < · · · < ymy , and the spline is defined for
(x, y) ∈ [a, b]× [c, d], where a = x1, b = xmx , c = y1 and d = ymy .

2 Usage

USE nag spline 2d

CALL nag spline 2d interp(x, y, f, spline [, optional arguments])

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

mx ≥ 4 — the number of data points along the x-axis
my ≥ 4 — the number of data points along the y-axis

3.1 Mandatory Arguments

x(mx) — real(kind=wp), intent(in)
Input: the values xj , for j = 1, 2, . . . ,mx.
Constraints: x(1) < x(2) < · · · < x(mx).

y(my) — real(kind=wp), intent(in)
Input: the values yk, for k = 1, 2, . . . ,my.
Constraints: y(1) < y(2) < · · · < y(my).

f(mx,my) — real(kind=wp), intent(in)
Input: the values fjk for j = 1, 2, . . . ,mx and k = 1, 2, . . . ,my.

spline — type(nag spline 2d comm wp), intent(out)
Output: a structure containing details of the spline s(x, y) generated. This structure may
be passed to the procedure nag spline 2d eval to evaluate the spline at given points, or to
nag spline 2d intg to compute its definite integral.
Note: to reduce the risk of corrupting the data accidentally, the components of this structure are
private; details of the spline may be extracted by calling nag spline 2d extract.

The procedure allocates roughly (mx+4)(my+4) real(kind=wp) elements of storage to the structure.
If you wish to deallocate this storage when the structure is no longer required, you must call the
procedure nag deallocate, as illustrated in Example 3 of this module document.

[NP3245/3/pdf] Module 8.3: nag spline 2d 8.3.15

nag spline 2d interp Curve and Surface Fitting

3.2 Optional Argument

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 The problem is too ill conditioned to permit solution.

A system of linear equations defining the B-spline coefficients was singular.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 3 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The process of computing the spline consists of the following steps.

1. Choice of the interior x-knots λ5, λ6, . . . , λmx , as λj = xj−2, for j = 5, 6, . . . ,mx.

2. Formation of the system

AxE = F,

where Ax is a band matrix of order mx and bandwidth 4, containing in its jth row the values at
xj of the B-splines in x, F is the mx by my rectangular matrix of values fjk, and E denotes an
mx by my rectangular matrix of intermediate coefficients.

3. Use of Gaussian elimination to reduce this system to band triangular form.

4. Solution of this triangular system for E.

5. Choice of the interior y-knots µ5, µ6, . . . , µmy , as µk = yk−2, for k = 5, 6, . . . ,my.

6. Formation of the system

AyC
T = ET ,

where Ay is the counterpart of Ax for the y variable, and C denotes the mx by my rectangular
matrix of values of κjk.

8.3.16 Module 8.3: nag spline 2d [NP3245/3/pdf]

Curve and Surface Fitting nag spline 2d interp

7. Use of Gaussian elimination to reduce this system to band triangular form.

8. Solution of this triangular system for CT and hence C.

For computational convenience, steps (2) and (3), and likewise steps (6) and (7), are combined so that
the formation of Ax and Ay and the reductions to triangular form are carried out one row at a time.

6.2 Accuracy

The main sources of rounding errors are in steps (2), (3), (6) and (7) of the algorithm described in Section
6.1. It can be shown (see Cox [3]) that the matrix Ax formed in step (2) has elements differing relatively
from their true values by at most a small multiple of 3×EPSILON(1.0 wp). Ax is ‘totally positive’, and
a linear system with such a coefficient matrix can be solved quite safely by elimination without pivoting.
Similar comments apply to steps (6) and (7). Thus the complete process is numerically stable.

6.3 Timing

The time taken by this procedure is approximately proportional to mxmy.

[NP3245/3/pdf] Module 8.3: nag spline 2d 8.3.17

nag spline 2d interp Curve and Surface Fitting

8.3.18 Module 8.3: nag spline 2d [NP3245/3/pdf]

Curve and Surface Fitting nag spline 2d eval

Procedure: nag spline 2d eval

1 Description

This procedure evaluates a bicubic spline s(x, y) at points lying within its region of definition [a, b]× [c, d]
as determined by the particular procedure used to produce the spline. Details may be found in Section
1 of the relevant procedure document.

nag spline 2d eval is generic and may be used to evaluate the spline

• at a single point,

• at a set of n scattered points,

• or on an nx × ny grid of points.

2 Usage

USE nag spline 2d

CALL nag spline 2d eval(spline, u, v, s [, optional arguments])

2.1 Interfaces

Distinct interfaces are provided for the following cases:

Evaluation at a single point / at scattered points / at points on a grid

Single point: u, v and s must all be scalars.

Scattered points: u, v and s must all be rank-1 arrays.

Points on a grid: u and v must be rank-1 arrays, and s a rank-2 array.

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

n ≥ 1 — the total number of evaluation points (for scattered points)
nx ≥ 1 — the number of grid points in the x-direction (for points on a grid)
ny ≥ 1 — the number of grid points in the y-direction (for points on a grid)

3.1 Mandatory Arguments

spline — type(nag spline 2d comm wp), intent(in)
Input: a structure containing details of the spline s(x, y) to be evaluated.
Constraints: spline must be as output from a previous call to nag spline 2d auto fit,
nag spline 2d lsq fit, nag spline 2d interp, or nag spline 2d set.

