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Module 6.5: nag sym gen eig

Symmetric-definite Generalized Eigenvalue Problems

nag sym gen eig provides procedures for solving generalized eigenvalue problems of the
forms:

Az = λBz

ABz = λz

BAz = λz

where A and B are real symmetric or complex Hermitian and B is positive definite.
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Introduction

1 Notation

The most common form of symmetric-definite generalized eigenvalue problem is to find the eigenvalues
λi, and corresponding eigenvectors zi, satisfying

Azi = λiBzi,

where A and B are real symmetric matrices and B is positive definite. A Hermitian-definite problem is
defined likewise for complex Hermitian matrices. For both problems the eigenvalues λi are real.

Symmetric-definite (or Hermitian-definite) problems may also be posed in one of the alternative forms

ABzi = λizi or BAzi = λizi.

Each of these problems can be reduced to a standard symmetric or Hermitian eigenvalue problem, using
a Cholesky factorization of B as either UHU or LLH (if B is real UH = UT and LH = LT ).

With B = LLH , we have

Az = λBz ⇒ (L−1AL−H)(LHz) = λ(LHz).

Hence the eigenvalues of the generalized problem Az = λBz are those of the standard problem Cy = λy,
where C = L−1AL−H and y = LHz.

The reduced problem Cy = λy can be solved by the methods described in the module
nag sym eig (6.1), and the eigenvalues z of the generalized problem recovered from the eigenvectors y
of the reduced problem by z = L−Hy. Note however that the reduction implicitly involves the inversion
of B, and hence may lead to unreliable results if B is ill conditioned with respect to inversion.

The table below shows how each of the three types of problem can be reduced to standard form:

Problem Factorization Reduction Recovery of
of B eigenvectors

1. Az = λBz B = UHU C = U−HAU−1 z = U−1y

B = LLH C = L−1AL−H z = L−Hy

2. ABz = λz B = UHU C = UAUH z = U−1y

B = LLH C = LHAL z = L−Hy

3. BAz = λz B = UHU C = UAUH z = UHy

B = LLH C = LHAL z = Ly

2 Choice of Procedures

The procedures nag sym gen eig all and nag sym gen eig sel have been designed to meet most
requirements. They solve the most frequent types of problems in a single call, namely:

All the eigenvalues (nag sym gen eig all)
All the eigenvalues and the eigenvectors (nag sym gen eig all with optional argument)
Selected eigenvalues (nag sym gen eig sel)
Selected eigenvalues and the corresponding eigenvectors (nag sym gen eig sel with optional
argument)

3 Storage of Matrices

The procedures in this module allow a choice of storage schemes for the symmetric or Hermitian matrix
A: conventional storage or packed storage. The choice is determined by the rank of the corresponding
argument a.
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3.1 Conventional Storage

a is a rank-2 array, of shape (n,n). Matrix element aij is stored in a(i, j). Only the elements of either the
upper or the lower triangle need be stored, as specified by the mandatory argument uplo; the remaining
elements of a need not be set.

This storage scheme is more straightforward and carries less risk of user error than packed storage; on
some machines it may result in more efficient execution. But it requires almost twice as much memory,
although the other triangle of a can sometimes be used to store other data, and if the matrix Z of
eigenvectors is required, it can also be stored in a, overwriting the matrix A.

3.2 Packed Storage

a is a rank-1 array of shape (n(n + 1)/2). The elements of either the upper or the lower triangle of A,
as specified by uplo, are packed by columns into contiguous elements of a.

Packed storage is more economical in use of memory than conventional storage, but if all eigenvectors
are required, a separate rank-2 array z must be supplied to store them. Packed storage may also result
in less efficient execution on some machines.

The details of packed storage are as follows.

• If uplo = 'u' or 'U', aij is stored in a(i+ j(j − 1)/2), for i ≤ j;

• if uplo = 'l' or 'L', aij is stored in a(i+ (2n − j)(j − 1)/2), for i ≥ j.

