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Introduction
This module is concerned with a one-dimensional cubic spline s(x), defined for x ∈ [a, b] and expressed
in its B-spline series representation

s(x) =
p−4∑
i=1

κiNi(x),

where Ni(x) denotes the normalized cubic B-spline Hayes [15], defined on the knots λi, λi+1, . . . , λi+4.
The derived type nag spline 1d comm wp is used in this module to represent s(x) in the above form,
which is the most compact form possible, requiring only the p− 4 coefficients, and p knot positions, to
define s(x) fully.

Such a spline may be used to interpolate (pass exactly through) a given set of data points (xi, fi), for
i = 1, 2, . . . ,m. The procedure nag spline 1d interp generates such an interpolant. Alternatively, a
spline may be used to approximate the points, without actually passing through them. In the latter
case it is useful to have some measure of the accuracy of the fit. For this purpose we define the sum of
squares of the weighted residuals

θ =
m∑

i=1

w2
i (fi − s(xi))2,

where the weights wi, i = 1, 2, . . . ,m may be used to ensure that f -values known to be more accurate
than others have a greater influence on θ.

A least-squares spline approximation is one for which the coefficients κi have been chosen in order to
minimise θ. Typically, a least-squares spline approximation involves significantly fewer coefficients than
the corresponding interpolating spline. Its use is much less liable to produce unwanted fluctuations,
and so can often provide a better approximation to the function underlying the data. The procedure
nag spline 1d lsq fit computes a weighted least-squares fit with given interior knots.

A much more automatic fitting procedure can be derived by choosing both the interior knots and the
coefficients κi in order to optimize some measure of the smoothness of s(x), subject to θ being less than
a given threshold. The procedure nag spline 1d auto fit implements an algorithm of this type.

The spline is assumed to have a total of p knots λ1, λ2, . . . , λp. Of these, the first four and the last four
are defined by

λ1 = λ2 = λ3 = λ4 = a, λp−3 = λp−2 = λp−1 = λp = b.

The remaining interior knots λ5, λ6, . . . , λp−4 are either automatically selected or specified through input
arguments, depending on the spline generation procedure used. Coincident knots are permitted as long
as their multiplicity does not exceed four. At a knot of multiplicity one (the usual case), s(x) and its first
two derivatives are continuous. At a knot of multiplicity two, s(x) and its first derivative are continuous.
At a knot of multiplicity three, s(x) is continuous, and at a knot of multiplicity four, s(x) is generally
discontinuous.

In addition to the derived type and procedures mentioned above, the module also provides procedures
for the evaluation of the spline, its derivatives, and its definite integral.
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Procedure: nag spline 1d auto fit

1 Description

nag spline 1d auto fit determines a smooth cubic spline approximation s(x) to the set of data points
(xi, fi) with weights wi, for i = 1, 2, . . . ,m. The data points are assumed to be ordered such that
x1 < x2 < · · · < xm and the spline is defined on the interval [a, b] = [x1, xm]. The weights are by default
set to unity, but you may specify non-default values by supplying the optional argument wt.

The total number of knots p, and their values λ1, . . . , λp are chosen automatically by the procedure.
The balance between closeness of fit and smoothness of the approximation s(x) is controlled by means
of the smoothing factor S. If S is too large the spline will be too smooth and information will be lost
(underfit); for very large S the procedure returns the weighted least-squares cubic polynomial. If S is
too small the spline will pick up too much noise (overfit); for S = 0 an interpolating spline is generated.
Experimenting with values between these two extremes should result in a good compromise. (See Section
6.4 for advice.)

2 Usage

USE nag spline 1d

CALL nag spline 1d auto fit(start, x, f, smooth, spline [, optional arguments])

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

m ≥ 4 — the number of data points

3.1 Mandatory Arguments

start — character(len=1), intent(in)
Input: specifies whether a cold or warm start is required.

If start = 'C' or 'c', the procedure will build up the knot set starting from no interior knots.
For this cold start no initialization of the argument spline is required.
If start = 'W' or 'w', the procedure will restart the knot-placing strategy using the knots
found in a previous call to the procedure. For this warm start the structure spline must be
unchanged from that previous call.

Note: a warm start can save much time in searching for a satisfactory value of smooth.
Constraints: start = 'C' or 'c' on the first call to the procedure; start = 'C', 'c', 'W', or 'w'
on subsequent calls.

x(m) — real(kind=wp), intent(in)
Input: the data points xi, for i = 1, 2, . . . ,m.
Constraints: x(1) < x(2) < · · · < x(m).

f(m) — real(kind=wp), intent(in)
Input: the values fi, for i = 1, 2, . . . ,m.
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smooth — real(kind=wp), intent(in)
Input: the smoothing factor S.

If 0.0 ≤ smooth < EPSILON(1.0 wp)the procedure returns an interpolating spline.

Note: for advice on the choice of smooth see Section 6.4.
Constraints: smooth ≥ 0.0.

spline — type(nag spline 1d comm wp), intent(inout)
Input: a structure representing the spline.

If start = 'C' or 'c', no initialization of spline is required.
If start = 'W' or 'w', the structure must be as output from a previous call to
this procedure.

Output: a structure containing details of the spline s(x) generated. This structure may be passed
to nag spline 1d eval to evaluate s(x) at given points, or to nag spline 1d intg to compute its
definite integral.
Note: to reduce the risk of corrupting the data accidentally, the components of this structure are
private; details of the spline may be extracted by calling nag spline 1d extract.

The procedure allocates approximately 22m real(kind=wp) elements, and m integer elements of
storage to the structure. If you wish to deallocate this storage when the structure is no longer
required, you must call the procedure nag deallocate, as illustrated in Example 1 of this module
document.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

wt(m) — real(kind=wp), intent(in), optional
Input: the values wi of the weights, for i = 1, 2, . . . ,m.
Note: Section 3.3 of the Chapter Introduction gives advice on the choice of weights.
Default: wt = 1.0.
Constraints: wt(i) > 0.0, for i = 1, 2, . . . ,m.

p — integer, intent(out), optional
Output: the total number of knots p chosen by this procedure.

theta — real(kind=wp), intent(out), optional
Output: the sum of squares of weighted residuals θ, as described in the Module Introduction.
Note: if theta = 0.0, this is an interpolating spline. theta should equal smooth within a relative
tolerance of 0.001 unless p = 8, when the spline has no interior knots and so is simply a cubic
polynomial. For knots to be inserted, smooth must be set to a value below the value of theta
produced in this case.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.
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4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 An iterative process has failed to converge.