[NP3245/3/pdf] Module 8.3: nag spline 2d 8.3.19

nag spline 2d eval Curve and Surface Fitting

u / u(n)/ u(nx) — real(kind=wp), intent(in)
Input: the x-coordinate(s) of the evaluation point(s).
Constraints: all values supplied must lie in the interval [a, b] on which the spline is defined, as
determined by its generation procedure.

If s is scalar, u must be scalar;
if s is a rank-1 array, u must also be a rank-1 array, with SIZE(u) = SIZE(s);
if s is a rank-2 array, u must be a rank-1 array, with SIZE(u) = SIZE(s,1), and the elements
of u must be strictly increasing.

v / v(n)/ v(ny) — real(kind=wp), intent(in)
Input: the y-coordinate(s) of the evaluation point(s).
Constraints: all values supplied must lie in the interval [c, d] on which the spline is defined, as
determined by its generation procedure.

If s is scalar, v must be scalar;
if s is a rank-1 array, v must also be a rank-1 array, with SIZE(v) = SIZE(s);
if s is a rank-2 array, v must be a rank-1 array, with SIZE(v) = SIZE(s,2), and the elements
of v must be strictly increasing.

s / s(n) / s(nx, ny) — real(kind=wp), intent(out)
Output: the value(s) of the spline at the evaluation point(s).

If s is a scalar (single evaluation point), s = s(u, v);
if s is a rank-1 array (scattered evaluation points), s = s(u(i), v(i)), for i = 1, 2, . . . , n;
if s is a rank-2 array (evaluation on a grid), s = s(u(j), v(k)), for j = 1, 2, . . . , nx,
k = 1, 2, . . . , ny.

3.2 Optional Argument

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

303 Array arguments have inconsistent shapes.

5 Examples of Usage

Complete examples of the use of this procedure appear in Examples 1 and 2 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The procedure is derived from the procedure B2VRE in Anthony et al. [1].

8.3.20 Module 8.3: nag spline 2d [NP3245/3/pdf]

Curve and Surface Fitting nag spline 2d eval

6.2 Accuracy

The method used to evaluate the B-splines is numerically stable, in the sense that each computed value of
s can be regarded as the value that would have been obtained in exact arithmetic from slightly perturbed
B-spline coefficients. See Cox [4] for details.

6.3 Timing

Computation time is approximately proportional to the number of evaluation points.

[NP3245/3/pdf] Module 8.3: nag spline 2d 8.3.21

nag spline 2d eval Curve and Surface Fitting

8.3.22 Module 8.3: nag spline 2d [NP3245/3/pdf]

Curve and Surface Fitting nag spline 2d intg

Procedure: nag spline 2d intg

1 Description

This function evaluates the definite integral

I =
∫ β

α

∫ δ

γ

s(x, y) dy dx

of a bicubic spline s(x, y).

By default the rectangular region of integration [α, β]×[γ, δ] is taken as the region of definition [a, b]×[c, d]
of s(x, y), as determined by the particular procedure used to produce the spline. Details may be found
in Section 1 of the relevant procedure document.

Integration may be performed over non-default rectangular regions lying within [a, b]× [c, d] by supplying
one or more of the optional arguments alpha, beta, gamma and delta.

2 Usage

USE nag spline 2d

[value =] nag spline 2d intg(spline [, optional arguments])

The function result value is a scalar of type real(kind=wp).

3 Arguments

3.1 Mandatory Argument

spline — type(nag spline 2d comm wp), intent(in)
Input: a structure containing details of the spline s(x, y) to be integrated.
Constraints: spline must be as output from a previous call to nag spline 2d auto fit,
nag spline 2d lsq fit, nag spline 2d interp, or nag spline 2d set.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

alpha — real(kind=wp), intent(in), optional
beta — real(kind=wp), intent(in), optional

Input: the lower and upper limits α and β of the integral with respect to x.
Constraints: a ≤ alpha ≤ b and a ≤ beta ≤ b. See Section 1.
Note: it is not required that alpha < beta.
Default: alpha = a, beta = b.

gamma — real(kind=wp), intent(in), optional
delta — real(kind=wp), intent(in), optional

Input: the lower and upper limits γ and δ of the integral with respect to y.
Constraints: c ≤ gamma ≤ d and c ≤ delta ≤ d. See Section 1.
Note: it is not required that gamma < delta.
Default: gamma = c, delta = d.

[NP3245/3/pdf] Module 8.3: nag spline 2d 8.3.23

nag spline 2d intg Curve and Surface Fitting

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

320 The procedure was unable to allocate enough memory.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 4 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The method employed is described in Section 2.1.2 of Dierckx [9].

6.2 Timing

The time taken by this function is approximately proportional to pq, where p and q are the total numbers
of knots in the x-direction and the y-direction respectively. If these values are not known they may be
determined by calling nag spline 2d extract.

8.3.24 Module 8.3: nag spline 2d [NP3245/3/pdf]

Curve and Surface Fitting nag spline 2d set

Procedure: nag spline 2d set

1 Description

This procedure creates a structure of type nag spline 2d comm wp containing details of a given bicubic
spline

s(x, y) =
p−4∑
i=1

q−4∑
j=1

κijMi(x)Nj(y), (x, y) ∈ [a, b]× [c, d],

where Mi(x) is the normalized cubic B-spline defined on the knots λi, . . . , λi+4. The interior knots
λ5, · · · , λp−4 must satisfy

a < λ5 ≤ λ6 ≤ · · · ≤ λp−5 ≤ λp−4 < b,

and each interior knot must have maximum multiplicity four. Similarly, Nj(y) is the normalized cubic
B-spline defined on the knots µj , . . . , µj+4. The interior knots µ5, · · · , µq−4 must satisfy

c < µ5 ≤ µ6 ≤ · · · ≤ µq−5 ≤ µq−4 < d,

and each interior knot must have maximum multiplicity four. The knot set is completed by setting

λ1 = λ2 = λ3 = λ4 = a, λp−3 = λp−2 = λp−1 = λp = b
µ1 = µ2 = µ3 = µ4 = c, µq−3 = µq−2 = µq−1 = µq = d.