For example

uplo Hermitian Matrix Packed storage in array a

'u' or 'U'




a11 a12 a13 a14

a12 a22 a23 a24

a13 a23 a33 a34

a14 a24 a34 a44


 a11 a12 a22︸ ︷︷ ︸ a13 a23 a33︸ ︷︷ ︸ a14 a24 a34 a44︸ ︷︷ ︸

'l' or 'L'




a11 a21 a31 a41

a21 a22 a32 a42

a31 a32 a33 a43

a41 a42 a43 a44


 a11 a21 a31 a41︸ ︷︷ ︸ a22 a32 a42︸ ︷︷ ︸ a33 a43︸ ︷︷ ︸ a44
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Procedure: nag sym gen eig all

1 Description

nag sym gen eig all is a generic procedure which computes all the eigenvalues, and optionally all
the eigenvectors, of a generalized real symmetric-definite or complex Hermitian-definite generalized
eigenvalue problem.

By default, the problem has the form Az = λBz, where A and B are real symmetric or complex Hermitian
and B is positive definite. The procedure allows either conventional or packed storage for A and B (see
the Module Introduction).

The procedure can also handle problems of the alternative types ABz = λz or BAz = λz, depending on
the value of the optional argument type.

By default, only the eigenvalues are computed. If the optional argument z on a is present and set to
.true., the eigenvectors are computed and overwritten on the original matrix A (this option is only
available if conventional storage is used); otherwise if the optional argument z is present, the eigenvectors
are computed and stored in z.

We write, for the different types of problem:

1. Azi = λiBzi for i = 1, . . . , n,

2. ABzi = λizi for i = 1, . . . , n,

3. BAzi = λizi for i = 1, . . . , n,

where λi is an eigenvalue and zi is the corresponding eigenvector.

We use Z to denote the matrix whose columns are the eigenvectors zi. This matrix is not orthogonal or
unitary (as it is for a standard eigenvalue problem), but satisfies:

ZHBZ = I for problems of type 1 or 2;
ZHB−1Z = I for problems of type 3.

2 Usage

USE nag sym gen eig

CALL nag sym gen eig all(uplo, a, b, lambda [, optional arguments])

2.1 Interfaces

Distinct interfaces are provided for each of the four combinations of the following cases.

Real / complex data
Real data: a, b and the optional argument z are of type real(kind=wp).
Complex data: a, b and the optional argument z are of type complex(kind=wp).

Conventional / packed storage (see the Module Introduction)
Conventional: a and b are rank-2 arrays.
Packed: a and b are rank-1 arrays.

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

n — the order of the matrices A and B
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3.1 Mandatory Arguments

uplo — character(len=1), intent(in)
Input: specifies whether the upper or lower triangle of A and B is supplied.

If uplo = 'U' or 'u', the upper triangle is supplied;
if uplo = 'L' or 'l', the lower triangle is supplied.

Constraints: uplo = 'U', 'u', 'L' or 'l'.

a(n, n) / a(n(n + 1)/2) — real(kind=wp) / complex(kind=wp), intent(inout)
Input: the matrix A.

Conventional storage (a has shape (n, n))
If uplo = 'u', the upper triangle of A must be stored, and elements below the diagonal
need not be set;
if uplo = 'l', the lower triangle of A must be stored, and elements above the diagonal
need not be set.

Packed storage (a has shape (n(n+ 1)/2))
If uplo = 'u', the upper triangle of A must be stored, packed by columns, with aij in
a(i+ j(j − 1)/2) for i ≤ j;
if uplo = 'l', the lower triangle of A must be stored, packed by columns, with aij in
a(i+ (2n − j)(j − 1)/2) for i ≥ j.

Output: if z on a is present and set to .true.(conventional storage only), a is overwritten by the
matrix Z of eigenvectors; otherwise (by default), a is overwritten by intermediate results.

b(n, n) / b(n(n+ 1)/2) — real(kind=wp) / complex(kind=wp), intent(inout)
Input: the matrix B.

Conventional storage (b has shape (n, n))
If uplo = 'u', the upper triangle of B must be stored, and elements below the diagonal
need not be set;
if uplo = 'l', the lower triangle of B must be stored, and elements above the diagonal
need not be set.

Packed storage (b has shape (n(n+ 1)/2))
If uplo = 'u', the upper triangle of B must be stored, packed by columns, with bij in
b(i+ j(j − 1)/2) for i ≤ j;
if uplo = 'l', the lower triangle of B must be stored, packed by columns, with bij in
b(i+ (2n − j)(j − 1)/2) for i ≥ j.

