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Introduction

1 Background

This module contains procedures for setting up the preconditioners to be used with the iterative solvers
of module nag_sparse_lin_sys. At this release methods for real non-symmetric and complex non-
Hermitian systems are available. It also includes direct solvers for the resulting preconditioned systems
Mz = r. The preconditioner information is stored as a sparse matrix.

Preconditioning involves the replacement of a given linear system

Az =b (1)
by the modified system

Az =b. (2)

A left preconditioner M~ can be used by the GMRES(m), CGS and TFQMR methods, such that
A= M"T1A~ I, in (2), where I, is the identity matrix of order n; a right preconditioner M~ can be
used by the Bi-CGSTAB (¢) method, such that A = AM ' ~ I,,.

2 Choice of Procedures

Procedures for Jacobi, Symmetric Successive Overrelaxation (SSOR) and incomplete LU factorization
(ILU) preconditioning methods are provided. These procedures initialize a preconditioner which can
be supplied as an argument to the iterative solvers provided by the module nag _sparse_lin_sys. The
simplest preconditioner is the Jacobi method, initialized by nag_sparse prec_init_jac, which consists
of the diagonal part of the matrix. However, more sophisticated methods usually give faster convergence
of the iterative solvers. The SSOR preconditioner is initialized by nag_sparse_prec_init_ssor and the
value of the relaxation parameter, w, should be supplied. The cost of initializing and applying these
two preconditioners is small when compared to the overall costs. For incomplete factorization methods,
more work is required and this must be offset against the expected improvement in the convergence of
the iterative solver. The ILU factorization is performed by nag_sparse_prec_init_ilu.

The procedure nag_sparse_prec_sol computes the solution vector z of the linear system
Mz =r,

where M is a preconditioning matrix described above, which is defined by a call to one of the initialization
procedures.

The procedure nag sparse_prec_sol is not specifically designed for direct solution of sparse
linear systems. However, the arguments of the incomplete factorization initialization procedure
nag_sparse_prec_init_ilu can be chosen in such a way so as to produce a direct solution. For
example, in this case, procedure nag_sparse_prec_sol solves a linear system involving the incomplete
LU preconditioning matrix

M = PLDUQ = A — R,

where P and @ are permutation matrices, L is unit lower triangular, U is unit upper triangular, D is
diagonal and R is a remainder matrix. If A is non-singular, then setting the optional argument drop _tol
= 0.0 in a call to nag_sparse_prec_init_ilu, results in a zero remainder matrix R and a complete
factorization. A subsequent call to nag_sparse_prec_sol will therefore result in a direct method for
solving the linear system (1).
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Procedure: nag_sparse_prec_init_jac

1 Description

nag _sparse_prec_init_jac is a set-up procedure which forms the Jacobi preconditioner for a previously
initialized n by n sparse matrix A. The preconditioning matrix is defined as M = D where D is the
diagonal part of A. You should ensure that the diagonal of A is full and does not contain any zero
entries.

2 Usage

USE nag_sparse_prec

CALL nag_sparse_prec_init_jac(a,p [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

3.1 Mandatory Arguments

a — type(nag_sparse_mat_real_wp)/type(nag_sparse_mat_cmplx_wp), intent(in)
Input: a structure containing details of the representation of the sparse matrix A.

Constraints: a must be as output from a call to one of the procedures
nag_sparse_mat_init_coo,

nag_sparsemat_init_csc, nag sparsemat_init_csr or nag sparse mat_init_dia (see module
nag_sparse.mat).

p — type(nag_sparse_mat_real_wp)/type(nag-sparse_mat_cmplx_wp), intent(out)

Output: a structure containing details of the representation of the sparse preconditioning matrix
M.

Constraints: p must be of the same type as a.
Note: to reduce the risk of corrupting the preconditioner accidentally, the components of this

structure are private.

If you wish to deallocate this storage when the structure is no longer required, you must call the
procedure nag _deallocate, as illustrated in Example 1 of this module document.