Note that this procedure cannot be used in conjunction with nag spline 2d auto fit with a warm
start.

2 Usage

USE nag spline 2d

CALL nag spline 2d set(a, b, c, d, lambda, mu, kappa, spline [, optional arguments])

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

p ≥ 8 — the total number of knots in the x-direction
q ≥ 8 — the total number of knots in the y-direction

3.1 Mandatory Arguments

a — real(kind=wp), intent(in)
b — real(kind=wp), intent(in)

Input: the lower and upper limits a and b of the x-interval on which the spline is defined.
Constraints: a < b.

c — real(kind=wp), intent(in)
d — real(kind=wp), intent(in)

Input: the lower and upper limits c and d of the y-interval on which the spline is defined.
Constraints: c < d.

[NP3245/3/pdf] Module 8.3: nag spline 2d 8.3.25

nag spline 2d set Curve and Surface Fitting

lambda(p− 8) — real(kind=wp), intent(in)
Input: lambda(i) must contain the interior knot λi+4, for i = 1, 2, . . . , p− 8.
Constraints: a < lambda(1) ≤ · · · ≤ lambda(p− 8) < b, and lambda(i) must not have multiplicity
> 4.

mu(q − 8) — real(kind=wp), intent(in)
Input: mu(j) must contain the interior knot µj+4, for j = 1, 2, . . . , q − 8.
Constraints: c < mu(1) ≤ · · · ≤ mu(q − 8) < d, and mu(i) must not have multiplicity > 4.

kappa(p− 4, q − 4) — real(kind=wp), intent(in)
Input: kappa(i, j) must contain the coefficient κij in the B-spline representation of s(x, y).

spline — type(nag spline 2d comm wp), intent(out)
Output: a structure containing details of the spline s(x, y) generated. It may be passed to
nag spline 2d eval to evaluate the spline at specified points, or to nag spline 2d intg to
compute its definite integral.
Note: to reduce the risk of corrupting the data accidentally, the components of this structure are
private; details of the spline may be extracted by calling nag spline 2d extract.

The procedure allocates roughly pq real(kind=wp) elements of storage to the structure. If you wish
to deallocate this storage when the structure is no longer required, you must call the procedure
nag deallocate, as illustrated in Example 4 of this module document.

3.2 Optional Argument

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 4 of this module document.

6 Further Comments

6.1 Algorithmic Detail

This procedure may be used for example to initialize a spline with data which has been read from file.
The procedure nag spline 2d extract may be used to extract the data to be written to file.

8.3.26 Module 8.3: nag spline 2d [NP3245/3/pdf]

Curve and Surface Fitting nag spline 2d extract

Procedure: nag spline 2d extract

1 Description

Given a structure of type nag spline 2d comm wp representing a cubic spline

s(x, y) =
p−4∑
i=1

q−4∑
j=1

κijMi(x)Nj(y), (x, y) ∈ [a, b]× [c, d],

this procedure optionally returns the total number of knots p and q in each direction, the parameters
a, b, c and d, the interior knots λ5, . . . , λp−4 and µ5, . . . , µq−4, and the B-spline coefficients κij , for
i = 1, . . . , p− 4, j = 1, . . . , q − 4.

Since the number of knots may not be known prior to a call to this procedure the arguments which return
the knots and B-spline coefficients are pointers, which are allocated internally. It is your responsibility
to deallocate this storage.

2 Usage

USE nag spline 2d

CALL nag spline 2d extract(spline [, optional arguments])

3 Arguments

3.1 Mandatory Argument

spline — type(nag spline 2d comm wp), intent(in)
Input: a structure containing details of the spline s(x, y).
Constraints: spline must be as output from a previous call to nag spline 2d auto fit,
nag spline 2d lsq fit, nag spline 2d interp, or nag spline 2d set.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

p — integer, intent(out), optional
q — integer, intent(out), optional

Output: the total number of knots p and q in the x-direction and the y-direction, respectively.

a — real(kind=wp), intent(out), optional
b — real(kind=wp), intent(out), optional

Output: the parameters a and b determining the region of definition of s(x, y).

c — real(kind=wp), intent(out), optional
d — real(kind=wp), intent(out), optional

Output: the parameters c and d determining the region of definition of s(x, y).

lambda(:) — real(kind=wp), pointer, optional
Output: lambda(i) holds the interior knot λi+4, for i = 1, 2, . . . , p− 8.
Note: this array is allocated by this procedure. It should be deallocated when no longer required.

[NP3245/3/pdf] Module 8.3: nag spline 2d 8.3.27

nag spline 2d extract Curve and Surface Fitting

mu(:) — real(kind=wp), pointer, optional
Output: mu(j) holds the interior knot µj+4, for j = 1, 2, . . . , q − 8.
Note: this array is allocated by this procedure. It should be deallocated when no longer required.

kappa(:, :) — real(kind=wp), pointer, optional
Output: kappa(i, j) holds the coefficient κij , for i = 1, 2, . . . , p− 4 and j = 1, 2, . . . , q − 4.
Note: this array is allocated by this procedure. It should be deallocated when no longer required.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 3 of this module document.