The iterative process used to compute the coefficients of the approximating spline has
failed to converge. This error exit may occur if smooth has been set very small. If
the error persists with increased smooth, consult NAG.

If error%level = 2 a spline approximation is computed, but fails to satisfy the fitting criterion (see
Section 6.1), perhaps by only a small amount, however. If you wish to use this approximation you must
supply the optional argument error with error%halt level set to 3.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The coefficients κ1, κ2, . . . , κp−4 are determined as the solution of the following constrained minimisation
problem:

minimize η =
p−4∑
i=5

δ2
i , subject to θ =

m∑
i=1

ε2i ≤ S,

where δi stands for the discontinuity jump in the third-order derivative of s(x) at the interior knot λi,
εi = wi(fi − s(xi)) denotes the weighted residual, and S is the non-negative value supplied in smooth.

The quantity η can be considered as a measure of the lack of smoothness in s(x), while closeness of fit is
measured through θ. By means of the parameter S, the smoothing factor , you may control the balance
between these two (usually conflicting) properties.

If S = 0, the requisite number of knots is known in advance, i.e., p = m + 4; the interior knots are
located immediately as λi = xi−2, for i = 5, 6, . . . . , p − 4. The corresponding least-squares spline (see
nag spline 1d lsq fit) is then an interpolating spline and therefore a solution of the problem.

If S > 0, a suitable knot set is built up in stages (starting with no interior knots in the case of a cold
start but with the knot set found in a previous call if a warm start is chosen). At each stage, a spline is
fitted to the data by least-squares (see nag spline 1d lsq fit) and θ, the weighted sum of squares of
residuals, is computed. If θ > S, new knots are added to the knot set to reduce θ at the next stage. The
number of knots added depends on the value of S and on the progress made so far in reducing θ. The
new knots are located in intervals where the fit is particularly poor. At some point in the computation
the condition θ ≤ S will be satisfied, and at that point the knot set is accepted. The procedure then goes
on to compute the (unique) spline which has this knot set and which satisfies the full fitting criterion
specified above. The theoretical solution has θ = S. The procedure computes the spline by an iterative

[NP3245/3/pdf] Module 8.2: nag spline 1d 8.2.7



nag spline 1d auto fit Curve and Surface Fitting

scheme which is ended when θ = S within a relative tolerance of 0.001. The main part of each iteration
consists of a linear least-squares computation of a special form, done in a similarly stable and efficient
manner as in nag spline 1d lsq fit.

An exception occurs when the procedure finds at the start that, even with no interior knots (p = 8),
the least-squares spline already has its weighted sum of squares of residuals ≤ S. In this case, since this
spline (which is simply a cubic polynomial) also has an optimal value for the smoothness measure η,
namely zero, it is returned at once as the (trivial) solution. It will usually mean that S has been chosen
too large.

For further details of the algorithm and its use, see Dierckx [9], Dierckx [10] and Dierckx [11].

6.2 Accuracy

On successful exit, the approximation returned is such that its residual norm is equal to the smoothing
factor S, up to a relative tolerance of 0.001, except that if p = 8, it may be significantly less than S; in
this case the computed spline is simply a weighted least-squares cubic polynomial approximation, i.e., a
spline with no interior knots.

6.3 Timing

The time taken for a call of this procedure depends on the complexity of the shape of the data, the value
of the smoothing factor S, and the number of data points. If the procedure is to be called for different
values of S, much time can be saved by setting start = 'W' after the first call.

6.4 Choice of S

If the weights have been correctly chosen (see Section 3.3 of the Chapter Introduction), the standard
deviation of wifi would be the same for all i, equal to σ, say. In this case, choosing the smoothing factor
S in the range [σ2(m−

√
2m), σ2(m+

√
2m)], as suggested by Reinsch [16], is likely to give a good start in

the search for a satisfactory value. Otherwise, experimenting with different values of S will be required
from the start, taking account of the remarks in Section 1. In that case, in view of computation time
and memory requirements, it is recommended to start with a value of S which is so large that no interior
knots are inserted (p = 8). The spline generated in this case is the least-squares cubic polynomial, and
the value returned for theta, call it θ0, gives an upper bound for S. Then progressively decrease the
value of S to obtain closer fits, say by a factor of 10 in the beginning, i.e., S = θ0/10, S = θ0/100, and
so on, and more carefully as the approximation shows more details.

The number of knots of the spline returned, and their location, generally depend on the value of S and
on the behaviour of the function underlying the data. If this procedure is called with a warm start,
however, the knots returned may also depend on the smoothing factors of the previous calls. Therefore
if, after a number of trials with different values of S and warm starts, a fit can finally be accepted as
satisfactory, it may be worthwhile to call the procedure once more with the selected value for S but now
using start = 'C'. Often, this procedure then returns an approximation with the same quality of fit
but with fewer knots, which is therefore better if data reduction is also important.
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Procedure: nag spline 1d lsq fit

1 Description

nag spline 1d lsq fit determines a least-squares cubic spline approximation s(x) to the set of data
points (xi, fi) with weights wi, for i = 1, 2, . . . ,m. The data points are assumed to be ordered such that
x1 ≤ x2 ≤ · · · ≤ xm and the spline is defined on the interval [a, b] = [x1, xm]. The weights are by default
set to unity, but you may specify non-default values by supplying the optional argument wt. The spline
has a total of p knots, of which you must specify the p − 8 interior knots λ5, λ6, . . . , λp−4. Multiple
knots are permitted as long as their multiplicity does not exceed four. As mentioned in the Module
Introduction, the use of multiple knots generally results in discontinuity of s(x) or its derivatives.

s(x) has the property that it minimizes the sum of squares of weighted residuals

θ =
m∑

i=1

ε2i ,

where εi = wi(fi − s(xi)) is the weighted residual at xi.

2 Usage

USE nag spline 1d

CALL nag spline 1d lsq fit(x, f, lambda, spline [, optional arguments])

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

m — the number of data points
p — the total number of knots

m and p must satisfy the constraints

m ≥ md ≥ 4, 8 ≤ p ≤ md + 4,

where md is the number of distinct values in x.

