Eigenvalue and Least-squares Problems Module Contents

Module 6.2: nag_nsym_eig

Standard Nonsymmetric Eigenvalue Problems

nag nsym_eig provides procedures for solving standard nonsymmetric eigenvalue

problems

Ax = \z

where A is a general real or complex square matrix, and for computing the related Schur

factorization of A.

Contents

Introduction . ..........

Procedures

nagmsym_eig all ...

All eigenvalues, and optionally eigenvectors, of a general real or complex matrix

nag schur_fac ... ...

Schur factorization of a general real or complex matrix

Examples
Example 1: All eigenvalues and right eigenvectors of a real matrix ........................

Example 2: Schur factorization of a real matrix ......... ... . ... o i i
Additional Examples ......... ... ...

Reeferences . ...

[NP3245/3/pdf] Module 6.2: nag nsym_eig

6.2.3

6.2.5

6.2.9

6.2.11
6.2.13

6.2.15

6.2.16

6.2.1



Module Contents Eigenvalue and Least-squares Problems

6.2.2 Module 6.2: nag nsym_eig [NP3245/3/pdf]



Eigenvalue and Least-squares Problems Module Introduction

Introduction

1 Notation and Background
The standard eigenvalue problem is to find the eigenvalues, A;, and the corresponding eigenvectors, x;,
of a general real or complex matrix A such that

Ax; = Ny fori=1,...,n, (1)
where n is the order of A.

If A is known to be real symmetric or complex Hermitian, you should turn to the module nag_sym_eig
(6.1) because in these cases the problem has special properties and it is desirable to take advantage of
them (in particular, the eigenvalues are real and the eigenvectors are mutually orthogonal).

This module is intended for standard nonsymmetric eigenvalue problems, when A is not known to
be symmetric or Hermitian. (Strictly speaking, when A is complex, we should talk of non-Hermitian
problems.)

The eigenvalues and eigenvectors may be complex, even when A is real. If A is real, complex eigenvalues
and eigenvectors always occur in complex conjugate pairs; if z is an eigenvector corresponding to the
complex eigenvalue A, then the complex conjugate vector Z is the eigenvector corresponding to \:

Az = \x and AT = \Z.

The eigenvectors x; defined in (1) are sometimes referred to as right eigenvectors. The left eigenvectors
y; are defined by:

%H A= )\Z-yZH or equivalently AHyi = Xiyzw

Thus a left eigenvector of A is a right eigenvector of A7 (= AT if A is real).

2 Schur Factorization
An important tool for solving nonsymmetric eigenvalue problems is the Schur factorization of A (also
referred to as the Schur decomposition). This is defined as:

A=ZTZ", with T real upper quasi-triangular and Z orthogonal, if A is real;

A = ZTZ" with T complex upper triangular and Z unitary, if A is complex.

The matrix T is called the Schur form of A. If A is complex, or if A is real and all its eigenvalues are
real, then T is upper triangular, and the diagonal elements of T are the eigenvalues of A. If A is real
and has complex conjugate pairs of eigenvalues, then, corresponding to each such pair, 7" has a 2 x 2
block on the diagonal; the eigenvalues of the diagonal blocks are the complex eigenvalues of A.

The columns of Z are the Schur vectors of A. They are mutually orthogonal, unlike the eigenvectors, so
they are often more satisfactory to work with in numerical computation.

The eigenvalues of T are the same as the eigenvalues of A, and if z is an eigenvector of T', then Zz is an
eigenvector of A.

3 Choice of Procedures

Two procedures are provided in this module. They can be used for the following computations:
All eigenvalues of A (nagnsym eig all)

All eigenvalues and eigenvectors (right, left or both) of A (nagnsym eig all with optional
arguments)

Schur form of A (nag_schur_fac)

Schur form and Schur vectors of A (nag_schur_fac with optional argument)
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Procedure: nag_nsym_eig_all

1 Description

nag nsym eig_all is a generic procedure which computes all the eigenvalues, and optionally all the left
or right eigenvectors, of a real or complex general matrix A of order n.

We write:
Azx; = Nz fori=1,...,n, for the right eigenvectors x;;
y,LHA = )\iylH fori=1,...,n, for the left eigenvectors y;.

The eigenvalues and eigenvectors may be complex, even when A is real. They are always returned in
complex arrays.