6 Further Comments

6.1 Algorithmic Detail

This procedure may be used for example to extract data from the structure spline in order to write to
file. The procedure nag spline 2d set may then be used to initialize a new spline with this data.

If called with no optional arguments nag spline 2d extract merely checks that the structure spline
has been created by one of the spline generation procedures of this module.

8.3.28 Module 8.3: nag spline 2d [NP3245/3/pdf]

Curve and Surface Fitting Type nag spline 2d comm wp

Derived Type: nag spline 2d comm wp

Note. The names of derived types containing real/complex components are precision dependent. For double precision
the name of this type is nag spline 2d comm dp. For single precision the name is nag spline 2d comm sp. Please read the
Users’ Note for your implementation to check which precisions are available.

1 Description

The derived type nag spline 2d comm wp is used to represent a two-dimensional bicubic spline s(x, y),
in B-spline series form, as described in the Module Introduction.

The procedures nag spline 2d auto fit, nag spline 2d lsq fit, nag spline 2d interp and
nag spline 2d set return structures of this type suitable for passing to nag spline 2d eval,
nag spline 2d intg and nag spline 2d extract.

These generation procedures allocate storage to the pointer components of the structure. For details of
the amount of storage allocated see the description of the argument spline in the relevant procedure
document.

If you wish to deallocate the storage when the structure is no longer required, you must call the generic
deallocation procedure nag deallocate, which is described in the module document nag lib support
(1.1).

The generation procedures check whether the structure has already had storage allocated to it in a
previous call; if it has, they deallocate that storage before allocating the storage required for the new
call.

The components of this type are private.

2 Type Definition

type nag spline 2d comm wp
private
.
.
.

end type nag spline 2d comm wp

3 Components

In order to reduce the risk of accidental data corruption the components of this type are private and
may not be accessed directly.

The procedures nag spline 2d set and nag spline 2d extract may be used to initialize and extract
data from structures of the type.

[NP3245/3/pdf] Module 8.3: nag spline 2d 8.3.29

Type nag spline 2d comm wp Curve and Surface Fitting

8.3.30 Module 8.3: nag spline 2d [NP3245/3/pdf]

Curve and Surface Fitting Example 1

Example 1: Spline fitting with automatic knot selection

Generate a bicubic spline approximation to a set of data points lying on a rectangular mesh, with
automatic knot selection. Use several different values of the smoothing factor S. For each value of S
find the sum of squared residuals, the total number of knots in each direction, and evaluate the spline
on a rectangular mesh.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_spline_2d_ex01

! Example Program Text for nag_spline_2d

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_spline_2d, ONLY : nag_spline_2d_comm_wp => nag_spline_2d_comm_dp &

, nag_spline_2d_auto_fit, nag_spline_2d_eval, nag_deallocate

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND, REAL

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, j, mx, my, nx, ny, p, q

REAL (wp) :: dx, dy, smooth, theta, xmax, xmin, ymax, ymin

CHARACTER (1) :: start

TYPE (nag_spline_2d_comm_wp) :: spline

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: f(:,:), s(:,:), u(:), v(:), x(:), y(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_spline_2d_ex01’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) mx, my

READ (nag_std_in,*) nx, xmin, xmax

READ (nag_std_in,*) ny, ymin, ymax

ALLOCATE (x(mx),y(my),f(mx,my),u(nx),v(ny),s(nx,ny)) ! Allocate storage

READ (nag_std_in,*) x

READ (nag_std_in,*) y

READ (nag_std_in,*) f

start = ’cold start’

DO

! Read in successive values of smooth and generate spline for

! each.

READ (nag_std_in,*,end=20) smooth

! Determine the spline approximation.

CALL nag_spline_2d_auto_fit(start,x,y,f,smooth,spline,p=p,q=q, &

theta=theta)

[NP3245/3/pdf] Module 8.3: nag spline 2d 8.3.31

Example 1 Curve and Surface Fitting

WRITE (nag_std_out,’(//1X,A,1P,E13.4)’) &

’Calling with smoothing factor =’, smooth

WRITE (nag_std_out,’(1X,A,1P,E13.4)’) ’Sum of squared residuals =’, &

theta

WRITE (nag_std_out,’(1X,A,I8)’) &

’Total number of knots in x-direction =’, p

WRITE (nag_std_out,’(1X,A,I8)’) &

’Total number of knots in y-direction =’, q

! Evaluate the spline on a rectangular grid at nx*ny points

! over the domain [xmin, xmax] x [ymin, ymax].

dx = (xmax-xmin)/REAL(nx-1,kind=wp)

dy = (ymax-ymin)/REAL(ny-1,kind=wp)

u = (/ (xmin+(i-1)*dx,i=1,nx-1), xmax/)

v = (/ (ymin+(j-1)*dy,j=1,ny-1), ymax/)

CALL nag_spline_2d_eval(spline,u,v,s)

WRITE (nag_std_out,’(/1X,A)’) ’Values of computed spline:’

WRITE (nag_std_out,’(/11X,A,7F8.2)’) ’x’, u

WRITE (nag_std_out,*) ’ y’