3.1 Mandatory Arguments

x(m) — real(kind=wp), intent(in)
Input: the data points xi, for i = 1, 2, . . . ,m.
Constraints: x(1) ≤ x(2) ≤ · · · ≤ x(m).

f(m) — real(kind=wp), intent(in)
Input: the values fi, for i = 1, 2, . . . ,m.

lambda(p− 8) — real(kind=wp), intent(in)
Input: lambda(i) must contain the interior knot λi+4, for i = 1, 2, . . . , p− 8.
Note: for advice on the choice of knots see the Further Details section of this module document.
Constraints: x(1) < lambda(1) ≤ · · · ≤ lambda(p− 8) < x(m), and lambda(i) must not have
multiplicity > 4.
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spline — type(nag spline 1d comm wp), intent(out)
Output: a structure containing details of the spline s(x) generated. This structure may be passed
to nag spline 1d eval to evaluate s(x) at given points, or to nag spline 1d intg to compute its
definite integral.
Note: to reduce the risk of corrupting the data accidentally, the components of this structure are
private; details of the spline may be extracted by calling nag spline 1d extract.

The procedure allocates 2p real(kind=wp) elements of storage to the structure. If you wish to
deallocate this storage when the structure is no longer required, you must call the procedure
nag deallocate, as illustrated in Example 2 of this module document.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

wt(m) — real(kind=wp), intent(in), optional
Input: the values wi of the weights, for i = 1, 2, . . . ,m.
Note: Section 3.3 of the Chapter Introduction gives advice on the choice of weights.
Default: wt = 1.0.
Constraints: wt(i) > 0.0, for i = 1, 2, . . . ,m.

theta — real(kind=wp), intent(out), optional
Output: the sum of squares of weighted residuals θ.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 There is no unique solution.

The conditions specified by Schoenberg and Whitney [17] fail to hold for at least one
subset of the distinct data abscissae. That is, there is no subset of p − 4 strictly
increasing values x(r1), x(r2),. . ., x(rp−4) among the abscissae such that

x(r1) < λ1 < x(r5),
x(r2) < λ2 < x(r6),

...
x(rp−8) < λp−8 < x(rp−4).

This means that there is no unique solution: there are regions containing too many
knots compared with the number of data points.
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5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The method employed involves forming and then computing the least-squares solution of a set ofm linear
equations in the coefficients κi, for i = 1, 2, . . . , p−4. The equations are formed using a recurrence relation
for B-splines that is unconditionally stable (see Cox [1], De Boor [8]), even for multiple (coincident) knots.
The least-squares solution is also obtained in a stable manner by using orthogonal transformations,
namely a variant of Givens rotations (see Gentleman [13] and Gentleman [14]). This requires only one
equation to be stored at a time. Full advantage is taken of the structure of the equations, there being
at most four non-zero values of Ni(x) for any value of x and hence at most four coefficients in each
equation. For further details of the algorithm and its use see Cox [2], Cox [4] and Cox and Hayes [7].

6.2 Accuracy

The rounding errors committed are such that the computed coefficients are exact for a slightly perturbed
set of ordinates fi + δfi. The ratio of the root-mean-square value for the δfi to the root-mean-square
value of the fi can be expected to be less than a small multiple of C×m×EPSILON(1.0 wp), where C is
a condition number for the problem (see Cox [4]). In general we would not expect C to be large unless
the choice of knots results in near-violation of the Schoenberg–Whitney conditions (see Schoenberg and
Whitney [17]).

A cubic spline which adequately fits the data and is free from spurious oscillations is more likely to be
obtained if the knots are chosen to be grouped more closely in regions where the function (underlying
the data) or its derivatives change more rapidly than elsewhere.

6.3 Timing

The time taken by the procedure is proportional to 2m+ p.
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Procedure: nag spline 1d interp

1 Description

nag spline 1d interp determines a cubic spline s(x), defined in the range [a, b] = [x1, xm], which
interpolates (passes exactly through) the set of data points (xi, fi), for i = 1, 2, . . . ,m, where m ≥ 4
and x1 < x2 < . . . < xm. The spline has a total of p = m + 4 knots, of which the m − 4 interior knots
λ5, λ6, . . . , λm are set to the values of x3, x4, . . . , xm−2 respectively.

2 Usage

USE nag spline 1d

CALL nag spline 1d interp(x, f, spline [, optional arguments])

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

m ≥ 4 — the number of data points

3.1 Mandatory Arguments

x(m) — real(kind=wp), intent(in)
Input: the data points xi, for i = 1, 2, . . . ,m.
Constraints: x(1) < x(2) < · · · < x(m).

f(m) — real(kind=wp), intent(in)
Input: the values fi, for i = 1, 2, . . . ,m.

spline — type(nag spline 1d comm wp), intent(out)
Output: a structure containing details of the spline s(x) generated. This structure may be passed
to nag spline 1d eval to evaluate s(x) at given points, or to nag spline 1d intg to compute its
definite integral.
Note: to reduce the risk of corrupting the data accidentally, the components of this structure are
private; details of the spline may be extracted by calling nag spline 1d extract.

The procedure allocates approximately 2m real(kind=wp) elements of storage to the structure. If
you wish to deallocate this storage when the structure is no longer required, you must call the
procedure nag deallocate, as illustrated in Example 3 of this module document.

3.2 Optional Argument

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.
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4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 3 of this module document.

6 Further Comments

6.1 Algorithmic Detail

Unlike some other spline interpolation algorithms, derivative end conditions are not imposed on the
spline. All the xi are used as knot positions except x2 and xm−1. This choice of knots (see Cox [5])
means that s(x) is composed of m − 3 cubic arcs as follows. If m = 4, there is just a single arc space
spanning the whole interval [x1, x4]. If m ≥ 5, the first arc spans the interval [x1, x3] and the last arc
spans [xm−2, xm]. Additionally, if m ≥ 6, the ith arc, for i = 2, 3, . . . ,m− 4, spans [xi+1, xi+2].