By default, only the eigenvalues are computed. Optionally, either the right or left eigenvectors, or both,
may be computed.

Each (left or right) eigenvector x is normalized so that ||z||2 = 1 and the element of largest absolute
value is real and positive.

2 Usage

USE nag nsym_eig
CALL nag nsym eig-all(a, lambda [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

n — the order of the matrix A

3.1 Mandatory Arguments

a(n,n) — real(kind=wp) / complex(kind=wp), intent(inout)
Input: the general matrix A.

Output: overwritten by intermediate results.

lambda(n) — complex(kind=wp), intent(out)

Output: the eigenvalues of A. They may occur in any order.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

vr(n,n) — complex(kind=wp), intent(out), optional

Output: the right eigenvectors of A. The ith column vr(:4) holds the right eigenvector
corresponding to the eigenvalue lambda (7).
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vl(n,n) — complex(kind=wp), intent(out), optional
Output: the left eigenvectors of A. The ith column v1(:,7) holds the left eigenvector corresponding
to the eigenvalue lambda (7).

error — type(nag_error), intent(inout), optional

The NAG f190 error-handling argument. See the Essential Introduction, or the module document
nag-error_handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag_set_error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description
302 An array argument has an invalid shape.
303 Array arguments have inconsistent shapes.
320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):
error%code Description
201 Failure to converge.

The QR algorithm failed to compute all the eigenvalues in the permitted number of
iterations.

5 Examples of Usage
A complete example of the use of this procedure appears in Example 1 of this module document.
In that example, the following call statement is used to compute eigenvalues and right eigenvectors:
CALL nag _nsym_eig_all( a, lambda, vr=vr )
To compute eigenvalues only, the call statement should be changed to:
CALL nag_nsym_eig_all( a, lambda )

To compute left eigenvectors as well as right eigenvectors, a suitable array vl must be declared, and the
call statement changed to:

CALL nag nsym_eig_all( a, lambda, vr=vr, vl=vl )

6 Further Comments

6.1 Algorithmic Detail
The procedure performs the following steps (see Chapter 7 of Golub and Van Loan [2] for more details).
1. It balances the matrix, using a diagonal similarity transformation to reduce its norm.

2. It reduces the balanced matrix A to upper Hessenberg form H, using an orthogonal or unitary

similarity transformation: A = QHQ™. If eigenvectors are required, it forms the matrix Q.

3. If only eigenvalues are required, it applies the QR algorithm to compute the eigenvalues of H,
which are the same as the eigenvalues of A.
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4. If eigenvectors are required, it applies the QR algorithm to compute the Schur factorization of H:
H = STS forming the matrix Z = QS which is the matrix of Schur vectors of A.

5. It then computes the eigenvectors of the Schur form 7" by back-substitution, pre-multiplies them
by Z to form the eigenvectors of the balanced matrix A, and finally transforms them to those of
the original matrix A.

The algorithms are derived from LAPACK (see Anderson et al. [1]).

6.2 Accuracy
If \; is an exact eigenvalue, and \; is the computed eigenvalue, then

c(n)el|All2

K2

A — Nl < (2)

where ¢(n) is a modestly increasing function of n, and e = EPSILON(1.0_wp); s; is the reciprocal condition
number of \;, which is defined by

H
Si = Y; Ty,

where y; and x; are the left and right eigenvectors corresponding to A;. The bound (2) may be an
overestimate if A is badly scaled.

6.3 Timing

The time taken by the procedure is approximately proportional to n®. Computing both eigenvalues and
eigenvectors is likely to take about 3 times as long as computing eigenvalues alone.
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Procedure: nag_schur_fac

1 Description

nag_schur_fac computes part or all of the Schur factorization of a real or complex general matrix A of
order n.

We write the Schur factorization as follows:
A=7TZ", with T real upper quasi-triangular and Z orthogonal, if A is real;
A = ZTZ" with T complex upper triangular and Z unitary, if A is complex.

See the Module Introduction for more details.

By default, only the Schur form T is computed. Optionally, the matrix Z of Schur vectors may be
computed, and the eigenvalues may be extracted from 7" and stored in a separate complex array. If only
the eigenvalues are required, it is more efficient to call nag nsym eig all.

Each Schur vector z; is normalized so that ||z;||2 = 1 and the element of largest absolute value is (real
and) positive.