DO j = ny, 1, -1

WRITE (nag_std_out,’(1X,F8.2,3X,7F8.2)’) v(j), s(:,j)

END DO

start = ’warm start’

END DO

20 CONTINUE

DEALLOCATE (x,y,f,u,v,s) ! Deallocate storage

CALL nag_deallocate(spline) ! Free structure allocated by NAG fl90

END PROGRAM nag_spline_2d_ex01

2 Program Data
Example Program Data for nag_spline_2d_ex01

11 9 : mx, my

6 0.0 5.0 : nx, xmin, xmax

5 0.0 4.0 : ny, ymin, ymax

0.0000E+00 5.0000E-01 1.0000E+00 1.5000E+00 2.0000E+00

2.5000E+00 3.0000E+00 3.5000E+00 4.0000E+00 4.5000E+00

5.0000E+00 : End of x

0.0000E+00 5.0000E-01 1.0000E+00 1.5000E+00 2.0000E+00

2.5000E+00 3.0000E+00 3.5000E+00 4.0000E+00 : End of y

0.10000E+01 0.15000E+01 0.20600E+01 0.25700E+01 0.30000E+01

0.35000E+01 0.40400E+01 0.45000E+01 0.50400E+01 0.55050E+01

0.60000E+01 0.88758E+00 0.13564E+01 0.17552E+01 0.21240E+01

0.26427E+01 0.31715E+01 0.35103E+01 0.39391E+01 0.43879E+01

0.48367E+01 0.52755E+01 0.54030E+00 0.82045E+00 0.10806E+01

0.13508E+01 0.16309E+01 0.18611E+01 0.20612E+01 0.24314E+01

0.27515E+01 0.29717E+01 0.32418E+01 0.70737E-01 0.10611E+00

0.15147E+00 0.17684E+00 0.21221E+00 0.24458E+00 0.28595E+00

0.31632E+00 0.35369E+00 0.38505E+00 0.42442E+00 -.41515E+00

-.62422E+00 -.83229E+00 -.10404E+01 -.12484E+01 -.14565E+01

-.16946E+01 -.18627E+01 -.20707E+01 -.22888E+01 -.24769E+01

-.80114E+00 -.12317E+01 -.16023E+01 -.20029E+01 -.22034E+01

-.28640E+01 -.32046E+01 -.36351E+01 -.40057E+01 -.44033E+01

-.48169E+01 -.97999E+00 -.14850E+01 -.19700E+01 -.24750E+01

-.29700E+01 -.32650E+01 -.39600E+01 -.44550E+01 -.49700E+01

8.3.32 Module 8.3: nag spline 2d [NP3245/3/pdf]

Curve and Surface Fitting Example 1

-.54450E+01 -.59300E+01 -.93446E+00 -.13047E+01 -.18729E+01

-.23511E+01 -.28094E+01 -.32776E+01 -.37958E+01 -.42141E+01

-.46823E+01 -.51405E+01 -.56387E+01 -.65664E+00 -.98547E+00

-.14073E+01 -.16741E+01 -.19809E+01 -.22878E+01 -.26146E+01

-.29314E+01 -.32382E+01 -.35950E+01 -.39319E+01 : End of f

0.1 : 1st smooth value

0.01 : 2nd smooth value

0.001 : 3rd smooth value

3 Program Results
Example Program Results for nag_spline_2d_ex01

Calling with smoothing factor = 1.0000E-01

Sum of squared residuals = 1.0004E-01

Total number of knots in x-direction = 10

Total number of knots in y-direction = 13

Values of computed spline:

x 0.00 1.00 2.00 3.00 4.00 5.00

y

4.00 -0.65 -1.36 -1.99 -2.61 -3.25 -3.93

3.00 -0.98 -1.97 -2.91 -3.91 -4.97 -5.92

2.00 -0.42 -0.83 -1.24 -1.66 -2.08 -2.48

1.00 0.54 1.09 1.61 2.14 2.71 3.24

0.00 0.99 2.04 3.03 4.01 5.02 6.00

Calling with smoothing factor = 1.0000E-02

Sum of squared residuals = 9.9961E-03

Total number of knots in x-direction = 14

Total number of knots in y-direction = 13

Values of computed spline:

x 0.00 1.00 2.00 3.00 4.00 5.00

y

4.00 -0.65 -1.37 -1.97 -2.61 -3.24 -3.93

3.00 -0.98 -1.97 -2.97 -3.96 -4.97 -5.93

2.00 -0.42 -0.83 -1.24 -1.68 -2.08 -2.48

1.00 0.54 1.08 1.64 2.08 2.74 3.24

0.00 1.00 2.06 3.00 4.04 5.04 6.00

Calling with smoothing factor = 1.0000E-03

Sum of squared residuals = 1.0000E-03

Total number of knots in x-direction = 15

Total number of knots in y-direction = 13

Values of computed spline:

x 0.00 1.00 2.00 3.00 4.00 5.00

y

4.00 -0.66 -1.41 -1.98 -2.61 -3.24 -3.93

3.00 -0.98 -1.97 -2.97 -3.96 -4.97 -5.93

2.00 -0.42 -0.83 -1.24 -1.68 -2.08 -2.48

1.00 0.54 1.08 1.64 2.07 2.75 3.24

0.00 1.00 2.06 3.00 4.04 5.04 6.00

[NP3245/3/pdf] Module 8.3: nag spline 2d 8.3.33

Example 1 Curve and Surface Fitting

8.3.34 Module 8.3: nag spline 2d [NP3245/3/pdf]

Curve and Surface Fitting Example 2

Example 2: Least-squares spline fitting

Read a set of data points, weights and interior knot positions, and fit a least-squares bicubic spline to
the data points. Use an effective rank threshold of ε = 10−6. Evaluate the spline at the data points and
output x, y, f , and s(x, y) at each point.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_spline_2d_ex02