The algorithm for determining the coefficients is as described in Cox [3], except that QR factorization is
used instead of LU decomposition. The implementation of the algorithm involves setting up appropriate
information for the related procedure nag spline 1d lsq fit, followed by a call to that procedure. For
further details of nag spline 1d lsq fit, see the procedure document .

6.2 Accuracy

The rounding errors committed are such that the computed coefficients are exact for a slightly perturbed
set of ordinates fi + δfi. The ratio of the root-mean-square value for the δfi to the root-mean-square
value of the fi is no greater than a small multiple of EPSILON(1.0 wp).

6.3 Timing

The time taken by the procedure is approximately proportional to m.
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Procedure: nag spline 1d eval

1 Description

nag spline 1d eval evaluates a cubic spline s(x), and optionally its first three derivatives, at a set of
points ui, i = 1, 2, . . . , n. Since s(x) is a piecewise cubic function the higher derivatives are all zero.

Each evaluation point must lie within the region of definition [a, b] of the spline, as described in Section
1 of the procedure document for its generation procedure.

If an evaluation point coincides with one or more of the knots of the spline the required values of s and
its derivatives are not in general continuous. By default, at points of discontinuity, left-hand values are
calculated; this may be overridden by means of the optional argument right hand.

2 Usage

USE nag spline 1d

CALL nag spline 1d eval(spline, u, s [, optional arguments])

2.1 Interfaces

Distinct interfaces are provided for the following cases.

Evaluation at an array of points / at a single point
Array of points: u, s and the optional arguments sd1, sd2 and sd3 are all rank-1 arrays.
Single point: u, s and the optional arguments sd1, sd2 and sd3 are all scalar.

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

n ≥ 1 — the number of evaluation points

3.1 Mandatory Arguments

spline — type(nag spline 1d comm wp), intent(in)
Input: a structure containing details of the spline s(x) to be evaluated.
Constraints: spline must be as output from a previous call to nag spline 1d auto fit,
nag spline 1d lsq fit, nag spline 1d interp, or nag spline 1d set.

u(n) / u — real(kind=wp), intent(in)
Input: the point(s) ui, for i = 1, 2, . . . , n, at which s(x) is to be evaluated.
Constraints: a ≤ u(i) ≤ b, where [a, b] is the interval of definition of the spline, as described in the
procedure document for its generation procedure.
Note: if n = 1, u may be declared as a scalar. In this case the constraint is a ≤ u ≤ b.

s(n) / s — real(kind=wp), intent(out)
Output: the value(s) of the spline s(ui), for i = 1, 2, . . . , n.
Note: s must have the same rank as u.
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3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

sd1(n) / sd1 — real(kind=wp), intent(out), optional
Output: the value(s) of the first derivative of the spline s′(ui), for i = 1, 2, . . . , n.
Note: sd1 must have the same rank as u.

sd2(n) / sd2 — real(kind=wp), intent(out), optional
Output: the value(s) of the second derivative of the spline s′′(ui), for i = 1, 2, . . . , n.
Note: sd2 must have the same rank as u.

sd3(n) / sd3 — real(kind=wp), intent(out), optional
Output: the value(s) of the third derivative of the spline s′′′(ui), for i = 1, 2, . . . , n.
Note: sd3 must have the same rank as u.

right hand — logical, intent(in), optional
Input: determines whether left-hand or right-hand function and derivative values are computed
should any ui coincide with a knot.

If right hand = .true. right-hand values are computed.
If right hand = .false. left-hand values are computed.

Default: right hand = .false..

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

303 Array arguments have inconsistent shapes.

5 Examples of Usage

Complete examples of the use of this procedure appear in Examples 3 and 4 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The method of evaluation for each point ui is based on the following steps.

1. Carry out a binary search for the knot interval containing the point ui, (see Cox [6]).

2. Evaluate the non-zero B-splines of orders 1, 2, 3 and 4 by recurrence (see Cox [1], Cox [6]).

3. Compute all derivatives of the B-splines of order 4 by applying a second recurrence to these
computed B-spline values (see Cox [1]).
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4. Multiply the fourth-order B-spline values and their derivatives by the appropriate B-spline
coefficients, and sum, to yield the value of the spline and its derivatives at ui.

If derivatives are not required the procedure uses a more efficient method of taking convex combinations
due to De Boor [8]. For further details of the algorithm and its use see Cox [1].

6.2 Accuracy

The computed values of s(x) have negligible error in most practical situations. Specifically, a value
has an absolute error bounded in modulus by 18κmax×EPSILON(1.0 wp), where κmax is the largest in
modulus of κj , κj+1, κj+2 and κj+3, and j is an integer such that λj+3 ≤ x ≤ λj+4. If κj , κj+1, κj+2

and κj+3 are all of the same sign, then the computed value of s(x) has a relative error not exceeding
20×EPSILON(1.0 wp) in modulus. For further details see Cox [6].

No complete error analysis is available for the computation of the derivatives of s(x). However, for most
practical purposes the absolute errors in the computed derivatives should be small.

6.3 Timing

The time required to evaluate the spline and its derivatives at a given point varies linearly with log(p),
where p is the total number of knots. If the value of p is not known it can be determined by calling
nag spline 1d extract. If no derivatives are required a faster method of evaluation is used.
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Procedure: nag spline 1d intg

1 Description

The function nag spline 1d intg evaluates the definite integral

I =
∫ β

α

s(x) dx

of a cubic spline s(x).

By default the region of integration [α, β] is taken as the region of definition [a, b] of s(x), as determined
by the particular procedure used to produce the spline. Details may be found in Section 1 of the relevant
procedure document.

Integration may be performed over non-default regions lying within [a, b] by supplying one or both of
the optional arguments alpha and beta.

2 Usage

USE nag spline 1d

[value =] nag spline 1d intg(spline [, optional arguments])

The function result value is a scalar of type real(kind=wp).

3 Arguments

3.1 Mandatory Argument

spline — type(nag spline 1d comm wp), intent(in)
Input: a structure containing details of the spline s(x) to be integrated.
Constraints: spline must be as output from a previous call to nag spline 1d auto fit,
nag spline 1d lsq fit, nag spline 1d interp, or nag spline 1d set.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

alpha — real(kind=wp), intent(in), optional
beta — real(kind=wp), intent(in), optional

Input: the lower and upper limits α and β of the integral.
Constraints: a ≤ alpha ≤ b and a ≤ beta ≤ b. See Section 1.
Note: it is not required that alpha < beta.
Default: alpha = a, beta = b.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.
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4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

5 Examples of Usage

Complete examples of the use of this procedure appear in Examples 2 and 4 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The method employed is described in Section 1.3.3 of Dierckx [12].

