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Chapter 8

Curve and Surface Fitting

1 Scope of the Chapter

This chapter is concerned with the interpolation and approximation of data sets in one, two or three
dimensions. The approximating functions available are Chebyshev polynomials, piecewise cubic Hermite
polynomials, cubic splines, bicubic splines, and interpolants produced by a modification of Shepard’s
method (see Renka [2]).

2 Available Modules

Module 8.1: nag pch interp — Piecewise cubic Hermite interpolation

Provides procedures for computing and evaluating piecewise cubic Hermite interpolants to arbitrary
data sets in one dimension. In particular, the module contains procedures for:

• generating a monotonicity-preserving interpolant;

• evaluating a piecewise cubic Hermite polynomial;

• integrating a piecewise cubic Hermite polynomial.

Module 8.2: nag spline 1d — One-dimensional spline fitting

Provides procedures for computing and evaluating spline approximations to arbitrary data sets in
one dimension. Procedures are available for:

• generating a cubic spline interpolant;

• generating a least-squares cubic spline fit with given interior knots;

• generating a cubic spline approximation with automatic knot placement;

• computing values of a cubic spline;

• computing the definite integral of a cubic spline.

Module 8.3: nag spline 2d — Two-dimensional spline fitting

Provides procedures for computing and evaluating spline surface approximations to arbitrary data
sets in two dimensions. Procedures are available for:

• generating a bicubic spline interpolant;

• generating a least-squares bicubic spline fit with given interior knots;

• generating a bicubic spline approximation with automatic knot placement;

• computing values of a bicubic spline;

• computing the definite integral of a bicubic spline.
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Module 8.4: nag scat interp — Interpolation of scattered data

Provides procedures for computing and evaluating interpolants to scattered data sets. Procedures
are available for:

• generating a 2-d or 3-d modified Shepard interpolant;

• computing values of a 2-d or 3-d modified Shepard interpolant, and optionally its first partial
derivatives.

Module 8.5: nag cheb 1d — Chebyshev Series

Provides procedures for computing and evaluating interpolants to 1-d data sets. Procedures are
available for:

• finding the least-squares fit using arbitrary data points;

• generating the coefficients of the Chebyshev polynomial which interpolates (passes exactly
through) data at a special set of points;

• finding the least-squares fit using arbitrary data points with constraints on some data points;

• evaluating a fitted polynomial in one variable, from Chebyshev series form;

• determining the coefficients of the Chebyshev-series representing the derivatives of a
polynomial in Chebyshev-series form;

• determining the coefficients of the Chebyshev-series representing the indefinite integral of a
polynomial in Chebyshev-series form.

3 Background

3.1 Terminology and Notation

The main aim of this chapter is to provide facilities for fitting a function of one or two variables to a given
set of data points. This process will be referred to as curve fitting in the case of a single independent
variable x, and surface fitting if there are two independent variables x and y.

In the curve-fitting problems considered in this chapter we have a dependent variable f and an
independent variable x, and a given set of data points (xr, fr), for r = 1, 2, . . . ,m. The aim is to
construct a curve φ(x) which interpolates or approximates these points.

For surface fitting there is also a single dependent variable f , but there are now two independent variables
x and y. The data points are denoted (xr, yr, fr), for r = 1, 2, . . . ,m. In the special case where
these data points lie on a rectangular mesh in the (x, y) plane the alternative notation (xq, yr, fqr), for
q = 1, 2, . . . ,mx, r = 1, 2, . . . ,my may be adopted. The aim is to construct a surface φ(x, y) which
interpolates or approximates the given data set.

The preliminary matters to be considered here will, for simplicity, be discussed in the context of
curve-fitting problems. In fact, however, these considerations apply equally well to surface and higher-
dimensional problems. Indeed, the discussion presented carries over essentially as it stands if, for these
cases, we interpret x as a vector of several independent variables and correspondingly each xr as a vector
containing the rth data value of each independent variable.

3.2 Interpolation

The process of one-dimensional interpolation may be defined as:

the determination of a curve φ(x) which takes the value fr at x = xr, for r = 1, 2, . . . ,m.