! Example Program Text for nag_spline_2d

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_spline_2d, ONLY : nag_spline_2d_comm_wp => nag_spline_2d_comm_dp &

, nag_spline_2d_lsq_fit, nag_spline_2d_eval, nag_deallocate

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, m, p, q

TYPE (nag_spline_2d_comm_wp) :: spline

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: f(:), lambda(:), mu(:), s(:), wt(:), x(:), &

y(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_spline_2d_ex02’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) m

READ (nag_std_in,*) p, q

ALLOCATE (x(m),y(m),f(m),wt(m),s(m),lambda(p-8), &

mu(q-8)) ! Allocate storage

READ (nag_std_in,*) x

READ (nag_std_in,*) y

READ (nag_std_in,*) f

READ (nag_std_in,*) wt

IF (p>8) READ (nag_std_in,*) lambda

IF (q>8) READ (nag_std_in,*) mu

! Fit bicubic spline to data points.

CALL nag_spline_2d_lsq_fit(x,y,f,lambda,mu,spline,wt=wt, &

thresh=1.0E-6_wp)

! Evaluate spline at the data points and compare with data

! values.

CALL nag_spline_2d_eval(spline,x,y,s)

WRITE (nag_std_out,*) ’ x y Data Fit’

DO i = 1, m

[NP3245/3/pdf] Module 8.3: nag spline 2d 8.3.35

Example 2 Curve and Surface Fitting

WRITE (nag_std_out,’(4(1X,F10.4))’) x(i), y(i), f(i), s(i)

END DO

DEALLOCATE (x,y,f,wt,s,lambda,mu) ! Deallocate storage

CALL nag_deallocate(spline) ! Free structure allocated by NAG fl90

END PROGRAM nag_spline_2d_ex02

2 Program Data
Example Program Data for nag_spline_2d_ex02

30 : m

10 8 : p , q

0.60 -0.95 0.87 0.84 0.17 -0.87 1.00 0.10

0.24 -0.77 0.32 1.00 -0.63 -0.66 0.93 0.15

0.99 -0.54 0.44 -0.72 0.63 -0.40 0.20 0.43

0.28 -0.24 0.86 -0.41 -0.05 -1.00 : End of x

-0.52 -0.61 0.93 0.09 0.88 -0.70 1.00 1.00

0.30 -0.77 -0.23 -1.00 -0.26 -0.83 0.22 0.89

-0.80 -0.88 0.68 -0.14 0.67 -0.90 -0.84 0.84

0.15 -0.91 -0.35 -0.16 -0.35 -1.00 : End of y

0.93 -1.79 0.36 0.52 0.49 -1.76 0.33 0.48

0.65 -1.82 0.92 1.00 8.88 -2.01 0.47 0.49

0.84 -2.42 0.47 7.15 0.44 -3.34 2.78 0.44

0.70 -6.52 0.66 2.32 1.66 -1.00 : End of f

10.0 10.0 10.0 10.0 10.0 10.0 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 : End of wt

-0.5 0.0 : End of lambda

3 Program Results
Example Program Results for nag_spline_2d_ex02

x y Data Fit

0.6000 -0.5200 0.9300 0.9441

-0.9500 -0.6100 -1.7900 -1.7931

0.8700 0.9300 0.3600 0.3529

0.8400 0.0900 0.5200 0.5024

0.1700 0.8800 0.4900 0.4705

-0.8700 -0.7000 -1.7600 -1.7521

1.0000 1.0000 0.3300 0.6315

0.1000 1.0000 0.4800 1.4910

0.2400 0.3000 0.6500 0.9241

-0.7700 -0.7700 -1.8200 -2.4301

0.3200 -0.2300 0.9200 -0.3692

1.0000 -1.0000 1.0000 1.0835

-0.6300 -0.2600 8.8800 7.6346

-0.6600 -0.8300 -2.0100 -1.5815

0.9300 0.2200 0.4700 1.4912

0.1500 0.8900 0.4900 0.4414

0.9900 -0.8000 0.8400 0.5495

-0.5400 -0.8800 -2.4200 -2.6795

0.4400 0.6800 0.4700 1.5862

-0.7200 -0.1400 7.1500 7.5708

0.6300 0.6700 0.4400 0.6288

-0.4000 -0.9000 -3.3400 -4.6955

0.2000 -0.8400 2.7800 1.7123

0.4300 0.8400 0.4400 0.6888

0.2800 0.1500 0.7000 0.7713

8.3.36 Module 8.3: nag spline 2d [NP3245/3/pdf]

Curve and Surface Fitting Example 2

-0.2400 -0.9100 -6.5200 -4.7072

0.8600 -0.3500 0.6600 0.9347

-0.4100 -0.1600 2.3200 2.7039

-0.0500 -0.3500 1.6600 2.2865

-1.0000 -1.0000 -1.0000 -1.0228

[NP3245/3/pdf] Module 8.3: nag spline 2d 8.3.37

Example 2 Curve and Surface Fitting

8.3.38 Module 8.3: nag spline 2d [NP3245/3/pdf]

Curve and Surface Fitting Example 3

Example 3: Spline interpolation

Given the set of data points (xj , yk, fjk), for j = 1, 2, . . . ,mx and k = 1, 2, . . . ,my, construct a bicubic
spline interpolant. Output the total number of knots in each direction, the interior knots and the B-spline
coefficients.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_spline_2d_ex03