6.2 Timing

The time taken by this function is approximately proportional to the total number of knots p. If the
value of p is not known it can be determined by calling nag spline 1d extract.
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Procedure: nag spline 1d set

1 Description

nag spline 1d set creates a structure of type nag spline 1d comm wp containing details of a given
cubic spline

s(x) =
p−4∑
i=1

κiNi(x), x ∈ [a, b],

where Ni(x) is the normalized cubic B-spline defined on the knots λi, . . . , λi+4. The interior knots
λ5, · · · , λp−4 must satisfy

a < λ5 ≤ λ6 ≤ · · · ≤ λp−3 ≤ λp−4 < b,

and each interior knot must have maximum multiplicity four. The knot set is completed by setting the
first four knots to a and the last four to b.

Note that this procedure cannot be used in conjunction with nag spline 1d auto fit with a warm
start.

2 Usage

USE nag spline 1d

CALL nag spline 1d set(a, b, lambda, kappa, spline [, optional arguments])

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

p ≥ 8 — the total number of knots

3.1 Mandatory Arguments

a — real(kind=wp), intent(in)
b — real(kind=wp), intent(in)

Input: the lower and upper limits a and b of the region on which the spline is defined.
Constraints: a < b.

lambda(p− 8) — real(kind=wp), intent(in)
Input: lambda(i) must contain the interior knot λi+4, for i = 1, 2, . . . , p− 8.
Constraints: a < lambda(1) ≤ · · · ≤ lambda(p− 8) < b, and lambda(i) must not have multiplicity
> 4.

kappa(p− 4) — real(kind=wp), intent(in)
Input: kappa(i)must contain the coefficient κi, for i = 1, 2, . . . , p−4, in the B-spline representation
of s(x).
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spline — type(nag spline 1d comm wp), intent(out)
Output: a structure containing details of the spline s(x) generated. This structure may be passed
to nag spline 1d eval to evaluate s(x) at given points, or to nag spline 1d intg to compute its
definite integral.
Note: to reduce the risk of corrupting the data accidentally, the components of this structure are
private; details of the spline may be extracted by calling nag spline 1d extract.

The procedure allocates 2p real(kind=wp) elements of storage to the structure. If you wish to
deallocate this storage when the structure is no longer required, you must call the procedure
nag deallocate, as illustrated in Example 4 of this module document.

3.2 Optional Argument

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 4 of this module document.

6 Further Comments

6.1 Algorithmic Detail

This procedure may be used for example to initialize a spline with data which has been read from file.
The procedure nag spline 1d extract may be used to extract the data to be written to file.
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Procedure: nag spline 1d extract

1 Description

Given a structure of type nag spline 1d comm wp representing a cubic spline

s(x) =
p−4∑
i=1

κiNi(x), x ∈ [a, b],

this procedure optionally returns the total number of knots p, the interval on which the spline is defined
[a, b], the interior knots λ5, . . . , λp−4, and the B-spline coefficients κ1, . . . , κp−4.

Since the number of knots may not be known prior to a call to this procedure the arguments which return
the knots and B-spline coefficients are pointers, which are allocated internally. It is your responsibility
to deallocate this storage.

2 Usage

USE nag spline 1d

CALL nag spline 1d extract(spline [, optional arguments])

3 Arguments

3.1 Mandatory Argument

spline — type(nag spline 1d comm wp), intent(in)
Input: a structure containing details of the spline s(x).
Constraints: spline must be as output from a previous call to nag spline 1d auto fit,
nag spline 1d lsq fit, nag spline 1d interp, or nag spline 1d set.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

p — integer, intent(out), optional
Output: the total number of knots p in the spline.

a — real(kind=wp), intent(out), optional
b — real(kind=wp), intent(out), optional

Output: the lower and upper limits a and b of the region of definition of s(x) respectively.

lambda(:) — real(kind=wp), pointer, optional
Output: lambda(i) holds the interior knot λi+4, for i = 1, 2, . . . , p− 8.
Note: this array is allocated by this procedure. It should be deallocated when no longer required.

kappa(:) — real(kind=wp), pointer, optional
Output: kappa(i) holds the coefficient κi, for i = 1, 2, . . . , p− 4.
Note: this array is allocated by this procedure. It should be deallocated when no longer required.
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error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Algorithmic Detail

This procedure may be used for example to extract data from the structure spline in order to write to
file. The procedure nag spline 1d set may then be used to initialize a new spline with this data.

If called with no optional arguments this procedure merely checks that the structure spline has been
created by one of the spline generation procedures of this module.
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Derived Type: nag spline 1d comm wp

Note. The names of derived types containing real/complex components are precision dependent. For double precision
the name of this type is nag spline 1d comm dp. For single precision the name is nag spline 1d comm sp. Please read the
Users’ Note for your implementation to check which precisions are available.

1 Description

The derived type nag spline 1d comm wp is used to represent a one-dimensional cubic spline s(x), in
B-spline series form, as described in the Module Introduction.

The procedures nag spline 1d auto fit, nag spline 1d lsq fit, nag spline 1d interp and
nag spline 1d set return structures of this type suitable for passing to nag spline 1d eval,
nag spline 1d intg and nag spline 1d extract.

These generation procedures allocate storage to the pointer components of the structure. For details of
the amount of storage allocated see the description of the argument spline in the relevant procedure
document.

If you wish to deallocate the storage when the structure is no longer required, you must call the generic
deallocation procedure nag deallocate, which is described in the module document nag lib support
(1.1).

The generation procedures check whether the structure has already had storage allocated to it in a
previous call; if it has, that storage is deallocated before allocating the storage required for the new call.

The components of this type are private.

2 Type Definition

type nag spline 1d comm wp
private
.
.
.

end type nag spline 1d comm wp

3 Components

In order to reduce the risk of accidental data corruption the components of this type are private and
may not be accessed directly.