2 Usage

USE nag nsym eig

CALL nag.schur_fac(a [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

n — the order of the matrix A

3.1 Mandatory Argument

a(n,n) — real(kind=wp) / complex(kind=wp), intent(inout)
Input: the general matrix A.
Output: the Schur form T

3.2 Optional Arguments
Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.
lambda(n) — complex(kind=wp), intent(out), optional
Output: the eigenvalues of A.

z(n,n) — real(kind=wp) / complex(kind=wp), intent(out), optional

Output: the matrix Z.

Constraints: z must be of the same type as a.
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error — type(nag_error), intent(inout), optional

The NAG f190 error-handling argument. See the Essential Introduction, or the module document
nag-error_handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag_set_error before this
procedure is called.

4 Error Codes

Fatal errors (error%]level = 3):

error%code Description
302 An array argument has an invalid shape.
303 Array arguments have inconsistent shapes.
320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):
error%code Description
201 Failure to converge.

The QR algorithm failed to compute the Schur form in the permitted number of
iterations.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.

6 Further Comments

6.1 Algorithmic Detail
The procedure performs the following steps (see Chapter 7 of Golub and Van Loan [2] for more details).

1. It reduces A to upper Hessenberg form H, using an orthogonal or unitary similarity transformation:
A= QHQ. If the Schur vectors are required, it forms the matrix Q.

2. If only the Schur form is required, it applies the QR algorithm to compute the Schur form of H,
which is the same as the Schur form of A.

3. If the Schur vectors are required, it applies the QR algorithm to compute the whole of the Schur
factorization of H: H = STS, forming the matrix Z = QS which is the matrix of Schur vectors
of A.

The algorithms are derived from LAPACK (see Anderson et al. [1]).

6.2 Accuracy

The computed Schur factorization is the exact factorization of a nearby matrix A + F, where
1E]l2 = O(e)l| Allz,

and € = EPSILON(1.0_wp).

6.3 Timing

The time taken by the procedure is approximately proportional to n®. Computing both the Schur form
and the Schur vectors is likely to take about twice as long as computing the Schur form alone.

6.2.10 Module 6.2: nag nsym eig [NP3245/3/pdf]



Eigenvalue and Least-squares Problems Example 1

Example 1: All eigenvalues and right eigenvectors
of a real matrix

Compute all eigenvalues and the right eigenvectors of a real matrix A.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_nsym_eig_ex01

! Example Program Text for nag_nsym_eig
! NAG £190, Release 3. NAG Copyright 1997.

! .. Use Statements
USE nag_examples_io, ONLY : nag_std_in, nag_std_out
USE nag_nsym_eig, ONLY : nag_nsym_eig_all
USE nag_write_mat, ONLY : nag_write_gen_mat

! .. Implicit None Statement

IMPLICIT NONE

! .. Intrinsic Functions

INTRINSIC KIND

! .. Parameters

INTEGER, PARAMETER :: wp = KIND(1.0DO)

! .. Local Scalars

INTEGER :: i, n

! .. Local Arrays

REAL (wp), ALLOCATABLE :: a(:,:)

COMPLEX (wp), ALLOCATABLE :: lambda(:), vr(:,:)
! .. Executable Statements

WRITE (nag_std_out,*) ’Example Program Results for nag_nsym_eig_ex01’

READ (nag_std_in,*) ! Skip heading in data file
READ (nag_std_in,*) n

ALLOCATE (a(n,n),lambda(n),vr(n,n)) ! Allocate storage

READ (nag_std_in,*) (a(i,:),i=1,n)

! Compute eigenvalues and eigenvectors

CALL nag_nsym_eig_all(a,lambda=lambda,vr=vr)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Eigenvalues’

WRITE (nag_std_out,’(3X,8("(",F7.4,",",F7.4,")":1X))’) lambda

WRITE (nag_std_out,*)

CALL nag_write_gen_mat(vr,int_col_labels=.TRUE.,format=’(F7.4)’, &
title=’Matrix of right eigenvectors (one vector per column)’)

DEALLOCATE (a,lambda,vr) ! Deallocate storage

END PROGRAM nag_nsym_eig_ex01
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2 Program Data

Example Program Data for nag_nsym_eig_ex01
4 :Value of n
0.35 0.45 -0.14 -0.17
0.09 0.07 -0.54 0.35
-0.44 -0.33 -0.03 0.17
0.256 -0.32 -0.13 0.11 :End of matrix A