! Example Program Text for nag_spline_2d

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_spline_2d, ONLY : nag_spline_2d_comm_wp => nag_spline_2d_comm_dp &

, nag_spline_2d_interp, nag_spline_2d_extract, nag_deallocate

USE nag_write_mat, ONLY : nag_write_gen_mat

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: mx, my, p, q

TYPE (nag_spline_2d_comm_wp) :: spline

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: f(:,:), x(:), y(:)

REAL (wp), POINTER :: kappa(:,:), lambda(:), mu(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_spline_2d_ex03’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) mx, my

ALLOCATE (x(mx),y(my),f(mx,my)) ! Allocate storage

READ (nag_std_in,*) x

READ (nag_std_in,*) y

READ (nag_std_in,*) f

! Generate the (x,y,f) interpolating bicubic B-spline.

CALL nag_spline_2d_interp(x,y,f,spline)

! Extract the interior knots lambda, mu and the B-spline

! coefficients kappa from the structure.

CALL nag_spline_2d_extract(spline,p=p,q=q,lambda=lambda,mu=mu, &

kappa=kappa)

WRITE (nag_std_out,’(/1X,A,I8)’) &

’Total number of knots in x-direction: p =’, p

WRITE (nag_std_out,’(/1X,A)’) ’Interior knots in x-direction:’

WRITE (nag_std_out,’(5ES15.4)’) lambda

WRITE (nag_std_out,’(/1X,A,I8)’) &

’Total number of knots in y-direction: q =’, q

[NP3245/3/pdf] Module 8.3: nag spline 2d 8.3.39

Example 3 Curve and Surface Fitting

WRITE (nag_std_out,’(/1X,A)’) ’Interior knots in y-direction:’

WRITE (nag_std_out,’(5ES15.4)’) mu

CALL nag_write_gen_mat(kappa,title= &

’The matrix kappa of B-spline coefficients:’)

DEALLOCATE (x,y,f,lambda,mu,kappa) ! Deallocate storage

NULLIFY (lambda,mu,kappa)

CALL nag_deallocate(spline) ! Free structure allocated by NAG fl90

END PROGRAM nag_spline_2d_ex03

2 Program Data
Example Program Data for nag_spline_2d_ex03

7 6 : mx , my

1.00 1.10 1.30 1.50 1.60 1.80 2.00 : End of x

0.00 0.10 0.40 0.70 0.90 1.00 : End of y

1.00 1.21 1.69 2.25 2.56 3.24 4.00

1.10 1.31 1.79 2.35 2.66 3.34 4.10

1.40 1.61 2.09 2.65 2.96 3.64 4.40

1.70 1.91 2.39 2.95 3.26 3.94 4.70

1.90 2.11 2.59 3.15 3.46 4.14 4.90

2.00 2.21 2.69 3.25 3.56 4.24 5.00 : End of f

3 Program Results
Example Program Results for nag_spline_2d_ex03

Total number of knots in x-direction: p = 11

Interior knots in x-direction:

1.3000E+00 1.5000E+00 1.6000E+00

Total number of knots in y-direction: q = 10

Interior knots in y-direction:

4.0000E-01 7.0000E-01

The matrix kappa of B-spline coefficients:

1.0000 1.1333 1.3667 1.7000 1.9000 2.0000

1.2000 1.3333 1.5667 1.9000 2.1000 2.2000

1.5833 1.7167 1.9500 2.2833 2.4833 2.5833

2.1433 2.2767 2.5100 2.8433 3.0433 3.1433

2.8667 3.0000 3.2333 3.5667 3.7667 3.8667

3.4667 3.6000 3.8333 4.1667 4.3667 4.4667

4.0000 4.1333 4.3667 4.7000 4.9000 5.0000

8.3.40 Module 8.3: nag spline 2d [NP3245/3/pdf]

Curve and Surface Fitting Example 4

Example 4: Initializing a spline

Initialize a spline structure with the interior knots and B-spline coefficients generated in Example 3.
Compute the definite integral over a subregion of the the region of definition of the spline.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_spline_2d_ex04

! Example Program Text for nag_spline_2d

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_spline_2d, ONLY : nag_spline_2d_comm_wp => nag_spline_2d_comm_dp

USE nag_spline_2d, ONLY : nag_spline_2d_set

USE nag_spline_2d, ONLY : nag_spline_2d_intg

USE nag_spline_2d, ONLY : nag_deallocate

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: p, q

REAL (wp) :: a, alpha, b, beta, c, d, delta, gamma, integral

TYPE (nag_spline_2d_comm_wp) :: spline

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: kappa(:,:), lambda(:), mu(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_spline_2d_ex04’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) a, b, c, d

READ (nag_std_in,*) p, q

ALLOCATE (lambda(p-8),mu(q-8),kappa(p-4,q-4)) ! Allocate storage

READ (nag_std_in,*) lambda

READ (nag_std_in,*) mu

READ (nag_std_in,*) kappa

! Initialize spline.

CALL nag_spline_2d_set(a,b,c,d,lambda,mu,kappa,spline)

! Read integration region.