Output: the upper or lower triangle of b is overwritten by the upper or lower triangular Cholesky
factor of B, as specified by uplo.
Constraints: b must be of the same rank and type as a.

lambda(n) — real(kind=wp), intent(out)
Output: the eigenvalues in ascending order.
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3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

type — integer, intent(in), optional
Input: specifies the type of problem:

If type = 1, the problem has the form Az = λBz;
if type = 2, the problem has the form ABz = λz;
if type = 3, the problem has the form BAz = λz.

Default: type = 1.
Constraints: type = 1, 2 or 3.

z on a — logical, intent(in), optional
Input: specifies whether the matrix Z of eigenvectors is to be overwritten on a.

If z on a = .false., Z is not computed unless z is present;
if z on a = .true., Z is overwritten on a.

Default: z on a = .false..
Constraints: z on a must not be present if packed storage is used (a and b have rank 1).

z(n, n) — real(kind=wp) / complex(kind=wp), intent(out), optional
Output: the matrix Z of eigenvectors. The ith column z(:, i) holds the eigenvector corresponding
to the eigenvalue lambda(i).
Note: if z on a is present and set to .true., and z is also present, then z is not used and a warning
is raised.
Constraints: z must be of the same type as a.

rcond b — real(kind=wp), intent(out), optional
Output: an estimate of the reciprocal of the condition number of B in the 1-norm. rcond b is
set to zero if exact singularity is detected or the estimate underflows. If rcond b is less than
EPSILON(1.0 wp), then B is singular to working precision and the results may be completely
unreliable.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.
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Failures (error%level = 2):

error%code Description

201 Failure to converge.

(This error is not likely to occur.) The QR algorithm failed to compute all the
eigenvalues in the permitted number of iterations.

202 Matrix B not positive definite.

Either B is close to singularity, or it has at least one negative eigenvalue. The problem
could not be reduced to standard form (see Section 6.1).

Warnings (error%level = 1):

error%code Description

101 Optional argument present but not used.

z is present when z on a is .true.; the eigenvectors are returned in a, and z is not
used.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The procedure first calls nag sym lin fac to perform a Cholesky factorization of B. It reduces the
original generalized problem to an equivalent standard problem Cy = λy with the same eigenvalues, as
described in the Module Introduction. It calls nag sym eig all to compute all the eigenvalues and (if
required) the eigenvectors of the problem Cy = λy. Finally, it recovers the eigenvectors z of the original
problem (if required) from the eigenvectors y of the reduced problem. See Chapter 8 of Golub and Van
Loan [2] or Parlett [3] for background information.

The algorithms are derived from LAPACK (see Anderson et al. [1]).

6.2 Accuracy

Error bounds for the computed eigenvalues and eigenvectors involve the condition number of B; the
computed eigenvalues and eigenvectors may be inaccurate if B is ill conditioned; that is, if the condition
number κ2(B) is large, where κ2(B) = ‖B‖2‖B−1‖2. An approximate estimate for the reciprocal of the
condition number of B is returned in the optional argument rcond b. (rcond b returns an estimate for
the reciprocal of the condition number in 1-norm, κ1(B); this differs by a factor of at most n from the
condition number in the 2-norm, κ2(B), which appears in the error analysis.)

In more detail: let λi be an exact eigenvalue, and λ̃i be the corresponding computed value; let zi be
the corresponding exact eigenvector and z̃i the computed eigenvector, and let θ(z̃i, zi) denote the angle
between them.

Then for problems of the form Az = λBz:

|λ̃i − λi| ≤ c(n)ε(‖B−1‖2‖A‖2 + κ2(B)|λ̃i|)

θ(z̃i, zi) ≤ c(n)ε

(
‖B−1‖2‖A‖2(κ2(B))1/2 + κ2(B)|λ̃i|

gapi

)
.

For problems of the form ABz = λz or BAz − λz:

|λ̃i − λi| ≤ c(n)ε(‖B‖2‖A‖2 + κ2(B)|λ̃i|)
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θ(z̃i, zi) ≤ c(n)ε
(
‖B‖2‖A‖2(κ2(B))1/2

gapi

+ κ2(B)|λ̃i|
)

.

Here ε = EPSILON(1.0 wp), c(n) is a modestly increasing function of n, and gapi = min
i�=j

|λi − λj |.