Interpolation in higher dimensions is similarly defined.

A danger with interpolation is that the fitting function may tend to exhibit unwanted fluctuations,
essentially following random errors in the data and oscillating between the data points. This problem is
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particularly common if the fitting function is a polynomial defined over the entire region of interest, and
becomes more severe as the number of data points increases. For this reason the interpolating functions
chosen in this chapter are piecewise polynomials, such as cubic splines. A cubic spline can often be used
satisfactorily to interpolate a large number of data points over the whole of the data range. Unwanted
fluctuations can arise, but much less frequently and much less severely than with global polynomials.
An interpolating spline is not uniquely defined for a given data set, but depends on the choice made for
the knots.

Unwanted fluctuations may be avoided altogether by a method using piecewise cubic polynomials having
only first derivative continuity. It is designed especially for monotonic data, but for other data still
provides an interpolant which increases, or decreases, over the same intervals as the data.

For two-dimensional interpolation the choice of procedure generally depends on the location of the
data points. If these lie at the intersections of a rectangular mesh in the (x, y) plane then a bicubic
spline interpolant such as nag spline 2d interp in the module nag spline 2d is ideal. If however
the data points are arbitrarily scattered in the (x, y) plane, then nag scat 2d interp from the module
nag scat interp should be used instead.

For three-dimensional interpolation the procedure nag scat 3d interp is provided in the module
nag scat interp. This interpolates a 3-d scattered data set using a localized Shepard method due
to Renka [2].

Interpolation or approximation

Before undertaking interpolation, in other than the simplest cases, it is advisable to consider the
alternative of fitting the data by an approximant, which does not pass exactly through the data points,
but involves significantly fewer coefficients than the corresponding interpolant. This approach is much
less liable to produce unwanted fluctuations and so can often provide a better approximation to the
function underlying the data.

3.3 Approximation

The aim of approximation is to fit the set of data points as closely as possible with a specified function,
φ(x) say, which is as smooth as possible. The requirements of smoothness and closeness conflict, however,
and a balance has to be struck between them. Most often, the smoothness requirement is met simply by
limiting the number of coefficients allowed in the approximating function. Given a particular number of
coefficients in the function in question, the approximation procedures of this chapter generally determine
the values of the coefficients such that the ‘distance’ of the function from the data points is as small as
possible. The necessary balance should be struck by comparing a selection of such approximants having
different numbers of coefficients. If the number of coefficients is too low, the approximation to the data
will be poor. If the number is too high, the fit will be too close to the data, essentially following any
random errors and tending to have unwanted fluctuations between the data points, as for interpolation.
Between these extremes, there is often a group of fits all similarly close to the data points and then the
choice is clear: it is the approximant from this group having the smallest number of coefficients.

The above process can be seen as the minimization of the smoothness measure (i.e., the number of
coefficients) subject to the distance from the data points being acceptably small. Some of the procedures,
however, do this task themselves. They use a different measure of smoothness (in each case one that is
continuous) and minimize it subject to the distance being less than a given threshold. This is a much
more automatic process, requiring only some experimentation with the threshold.

Fitting criteria: norms

A measure of the above ‘distance’ between the set of data points and the function φ(x) is needed. The
distance from a single data point (xr, fr) to the function can simply be taken as

εr = fr − φ(xr), (1)
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and is called the residual of the point. However, we need a measure of distance for the set of data points
as a whole. With εr defined in (1), a suitable measure, or norm, is

√

√
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m
∑
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ε2
r
, (2)

which is known as the l2 norm.

Minimization of this norm usually provides the fitting criterion, the minimization being carried out with
respect to the coefficients in the mathematical form used for φ(x). The approximant which results from
minimizing (2) is the l2 fit, the well known least-squares approximation. Note that minimizing (2) is
equivalent to minimizing the square of (2), i.e., the sum of squares of residuals. It is the latter which is
used in practice.

Strictly speaking, implicit in the use of the above norm is the statistical assumption that the random
errors in the fr are independent of one another and that any errors in the xr are negligible by comparison.
From this point of view, the use of the l2 norm is appropriate when the random errors in the fr have a
Normal distribution.