READ (nag_std_in,*) alpha, beta, gamma, delta

! Evaluate spline integral on [alpha, beta] x [gamma,delta].

integral = nag_spline_2d_intg(spline,alpha=alpha,beta=beta,gamma=gamma, &

delta=delta)

WRITE (nag_std_out,’(/1X,A,ES12.4)’) ’Spline integral = ’, integral

DEALLOCATE (lambda,mu,kappa) ! Deallocate storage

[NP3245/3/pdf] Module 8.3: nag spline 2d 8.3.41

Example 4 Curve and Surface Fitting

CALL nag_deallocate(spline) ! Free structure allocated by NAG fl90

END PROGRAM nag_spline_2d_ex04

2 Program Data
Example Program Data for nag_spline_2d_ex04

1.0 2.0 0.0 1.0 : a, b, c, d

11 10 : p, q

1.3000E+00 1.5000E+00 1.6000E+00 : End of lambda

4.0000E-01 7.0000E-01 : End of mu

1.0000E+00 1.2000E+00 1.5833E+00 2.1433E+00 2.8667E+00

3.4667E+00 4.0000E+00 1.1333E+00 1.3333E+00 1.7167E+00

2.2767E+00 3.0000E+00 3.6000E+00 4.1333E+00 1.3667E+00

1.5667E+00 1.9500E+00 2.5100E+00 3.2333E+00 3.8333E+00

4.3667E+00 1.7000E+00 1.9000E+00 2.2833E+00 2.8433E+00

3.5667E+00 4.1667E+00 4.7000E+00 1.9000E+00 2.1000E+00

2.4833E+00 3.0433E+00 3.7667E+00 4.3667E+00 4.9000E+00

2.0000E+00 2.2000E+00 2.5833E+00 3.1433E+00 3.8667E+00

4.4667E+00 5.0000E+00 : End of kappa

1.5 2.0 0.5 1.0 : alpha, beta, gamma, delta

3 Program Results
Example Program Results for nag_spline_2d_ex04

Spline integral = 9.5834E-01

8.3.42 Module 8.3: nag spline 2d [NP3245/3/pdf]

Curve and Surface Fitting Further Details

Further Details

1 Choice of Knots for nag spline 2d lsq fit

nag spline 2d lsq fit fits to arbitrary data points, with arbitrary weights, a least-squares bicubic
spline surface with given interior knots. The choice of these knots so as to give an acceptable fit must
largely be a matter of trial and error, though with a little experience a satisfactory choice can often be
made after one or two trials. It is usually best to start with a small number of knots (too many will result
in unwanted fluctuations in the fit, or even in there being no unique solution) and, examining the fit
graphically at each stage, to add a few knots at a time at places where the fit is particularly poor. Moving
the existing knots towards these places will also often improve the fit. In regions where the behaviour
of the surface underlying the data is changing rapidly, closer knots will be needed than elsewhere.
Otherwise, positioning is not usually very critical and equally spaced knots are often satisfactory.

A useful feature of the procedure is that it can be used in applications which require the continuity to
be less than the normal continuity of the bicubic spline. For example, the approximant may be required
to have a discontinuous partial derivative with respect to x, for some value of x. This can be achieved
by placing three coincident knots in the x-direction at the given value of x. Similarly a discontinuity in
the second partial derivative for some value of y can be achieved by placing two y-direction knots there.
Analogy with these discontinuous cases can provide guidance in more usual cases: for example, just as
three coincident knots can produce a discontinuity in slope, so three close knots can produce a rapid
change in slope. The closer the knots are, the more rapid can the change be.

An illustration of knot selection for least-squares spline fitting in one dimension appears in the
Further details section of the module document for nag spline 1d (8.2). The guiding principles
illustrated there should be applied to the selection of interior knots in each of the two directions for
nag spline 2d lsq fit.

[NP3245/3/pdf] Module 8.3: nag spline 2d 8.3.43

References Curve and Surface Fitting

References

[1] Anthony G T, Cox M G and Hayes J G (1982) DASL – Data Approximation Subroutine Library
National Physical Laboratory

[2] Cox M G (1972) The numerical evaluation of B-splines J. Inst. Math. Appl. 10 134–149

[3] Cox M G (1975) An algorithm for spline interpolation J. Inst. Math. Appl. 15 95–108

[4] Cox M G (1978) The numerical evaluation of a spline from its B-spline representation J. Inst. Math.
Appl. 21 135–143

[5] De Boor C (1972) On calculating with B-splines J. Approx. Theory 6 50–62

[6] Dierckx P (1981) An algorithm for surface fitting with spline functions IMA J. Numer. Anal. 1
267–283

[7] Dierckx P (1981) An improved algorithm for curve fitting with spline functions Report TW54
Department of Computer Science, Katholieke Universiteit Leuven

[8] Dierckx P (1982) A fast algorithm for smoothing data on a rectangular grid while using spline
functions SIAM J. Numer. Anal. 19 1286–1304

[9] Dierckx P (1993) Curve and Surface Fitting with Splines Clarendon Press, Oxford

[10] Gentleman W M (1969) An error analysis of Goertzel’s (Watt’s) method for computing Fourier
coefficients Comput. J. 12 160–165

[11] Hayes J G (1974) Numerical methods for curve and surface fitting Bull. Inst. Math. Appl. 10 144–152

[12] Reinsch C H (1967) Smoothing by spline functions Numer. Math. 10 177–183

8.3.44 Module 8.3: nag spline 2d [NP3245/3/pdf]