The procedures nag spline 1d set and nag spline 1d extract may be used to initialize and extract
data from structures of the type.
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Example 1: Spline fitting with automatic knot selection

Generate a spline approximation to a set of data points with automatic knot selection, using several
different values of the smoothing factor S. For each value of S output the total number of knots, the
values of the interior knots, and the residual sum of squares.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_spline_1d_ex01

! Example Program Text for nag_spline_1d

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_spline_1d, ONLY : nag_spline_1d_comm_wp => nag_spline_1d_comm_dp &

, nag_spline_1d_auto_fit, nag_spline_1d_extract, nag_deallocate

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: m, p

REAL (wp) :: smooth, theta

CHARACTER (1) :: start

TYPE (nag_spline_1d_comm_wp) :: spline

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: f(:), wt(:), x(:)

REAL (wp), POINTER :: lambda(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_spline_1d_ex01.’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) m

ALLOCATE (x(m),f(m),wt(m)) ! Allocate storage

READ (nag_std_in,*) x

READ (nag_std_in,*) f

READ (nag_std_in,*) wt

start = ’cold start’

DO

! Read in successive values of smooth and generate spline for

! each.

READ (nag_std_in,*,end=20) smooth

! Determine the spline approximation.

CALL nag_spline_1d_auto_fit(start,x,f,smooth,spline,wt=wt,theta=theta)

! Extract the knots.

CALL nag_spline_1d_extract(spline,p=p,lambda=lambda)
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WRITE (nag_std_out,’(//1X,A,1P,E13.6)’) &

’Calling with smoothing factor =’, smooth

WRITE (nag_std_out,’(/1X,A,I8)’) ’Total number of knots =’, p

WRITE (nag_std_out,’(1X,A/(2X,1PE12.6))’) ’Interior knots’, lambda

WRITE (nag_std_out,’(/1X,A,1PE12.4)’) ’Residual sum of squares =’, &

theta

start = ’warm start’

END DO

20 CONTINUE

DEALLOCATE (x,f,wt,lambda) ! Deallocate storage

NULLIFY (lambda)

CALL nag_deallocate(spline) ! Free structure allocated by NAG fl90

END PROGRAM nag_spline_1d_ex01

2 Program Data
Example Program Data for nag_spline_1d_ex01

15 : m

0.0000E+00 5.0000E-01 1.0000E+00 1.5000E+00 2.0000E+00

2.5000E+00 3.0000E+00 4.0000E+00 4.5000E+00 5.0000E+00

5.5000E+00 6.0000E+00 7.0000E+00 7.5000E+00 8.0000E+00 : End of x

-1.1000E+00 -3.7200E-01 4.3100E-01 1.6900E+00 2.1100E+00

3.1000E+00 4.2300E+00 4.3500E+00 4.8100E+00 4.6100E+00

4.7900E+00 5.2300E+00 6.3500E+00 7.1900E+00 7.9700E+00 : End of f

1.00 2.00 1.50 1.00 3.00 1.00 0.50 1.00

2.00 2.50 1.00 3.00 1.00 2.00 1.00 : End of wt

1.0 : 1st smooth value

0.5 : 2nd smooth value

0.1 : 3rd smooth value

3 Program Results
Example Program Results for nag_spline_1d_ex01.

Calling with smoothing factor = 1.000000E+00

Total number of knots = 9

Interior knots

4.000000E+00

Residual sum of squares = 1.0003E+00

Calling with smoothing factor = 5.000000E-01

Total number of knots = 13

Interior knots

1.000000E+00

2.000000E+00

4.000000E+00

5.000000E+00

6.000000E+00
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Residual sum of squares = 5.0010E-01

Calling with smoothing factor = 1.000000E-01

Total number of knots = 16

Interior knots

1.000000E+00

1.500000E+00

2.000000E+00

3.000000E+00

4.000000E+00

4.500000E+00

5.000000E+00

6.000000E+00

Residual sum of squares = 1.0000E-01
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Example 2: Least-squares spline fitting
Determine a weighted least-squares cubic spline approximation with 12 knots (four interior knots) to a
set of 14 given data points. Calculate the residual sum of squares and the definite integral of the spline
over the interval [x(1),x(14)], on which it is defined.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_spline_1d_ex02

! Example Program Text for nag_spline_1d

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_spline_1d, ONLY : nag_spline_1d_comm_wp => nag_spline_1d_comm_dp &

, nag_spline_1d_lsq_fit, nag_spline_1d_intg, nag_deallocate

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: m, p

REAL (wp) :: integral, theta

TYPE (nag_spline_1d_comm_wp) :: spline

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: f(:), lambda(:), wt(:), x(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_spline_1d_ex02’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) m, p

ALLOCATE (x(m),f(m),wt(m),lambda(p-8)) ! Allocate storage

READ (nag_std_in,*) x

READ (nag_std_in,*) f

READ (nag_std_in,*) wt

READ (nag_std_in,*) lambda

! Fit spline and output residual norm.

CALL nag_spline_1d_lsq_fit(x,f,lambda,spline,wt=wt,theta=theta)

WRITE (nag_std_out,’(/1X,A,E12.4)’) ’Residual sum of squares = ’, theta

! Evaluate spline integral over region of definition.

integral = nag_spline_1d_intg(spline)

WRITE (nag_std_out,’(/1X,A,E12.4)’) ’Spline integral = ’, integral

DEALLOCATE (x,f,wt,lambda) ! Deallocate storage

CALL nag_deallocate(spline) ! Free structure allocated by NAG fl90

END PROGRAM nag_spline_1d_ex02
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2 Program Data
Example Program Data for nag_spline_1d_ex02

14 12 : m, p

0.20 0.47 0.74 1.09 1.60 1.90 2.60

3.10 4.00 5.15 6.17 8.00 10.00 12.00 : End of x

0.00 2.00 4.00 6.00 8.00 8.62 9.10

8.90 8.15 7.00 6.00 4.54 3.39 2.56 : End of f

0.20 0.20 0.30 0.70 0.90 1.00 1.00

1.00 0.80 0.50 0.70 1.00 1.00 1.00 : End of wt

1.50 2.60 4.00 8.00 : End of lambda

3 Program Results
Example Program Results for nag_spline_1d_ex02

Residual sum of squares = 0.1783E-02

Spline integral = 0.6617E+02
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Example 3: Spline interpolation

Interpolate the exponential function from 7 values lying in the interval [0, 1]. Evaluate the spline at the
abscissae and at points lying halfway between them.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_spline_1d_ex03

! Example Program Text for nag_spline_1d

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_spline_1d, ONLY : nag_spline_1d_comm_wp => nag_spline_1d_comm_dp &

, nag_spline_1d_interp, nag_spline_1d_eval, nag_deallocate

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC EXP, KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, m, n

TYPE (nag_spline_1d_comm_wp) :: spline

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: f(:), s(:), u(:), x(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_spline_1d_ex03’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) m

n = 2*m - 1

ALLOCATE (x(m),f(m),u(n),s(n)) ! Allocate storage

READ (nag_std_in,*) x

f = EXP(x)

! Construct interpolating spline.