Some of the procedures in this chapter do not minimize the l2 norm itself, but instead minimize some
(intuitively acceptable) measure of smoothness subject to the norm being less than some given threshold.
These procedures fit with cubic or bicubic splines, and the smoothing measures relate to the size of the
discontinuities in their third derivatives. A much more automatic approximation algorithm follows from
this approach.

Weighting of data points

The use of the above norm also assumes that the data values fr are of equal (absolute) accuracy. Some
of the procedures enable an allowance to be made to take account of differing accuracies. The allowance
takes the form of ‘weights’ applied to the f -values so that those values known to be more accurate have a
greater influence on the fit than others. These weights should be calculated from estimates of the absolute
accuracies of the f -values, these estimates being expressed as standard deviations, probable errors or
some other measure which has the same dimensions as f . Specifically, for each fr the corresponding
weight wr should be inversely proportional to the accuracy estimate of fr. For example, if the percentage
accuracy is the same for all fr, then the absolute accuracy of fr is proportional to fr (assuming fr to be
positive, as it usually is in such cases) and so wr = K/fr, for r = 1, 2, . . . ,m, for an arbitrary positive
constant K. (This definition of weight is stressed because often weight is defined as the square of that
used here.) The norm (2) above is then replaced by
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Again it is the square of (3) which is used in practice rather than (3) itself.

3.4 Data Considerations

A satisfactory fit cannot be expected by any means if the number and arrangement of the data points
do not adequately represent the character of the underlying relationship: sharp changes in behaviour, in
particular, such as sharp peaks, should be well covered. Data points should extend over the whole range
of interest of the independent variable(s): extrapolation outside the data ranges is most unwise. All fits
should be tested graphically before accepting them as satisfactory.

For this purpose it should be noted that it is not sufficient to plot the values of the fitted function
only at the data values of the independent variable(s); at the least, its values at a similar number of
intermediate points should also be plotted, as unwanted fluctuations may otherwise go undetected. Such
fluctuations are the less likely to occur the lower the number of coefficients chosen in the fitting function.
No firm guide can be given, but as a rough rule, at least initially, the number of coefficients defining an
approximant should not exceed half the number of data points (points with equal or nearly equal values
of the independent variable, or both independent variables in surface fitting, counting as a single point
for this purpose). However, the situation may be such, particularly with a small number of data points,
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that a satisfactorily close fit to the data cannot be achieved without unwanted fluctuations occurring.
In such cases, it is often possible to improve the situation by a transformation of one or more of the
variables, as discussed in the next paragraph; otherwise it will be necessary to provide extra data points.
Further advice on curve fitting is given in Cox and Hayes [1]. Much of the advice applies also to surface
fitting; see also the module documents.

3.5 Transformation of Variables

Before starting the fitting, consideration should be given to the choice of a good form in which to
deal with each of the variables: often it will be satisfactory to use the variables as they stand, but
sometimes the use of the logarithm, square root, or some other function of a variable will lead to a better
behaved relationship. This question is customarily taken into account in preparing graphs and tables of
a relationship and the same considerations apply when curve or surface fitting. The practical context
will often give a guide. In general, it is best to avoid having to deal with a relationship whose behaviour
in one region is radically different from that in another. A steep rise at the left-hand end of a curve,
for example, can often best be treated by curve fitting in terms of log(x + c) with some suitable value
of the constant c. According to the features exhibited in any particular case, transformation of either
dependent variable or independent variable(s) or both may be beneficial. When there is a choice it is
usually better to transform the independent variable(s): if the dependent variable is transformed, any
weights associated with the data points must be adjusted. Thus if the fr to be fitted have been obtained
by a transformation f = g(F ) from original data values Fr, with weights Wr, for r = 1, 2, . . . ,m, we
must take

wr =Wr/(df/dF ), (4)

where the derivative is evaluated at Fr. Strictly, the transformation of F and the adjustment of weights
are valid only when the data errors in the Fr are small compared with the range spanned by the Fr, but
this is usually the case.
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