3 Program Results

Example Program Results for nag_nsym_eig_ex01

Eigenvalues
( 0.7995, 0.0000) (-0.0994, 0.4008) (-0.0994,-0.4008) (-0.1007, 0.0000)

Matrix of right eigenvectors (one vector per column)

1 2 3 4
0.6551, 0.0000) (-0.1933, 0.2546) (-0.1933,-0.2546) ( 0.1253, 0.0000)
0.5236, 0.0000) ( 0.2519,-0.5224) ( 0.2519, 0.5224) ( 0.3320, 0.0000)
-0.5362, 0.0000) ( 0.0972,-0.3084) ( 0.0972, 0.3084) ( 0.5938, 0.0000)
0.

(
(
(
( 0.0956, 0.0000) ( 0.6760, 0.0000) ( 0.6760, 0.0000) ( 0.7221, 0.0000)
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Example 2: Schur factorization of a real matrix

Compute the Schur factorization of a real matrix A.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_nsym_eig_ex02

! Example Program Text for nag_nsym_eig
! NAG £190, Release 3. NAG Copyright 1997.

! .. Use Statements
USE nag_examples_io, ONLY : nag_std_in, nag_std_out
USE nag_nsym_eig, ONLY : nag_schur_fac
USE nag_write_mat, ONLY : nag_write_gen_mat
! .. Implicit None Statement

IMPLICIT NONE

! .. Intrinsic Functions

INTRINSIC KIND

! .. Parameters

INTEGER, PARAMETER :: wp = KIND(1.0DO)

! .. Local Scalars

INTEGER :: i, n

! .. Local Arrays

REAL (wp), ALLOCATABLE :: a(:,:), z(:,:)
COMPLEX (wp), ALLOCATABLE :: lambda(:)

! .. Executable Statements

WRITE (nag_std_out,*) ’Example Program Results for nag_nsym_eig_ex02’

READ (nag_std_in,*) ! Skip heading in data file
READ (nag_std_in,*) n

ALLOCATE (a(n,n),lambda(n),z(n,n)) ! Allocate storage

READ (nag_std_in,*) (a(i,:),i=1,n)

! Compute the Schur factorization

CALL nag_schur_fac(a,lambda=lambda,z=z)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Eigenvalues’

WRITE (nag_std_out,’(1X,"(",F8.4,",",F8.4,")")’) lambda

WRITE (nag_std_out,*)

CALL nag_write_gen_mat(a,int_col_labels=.TRUE.,title=’Schur matrix’)

WRITE (nag_std_out,*)

CALL nag_write_gen_mat(z,int_col_labels=.TRUE., &
title=’Matrix of Schur vectors (one vector per column)’)

DEALLOCATE (a,lambda,z) ! Deallocate storage

END PROGRAM nag_nsym_eig_ex02

[NP3245/3/pdf] Module 6.2: nag nsym eig 6.2.13



Ezxample 2

2 Program Data

Example Program Data for nag_nsym_eig_ex02
: Value of n

4

0.35 0.
0.09 O.
-0.44 -0.
0.25 -0.

45 -0.14 -0.17
07 -0.54 0.35
33 -0.03 0.17
32 -0.13 0.11

: End of Matrix A

3 Program Results

Example Program Results for nag_nsym_eig_ex02

Eigenvalues

( 0.7995, 0.0000)
( -0.0994, 0.4008)
( -0.0994, -0.4008)
( -0.1007, 0.0000)

Schur matrix

1
0.7995
0.0000
0.0000
0.0000

Matrix of
1

0.6551
0.5236
-0.5362
0.0956

6.2.14

2 3
-0.1144 -0.0060 O.
-0.0994 -0.2478 O.

0.6483 -0.0994 -0.
0.0000 0.0000 -0.

Schur vectors (one
2 3
0.1037 -0.3450 O.
-0.5807 0.6141 -0.
-0.3073 0.2935 0.
0.7467 0.6463 O.

4
0336
3474
2026
1007

vector per column)
4

6641

1068

7293

1249
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Additional Examples

Not all example programs supplied with NAG fI90 appear in full in this module document. The following
additional examples, associated with this module, are available.

nag nsym_eig_ex03

Schur factorization of a complex matrix.

nag nsym_eig_ex04

All eigenvalues and right eigenvectors of a complex matrix.
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