CALL nag_spline_1d_interp(x,f,spline)

! Calculate values of the spline at the x(i)

! and at points halfway between them.

u(1:n:2) = x(1:m)

u(2:n-1:2) = 0.5_wp*(x(1:m-1)+x(2:m))

CALL nag_spline_1d_eval(spline,u,s)

WRITE (nag_std_out,’(/,7X,’’x’’,11X,’’s(x)’’)’)

DO i = 1, n

WRITE (nag_std_out,’(2(3X,E10.4))’) u(i), s(i)

END DO

DEALLOCATE (x,f,u,s) ! Deallocate storage

CALL nag_deallocate(spline) ! Free structure allocated by NAG fl90
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END PROGRAM nag_spline_1d_ex03

2 Program Data
Example Program Data for nag_spline_1d_ex03

7 : m

0.00 0.20 0.40 0.60 0.75 0.90 1.00 : End of x

3 Program Results
Example Program Results for nag_spline_1d_ex03

x s(x)

0.0000E+00 0.1000E+01

0.1000E+00 0.1105E+01

0.2000E+00 0.1221E+01

0.3000E+00 0.1350E+01

0.4000E+00 0.1492E+01

0.5000E+00 0.1649E+01

0.6000E+00 0.1822E+01

0.6750E+00 0.1964E+01

0.7500E+00 0.2117E+01

0.8250E+00 0.2282E+01

0.9000E+00 0.2460E+01

0.9500E+00 0.2586E+01

0.1000E+01 0.2718E+01
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Example 4: Initializing a spline

Initialize a spline defined on a given region [a, b] with interior knots λ5, . . . , λp−4 and B-spline coefficients
κ1, . . . , κp−4. Evaluate the left and right limits of the spline and its derivatives on a uniform mesh and
compute its integral on a region [α, β].

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_spline_1d_ex04

! Example Program Text for nag_spline_1d

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_spline_1d, ONLY : nag_spline_1d_comm_wp => nag_spline_1d_comm_dp &

, nag_spline_1d_set, nag_spline_1d_eval, nag_spline_1d_intg, &

nag_deallocate

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, n, p

REAL (wp) :: a, alpha, b, beta, integral, s, sd1, sd2, sd3, x

TYPE (nag_spline_1d_comm_wp) :: spline

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: kappa(:), lambda(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_spline_1d_ex04’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) a, b

READ (nag_std_in,*) p

ALLOCATE (lambda(p-8),kappa(p-4)) ! Allocate storage

READ (nag_std_in,*) lambda

READ (nag_std_in,*) kappa

READ (nag_std_in,*) n

READ (nag_std_in,*) alpha, beta

! Initialize spline.

CALL nag_spline_1d_set(a,b,lambda,kappa,spline)

! Calculate values of the spline and its derivatives on a uniform

! mesh.

WRITE (nag_std_out,’(/,6X,A,13X,A,6X,A,3X,A,3X,A)’) ’x’, ’spline’, &

’1st deriv’, ’2nd deriv’, ’3rd deriv’

x = 0.0_wp

DO i = 1, n

CALL nag_spline_1d_eval(spline,x,s,sd1=sd1,sd2=sd2,sd3=sd3)

WRITE (nag_std_out,’(/E12.4,1X,A,4E12.4)’) x, ’LEFT ’, s, sd1, sd2, &
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sd3

CALL nag_spline_1d_eval(spline,x,s,sd1=sd1,sd2=sd2,sd3=sd3, &

right_hand=.TRUE.)

WRITE (nag_std_out,’(E12.4,1X,A,4E12.4)’) x, ’RIGHT’, s, sd1, sd2, sd3

x = x + 1.0_wp

END DO

! Evaluate spline integral on (alpha, beta).

integral = nag_spline_1d_intg(spline,alpha=alpha,beta=beta)

WRITE (nag_std_out,’(/1X,A,E12.4)’) ’Spline integral = ’, integral

DEALLOCATE (lambda,kappa) ! Deallocate storage

CALL nag_deallocate(spline) ! Free structure allocated by NAG fl90

END PROGRAM nag_spline_1d_ex04

2 Program Data
Example Program Data for nag_spline_1d_ex04

0.0000E+00 6.0000E+00 : a, b

14 : p

1.0 3.0 3.0 3.0 4.0 4.0 : End of lambda

10.0 12.0 13.0 15.0 22.0

26.0 24.0 18.0 14.0 12.0 : End of kappa

7 : n

0.0 1.5 : alpha, beta

3 Program Results
Example Program Results for nag_spline_1d_ex04

x spline 1st deriv 2nd deriv 3rd deriv

0.0000E+00 LEFT 0.1000E+02 0.6000E+01 -0.1000E+02 0.1067E+02

0.0000E+00 RIGHT 0.1000E+02 0.6000E+01 -0.1000E+02 0.1067E+02

0.1000E+01 LEFT 0.1278E+02 0.1333E+01 0.6667E+00 0.1067E+02

0.1000E+01 RIGHT 0.1278E+02 0.1333E+01 0.6667E+00 0.3917E+01

0.2000E+01 LEFT 0.1510E+02 0.3958E+01 0.4583E+01 0.3917E+01

0.2000E+01 RIGHT 0.1510E+02 0.3958E+01 0.4583E+01 0.3917E+01

0.3000E+01 LEFT 0.2200E+02 0.1050E+02 0.8500E+01 0.3917E+01

0.3000E+01 RIGHT 0.2200E+02 0.1200E+02 -0.3600E+02 0.3600E+02

0.4000E+01 LEFT 0.2200E+02 -0.6000E+01 0.0000E+00 0.3600E+02

0.4000E+01 RIGHT 0.2200E+02 -0.6000E+01 0.0000E+00 0.1500E+01

0.5000E+01 LEFT 0.1625E+02 -0.5250E+01 0.1500E+01 0.1500E+01

0.5000E+01 RIGHT 0.1625E+02 -0.5250E+01 0.1500E+01 0.1500E+01

0.6000E+01 LEFT 0.1200E+02 -0.3000E+01 0.3000E+01 0.1500E+01

0.6000E+01 RIGHT 0.1200E+02 -0.3000E+01 0.3000E+01 0.1500E+01

Spline integral = 0.1836E+02
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Further Details