6.3 Timing

The time taken by the procedure is approximately proportional to n3. Computing both eigenvectors and
eigenvalues is likely to take about 5 times as long as computing eigenvalues alone.
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Procedure: nag sym gen eig sel

1 Description

nag sym gen eig sel is a generic procedure which computes selected eigenvalues, and optionally the
corresponding eigenvectors, of a generalized real symmetric-definite or complex Hermitian-definite
eigenvalue problem.

By default, the problem has the form Az = λBz, where A and B are real symmetric or complex Hermitian
and B is positive definite. The procedure allows either conventional or packed storage for A and B (see
the Module Introduction).

The procedure can also handle problems of the alternative types ABz = λz or BAz = λz, depending on
the value of the optional argument type.

We write, for the different types of problem:

1. Azi = λiBzi for i = 1, . . . , n,

2. ABzi = λizi for i = 1, . . . , n,

3. BAzi = λizi for i = 1, . . . , n,

where λi is an eigenvalue and zi is the corresponding eigenvector. The eigenvalues are arranged in
ascending order:

λ1 ≤ λ2 ≤ . . . ≤ λn.

Eigenvalues may be selected either by index or by value (but not by a combination of the two). If either
or both of the optional arguments il and iu are present, the procedure computes those eigenvalues λi

whose indices i satisfy

il ≤ i ≤ iu.

If either or both of the optional arguments vl and vu are present, it computes those eigenvalues λ which
satisfy

vl < λ ≤ vu.

By default, only eigenvalues are computed. The eigenvectors corresponding to the selected eigenvalues
are computed only if the optional argument z is present.

The number of selected eigenvalues is denoted by m. The argument lambda and the optional arguments
z and fail are pointer arrays, because, if eigenvalues are selected by value, the number of them in the
specified range may not be known in advance. If eigenvalues are selected by index, m = iu − il +
1. The procedure allocates the required amount of memory to lambda, z and fail; on exit from the
procedure, m = SIZE(lambda).

Each eigenvector zi satisfies zH
i Bzi = 1 for problems of types 1 and 2, and zH

i B−1zi = 1 for problems
of type 3.

2 Usage

USE nag sym gen eig

CALL nag sym gen eig sel(uplo, a, b, lambda [, optional arguments])

2.1 Interfaces

Distinct interfaces are provided for each of the four combinations of the following cases.
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Real / complex data
Real data: a, b and the optional argument z are of type real(kind=wp).
Complex data: a, b and the optional argument z are of type complex(kind=wp).

Conventional / packed storage (see the Module Introduction)
Conventional: a and b are rank-2 arrays.
Packed: a and b are rank-1 arrays.

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

n — the order of the matrices A and B

3.1 Mandatory Arguments

uplo — character(len=1), intent(in)
Input: specifies whether the upper or lower triangle of A and B is supplied.

If uplo = 'U' or 'u', the upper triangle is supplied;
if uplo = 'L' or 'l', the lower triangle is supplied.

Constraints: uplo = 'U', 'u', 'L' or 'l'.

a(n, n) / a(n(n + 1)/2) — real(kind=wp) / complex(kind=wp), intent(inout)
Input: the matrix A.

Conventional storage (a has shape (n, n))
If uplo = 'u', the upper triangle of A must be stored, and elements below the diagonal
need not be set;
if uplo = 'l', the lower triangle of A must be stored, and elements above the diagonal
need not be set.

Packed storage (a has shape (n(n+ 1)/2))
If uplo = 'u', the upper triangle of A must be stored, packed by columns, with aij in
a(i+ j(j − 1)/2) for i ≤ j;
if uplo = 'l', the lower triangle of A must be stored, packed by columns, with aij in
a(i+ (2n − j)(j − 1)/2) for i ≥ j.

Output: a is overwritten by intermediate results.

b(n, n) / b(n(n+ 1)/2) — real(kind=wp) / complex(kind=wp), intent(inout)
Input: the matrix B.

Conventional storage (b has shape (n, n))
If uplo = 'u', the upper triangle of B must be stored, and elements below the diagonal
need not be set;
if uplo = 'l', the lower triangle of B must be stored, and elements above the diagonal
need not be set.