1 Alternative Interpolation Procedures

nag spline 1d interp computes an interpolating cubic spline, to a set of m data points, using a
particular choice for the set of knots which has proved generally satisfactory in practice. If you wish to
choose a different set of knots, the least-squares approximating procedure nag spline 1d lsq fit will
also produce an interpolating spline if it is supplied with exactly m + 4 knots and the data points are
distinct.

The cubic spline does not always avoid unwanted fluctuations, especially when the data show a steep slope
close to a region of small slope, or when the data inadequately represent the underlying curve. In such
cases you should consider using the procedure nag pch monot interp from the module nag pch interp
(8.1) as an alternative.

2 Choice of Knots for nag spline 1d lsq fit

nag spline 1d lsq fit fits to arbitrary data points, with arbitrary weights, a least-squares cubic spline
approximant with given interior knots. The choice of these knots so as to give an acceptable fit must
largely be a matter of trial and error, though with a little experience a satisfactory choice can often be
made after one or two trials. It is usually best to start with a small number of knots (too many will result
in unwanted fluctuations in the fit, or even in there being no unique solution) and, examining the fit
graphically at each stage, to add a few knots at a time at places where the fit is particularly poor. Moving
the existing knots towards these places will also often improve the fit. In regions where the behaviour of
the curve underlying the data is changing rapidly, closer knots will be needed than elsewhere. Otherwise,
positioning is not usually very critical and equally-spaced knots are often satisfactory.

A useful feature of the procedure is that it can be used in applications which require the continuity to
be less than the normal continuity of the cubic spline. For example, the approximant may be required to
have a discontinuous slope at some point in the range. This can be achieved by placing three coincident
knots at the given point. Similarly a discontinuity in the second derivative at a point can be achieved
by placing two knots there. Analogy with these discontinuous cases can provide guidance in more usual
cases: for example, just as three coincident knots can produce a discontinuity in slope, so three close
knots can produce a rapid change in slope. The closer the knots are, the more rapid the change can be.

An example set of data is given in Figure 1. It is a rather tricky set, because of the scarcity of data on
the right, but it will serve to illustrate some of the above points and to show some of the dangers to be
avoided. Three interior knots (indicated by the vertical lines at the top of the diagram) are chosen as
a start. We see that the resulting curve is not steep enough in the middle and fluctuates at both ends,
severely on the right. The spline is unable to cope with the shape and more knots are needed.

In Figure 2, three knots have been added in the centre, where the data shows a rapid change in behaviour,
and one further out towards each end, where the fit is poor. The fit is still poor, so a further knot is
added in this region and, in Figure 3, disaster ensues in rather spectacular fashion.

The reason is that, at the right-hand end, the fits in Figure 1 and 2 have been interpreted as poor simply
because of the fluctuations about the curve underlying the data (or what it is naturally assumed to be).
But the fitting process knows only about the data and nothing else about the underlying curve, so it is
important to consider only closeness to the data when deciding goodness of fit.
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Figure 1: Data and initial knot set.

Thus, in Figure 1, the curve fits the last two data points quite well compared with the fit elsewhere, so
no knot should have been added in this region. In Figure 2, the curve goes exactly through the last two
points, so a further knot is certainly not needed here.
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Figure 2: Five additional knots.

Figure 4 shows what can be achieved without the extra knot on each of the flat regions. Remembering
that within each knot interval the spline is a cubic polynomial, there is really no need to have more than
one knot interval covering each flat region.

What we have, in fact, in Figures 2 and 3 is a case of too many knots (so too many coefficients in the
spline equation) for the number of data points. As a consequence the fit is too close to the data, tending
to have unwanted fluctuations between the data points.
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Figure 3: Disastrous addition of a further knot.

This problem is only local, in the sense that, in localities where there are plenty of data points, there
can be a lot of knots, as long as there are few knots where there are few points, especially near the
ends of the interval. In the present example, with so few data points on the right, just the one extra
knot in Figure 2 is too many! The signs are clearly present, with the last two points fitted exactly (at
least to the graphical accuracy and actually much closer than that) and fluctuations within the last two
knot-intervals (compare Figure 1, where only the final point is fitted exactly and one of the wobbles
spans several data points).
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Figure 4: A satisfactory approximant.

The situation in Figure 3 is different. The fit, if computed exactly, would still pass through the last two
data points, with even more violent fluctuations. However, the problem has become so ill conditioned
that all accuracy has been lost. Indeed, if the last interior knot were moved a tiny amount to the right,
there would be no unique solution and an error message would have been caused. Near singularity is,
sadly, not picked up by the procedure, but can be spotted readily in a graph, as in Figure 3. B-spline
coefficients becoming large, with alternating signs, is another indication; these may be inspected after
a call to nag spline 1d extract. However, it is better to avoid such situations, firstly by providing,
whenever possible, data adequately covering the range of interest, and secondly by placing knots only
where there is a reasonable amount of data.
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The example here could, in fact, have utilised from the start the observation made in the second paragraph
of this section, that three close knots can produce a rapid change in slope. The example has two such
rapid changes and so requires two sets of three close knots (in fact, the two sets can be so close that one
knot can serve in both sets, so only five knots prove sufficient in Figure 4). It should be noted, however,
that the rapid turn occurs within the range spanned by the three knots. This is the reason that the six
knots in Figure 2 are not satisfactory as they do not quite span the two turns.

Some more examples to illustrate the choice of knots are given in Cox and Hayes [7].
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