Packed storage (b has shape (n(n+ 1)/2))
If uplo = 'u', the upper triangle of B must be stored, packed by columns, with bij in
b(i+ j(j − 1)/2) for i ≤ j;
if uplo = 'l', the lower triangle of B must be stored, packed by columns, with bij in
b(i+ (2n − j)(j − 1)/2) for i ≥ j.
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Output: the upper or lower triangle of b is overwritten by the upper or lower triangular Cholesky
factor of B, as specified by uplo.
Constraints: b must be of the same rank and type as a.

lambda(:) — real(kind=wp), pointer
Output: the m selected eigenvalues in ascending order.
Note: the procedure creates a target array of shape (m). If there are no eigenvalues in the selected
interval, then m = 0.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

type — integer, intent(in), optional
Input: specifies the type of problem:

if type = 1, the problem has the form Az = λBz;
if type = 2, the problem has the form ABz = λz;
if type = 3, the problem has the form BAz = λz.

Default: type = 1.
Constraints: type = 1, 2 or 3.

il — integer, intent(in), optional
iu — integer, intent(in), optional

Input: the first and last indices, respectively, of the selected eigenvalues, where the eigenvalues are
arranged in ascending order. An eigenvalue λi is selected if il ≤ i ≤ iu.
Default: il = 1, iu = n.
Constraints: min(n, 1) ≤ il ≤ iu ≤ n; il and iu must not be present if either vl or vu is present.

vl — real(kind=wp), intent(in), optional
vu — real(kind=wp), intent(in), optional

Input: the lower and upper bounds, respectively, on the selected eigenvalues. An eigenvalue λ is
selected if vl < λ ≤ vu.
Default: vl = −∞, vu = +∞ (i.e. −HUGE(1.0 wp)< λ ≤ HUGE(1.0 wp)).
Constraints: vl ≤ vu; vl and vu must not be present if either il or iu is present.

abs tol — real(kind=wp), intent(in), optional
Input: the absolute tolerance for the eigenvalues. An eigenvalue (or cluster) is accepted if it has
been determined to lie in an interval whose width is less than or equal to abs tol. If abs tol ≤
0.0, then the default value is used.
Default: abs tol = ε‖C‖1, where ε = EPSILON(1.0 wp) and C is defined in Section 6.1.

z(:, :) — real(kind=wp) / complex(kind=wp), pointer, optional
Output: the m selected eigenvectors. The ith column z(:, i) holds the eigenvector corresponding
to the eigenvalue lambda(i). See also fail.
Note: the procedure creates a target array of shape (n, m).
If there are no eigenvalues in the selected interval, then m = 0. Constraints: z must be of the same
type as a.
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rcond b — real(kind=wp), intent(out), optional
Output: an estimate of the reciprocal of the condition number of B in the 1-norm. rcond b is
set to zero if exact singularity is detected or the estimate underflows. If rcond b is less than
EPSILON(1.0 wp), then B is singular to working precision, and the results may be completely
unreliable.

fail(:) — integer, pointer, optional
Output: on successful exit, all elements of fail are set to 0. If error code 202 is returned, the leading
elements of fail hold the column indices (in z) of those eigenvectors which failed to converge, and
the remaining elements are set to 0. For example, if fail(1) = 2, the eigenvector in column 2 of
z failed to converge.
Note: the procedure creates a target array of shape (m).

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

304 Invalid presence of an optional argument.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 Failure to converge.

The bisection algorithm failed to find all the specified eigenvalues.

202 Failure to converge.

The inverse iteration algorithm failed to converge to one or more eigenvectors in 5
iterations; the most recent iterate is stored in the corresponding column of z. If k
eigenvectors failed to converge, their indices are returned in fail(1 : k) (if present).

203 Matrix B not positive definite.

Either B is close to singularity, or it has at least one negative eigenvalue. The problem
could not be reduced to standard form (see Section 6.1).

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.
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6 Further Comments

6.1 Algorithmic Detail

The procedure first calls nag sym lin fac to perform a Cholesky factorization of B. It reduces the
original generalized problem to an equivalent standard problem Cy = λy with the same eigenvalues, as
described in the Module Introduction. It calls nag sym eig sel to compute selected eigenvalues and (if
required) eigenvectors of the problem Cy = λy. Finally, it recovers the eigenvectors z of the original
problem (if required) from the eigenvectors y of the reduced problem. See Chapter 8 of Golub and Van
Loan [2] or Parlett [3] for background.

The algorithms are derived from LAPACK (see Anderson et al. [1]).

6.2 Accuracy

Error bounds for the computed eigenvalues and eigenvectors involve the condition number of B; the
computed eigenvalues and eigenvectors may be inaccurate if B is ill conditioned, that is, if the condition
number κ2(B) is large, where κ2(B) = ‖B‖2‖B−1‖2. An approximate estimate for the reciprocal of the
condition number of B is returned in the optional argument rcond b. (rcond b returns an estimate for
the reciprocal of the condition number in 1-norm, κ1(B); this differs by a factor of at most n from the
condition number in the 2-norm, κ2(B), which appears in the error analysis.)

In more detail: let λi be an exact eigenvalue, and λ̃i be the corresponding computed value; let zi be
the corresponding exact eigenvector and z̃i the computed eigenvector, and let θ(z̃i, zi) denote the angle
between them.

Then for problems of the form Az = λBz:

|λ̃i − λi| ≤ c(n)ε(‖B−1‖2‖A‖2 + κ2(B)|λ̃i|)

θ(z̃i, zi) ≤ c(n)ε

(
‖B−1‖2‖A‖2(κ2(B))1/2 + κ2(B)|λ̃i|

gapi

)
.

For problems of the form ABz = λz or BAz − λz:

|λ̃i − λi| ≤ c(n)ε(‖B‖2‖A‖2 + κ2(B)|λ̃i|)

θ(z̃i, zi) ≤ c(n)ε
(
‖B‖2‖A‖2(κ2(B))1/2

gapi

+ κ2(B)|λ̃i|
)

.

Here ε = EPSILON(1.0 wp), c(n) is a modestly increasing function of n, and gapi = min
i�=j

|λi − λj |.
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Example 1: All eigenvalues and eigenvectors of a
symmetric-definite generalized eigenvalue problem

Compute all the eigenvalues and eigenvectors of a generalized symmetric-definite eigenvalue problem
Az = λBz. This example calls the procedure nag sym gen eig all, using conventional storage.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_sym_gen_eig_ex01

! Example Program Text for nag_sym_gen_eig

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_write_mat, ONLY : nag_write_gen_mat

USE nag_sym_gen_eig, ONLY : nag_sym_gen_eig_all

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, n

CHARACTER (1) :: uplo

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: a(:,:), b(:,:), lambda(:), z(:,:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_sym_gen_eig_ex01’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) n, uplo

ALLOCATE (a(n,n),b(n,n),z(n,n),lambda(n)) ! Allocate storage

SELECT CASE (uplo)

CASE (’U’,’u’)

READ (nag_std_in,*) (a(i,i:),i=1,n)

READ (nag_std_in,*) (b(i,i:),i=1,n)

CASE (’L’,’l’)

READ (nag_std_in,*) (a(i,:i),i=1,n)

READ (nag_std_in,*) (b(i,:i),i=1,n)

END SELECT

! Compute eigenvalues and eigenvectors

CALL nag_sym_gen_eig_all(uplo,a,b,lambda,z=z)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Eigenvalues’

WRITE (nag_std_out,’(2X,6(F9.3:))’) lambda

WRITE (nag_std_out,*)

CALL nag_write_gen_mat(z,format=’(F9.3)’,title=’Eigenvectors’)

DEALLOCATE (a,b,lambda,z) ! Deallocate storage
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END PROGRAM nag_sym_gen_eig_ex01

2 Program Data
Example Program Data for nag_sym_gen_eig_ex01

4 ’L’ : n and uplo

0.24

0.39 -0.11

0.42 0.79 -0.25

-0.16 0.63 0.48 -0.03 : Matrix A (Lower triangle)

4.16

-3.12 5.03

0.56 -0.83 0.76

-0.10 1.09 0.34 1.18 : Matrix B (Lower triangle)

3 Program Results
Example Program Results for nag_sym_gen_eig_ex01

Eigenvalues

-2.225 -0.455 0.100 1.127

Eigenvectors

-0.069 -0.308 0.447 0.553

-0.574 -0.533 0.037 0.677

-1.543 0.350 -0.050 0.928

1.400 0.621 -0.474 -0.251
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Example 2: Selected eigenvalues and eigenvectors of a
Hermitian-definite generalized eigenvalue problem

Compute selected eigenvalues and the corresponding eigenvectors of a generalized Hermitian-definite
eigenvalue problem ABz = λz. The eigenvalues are selected by index: eigenvalues with indices from
il to iu are computed, the values of il and iu being read from the data file. This example calls the
procedure nag sym gen eig sel, using packed storage.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_sym_gen_eig_ex02

! Example Program Text for nag_sym_gen_eig

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_write_mat, ONLY : nag_write_gen_mat

USE nag_sym_gen_eig, ONLY : nag_sym_gen_eig_sel

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, j, n

REAL (wp) :: vl, vu

CHARACTER (1) :: uplo

! .. Local Arrays ..

REAL (wp), POINTER :: lambda(:)

COMPLEX (wp), ALLOCATABLE :: a(:), b(:)

COMPLEX (wp), POINTER :: z(:,:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_sym_gen_eig_ex02’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) n, uplo

READ (nag_std_in,*) vl, vu

ALLOCATE (a(n*(n+1)/2),b(n*(n+1)/2)) ! Allocate storage

SELECT CASE (uplo)

CASE (’U’,’u’)

DO i = 1, n

READ (nag_std_in,*) (a(i+j*(j-1)/2),j=i,n)

END DO

DO i = 1, n

READ (nag_std_in,*) (b(i+j*(j-1)/2),j=i,n)

END DO

CASE (’L’,’l’)

DO i = 1, n

READ (nag_std_in,*) (a(i+(2*n-j)*(j-1)/2),j=1,i)

END DO

DO i = 1, n

READ (nag_std_in,*) (b(i+(2*n-j)*(j-1)/2),j=1,i)

END DO
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END SELECT

! Compute eigenvalues and eigenvectors

CALL nag_sym_gen_eig_sel(uplo,a,b,lambda,vl=vl,vu=vu,z=z)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Selected eigenvalues’

WRITE (nag_std_out,’(11X,5(F6.3:,10X))’) lambda

WRITE (nag_std_out,*)

CALL nag_write_gen_mat(z,format=’(F6.3)’,title=’Selected eigenvectors’)

DEALLOCATE (a,b,lambda,z) ! Deallocate storage

NULLIFY (lambda,z)

END PROGRAM nag_sym_gen_eig_ex02

2 Program Data
Example Program Data for nag_sym_gen_eig_ex02

4 ’L’ : n, uplo

-10.00 10.00 : vl, vu

(-7.36, 0.00)

( 0.77, 0.43) (3.49, 0.00)

(-0.64, 0.92) (2.19,-4.45) ( 0.12, 0.00)

( 3.01, 6.97) (1.90,-3.73) ( 2.88, 3.17) (-2.54, 0.00) : Matrix A

(3.23, 0.00)

(1.51, 1.92) ( 3.58, 0.00)

(1.90,-0.84) (-0.23,-1.11) (4.09,0.00)

(0.42,-2.50) (-1.18,-1.37) (2.33,0.14) (4.29,0.00) : Matrix B

3 Program Results
Example Program Results for nag_sym_gen_eig_ex02

Selected eigenvalues

-5.999 -2.994 0.505 3.999

Selected eigenvectors

( 1.737, 0.106) ( 0.489,-0.501) ( 0.616, 0.194) ( 0.231,-1.216)

(-0.384,-0.493) ( 0.112,-0.037) ( 0.260,-0.420) (-0.471, 0.481)

(-0.824,-0.299) (-0.811, 0.411) (-0.037,-0.332) (-0.224, 0.634)

( 0.264, 0.628) ( 0.788, 0.200) ( 0.099, 0.659) ( 0.852, 0.000)
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Additional Examples
Not all example programs supplied with NAG fl90 appear in full in this module document. The following
additional examples, associated with this module, are available.

nag sym gen eig ex03

Computes all the eigenvalues and eigenvectors of a generalized Hermitian eigenvalue problem, using
conventional storage.

nag sym gen eig ex04

Computes all the eigenvalues and eigenvectors of a generalized Hermitian eigenvalue problem, using
packed storage.

nag sym gen eig ex05

Computes selected eigenvalues and the corresponding eigenvectors of a generalized symmetric
eigenvalue problem, using conventional storage.

nag sym gen eig ex06

Computes selected eigenvalues and the corresponding eigenvectors of a generalized symmetric
eigenvalue problem, using packed storage.

nag sym gen eig ex07

Computes selected eigenvalues and the corresponding eigenvectors of a generalized Hermitian
eigenvalue problem, using conventional storage.

nag sym gen eig ex08

Computes all the eigenvalues and eigenvectors of a generalized symmetric eigenvalue problem,
using packed storage.
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