3.2 Optional Argument

error — type(nag_error), intent(inout), optional

The NAG 190 error-handling argument. See the Essential Introduction, or the module document
nag_error_handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set _error before this
procedure is called.
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4 Error Codes

Fatal errors (error%level = 3):

error%code Description
301 An input argument has an invalid value.
320 The procedure was unable to allocate enough memory.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

5.6.6 Module 5.6: nag sparse_prec [NP3506/4]



Linear Equations nag_sparse_prec_init_ssor

Procedure: nag_sparse_prec_init_ssor

1 Description

nag _sparse_prec_init_ssor is a set-up procedure which forms the symmetric successive-over-relaxation
(SSOR) preconditioner for a previously initialized n by n sparse matrix A with nnz non-zero entries.
The preconditioning matrix, M, is defined as

*71 w -1 w
M*w(z—w)(lﬂ L)DY(D + wU),

where D is the diagonal part of A, L is the strictly lower triangular part of A, U is the strictly upper
triangular part of A, and w is a user-defined relaxation parameter. You should ensure that the diagonal
of A is full and does not contain any zero entries.

2 Usage

USE nag_sparse_prec

CALL nag_sparse_prec_init_ssor(a,p [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

3.1 Mandatory Arguments

a — type(nag_sparse_mat_real_wp)/type(nag_sparse_mat_cmplx_wp), intent(in)
Input: a structure containing details of the representation of the sparse matrix A.

Constraints: a must be as output from a call to one of the procedures
nag_sparse_mat_init_coo,

nag _sparse mat_init_csc, nag_sparse mat_init_csr or nag_sparse mat_init.dia (see module
nag_sparse mat).

p — type(nag_sparse_mat_real_wp)/type(nag_sparse_mat_cmplx_wp), intent(out)

Output: a structure containing details of the representation of the sparse preconditioning matrix
M.

Constraints: p must be of the same type as a.

Note: to reduce the risk of corrupting the preconditioner accidentally, the components of this
structure are private.

If you wish to deallocate this storage when the structure is no longer required, you must call the
procedure nag_deallocate, as illustrated in Example 2 of this module document.
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3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

omega — real(kind=wp), intent(in), optional
Input: the relaxation parameter, w.
Default: omega = 1.0.
Constraints: 0.0 < omega < 2.0.

error — type(nag_error), intent(inout), optional

The NAG f190 error-handling argument. See the Essential Introduction, or the module document
nag_error_handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag_set_error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description
301 An input argument has an invalid value.
320 The procedure was unable to allocate enough memory.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.
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Procedure: nag_sparse_prec_init_ilu

1 Description

nag_sparse_prec_init_ilu computes an incomplete LU factorization (see Meijerink and van der Vorst
[2], Meijerink and van der Vorst [4]) of a previously initialized n by n real non-symmetric or complex
non-Hermitian sparse matrix A with nnz non-zero entries.

The decomposition is written in the form

A=M+R,
where
M = PLDUQ

and L is unit lower triangular, D is diagonal, U is unit upper triangular, P and ) are permutation
matrices, and R is a remainder matrix.

The amount of fill-in occurring in the factorization can vary from zero to complete fill, and can be
controlled by specifying either the maximum level of fill (£i11_level) or the drop tolerance (drop_tol).

The optional argument pivoting defines the pivoting strategy to be used. The options currently available
are no pivoting, user-defined pivoting, partial pivoting by columns for stability, and complete pivoting by
rows for sparsity and by columns for stability. The factorization may optionally be modified to preserve
the row-sums of the original matrix.

2 Usage

USE nag_sparse_prec

CALL nag_sparse_prec_init_ilu(a,p [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

3.1 Mandatory Arguments

a — type(nag_sparse_mat_real_wp)/type(nag_sparse_mat_cmplx_wp), intent(in)
Input: a structure containing details of the representation of the sparse matrix A.

Constraints: a must be as output from a call to one of the procedures
nag_sparse_mat_init_coo,

nag _sparse mat_init_csc, nag_sparse mat_init_csr or nag_sparsemat_init.dia (see module
nag_sparse mat).

p — type(nag_sparse_mat_real_wp)/type(nag-sparse_mat_cmplx_wp), intent(out)

Output: a structure containing details of the representation of the sparse preconditioning matrix

M.
Constraints: p must be of the same type as a.

Note: to reduce the risk of corrupting the preconditioner accidentally, the components of this
structure are private.

If you wish to deallocate this storage when the structure is no longer required, you must call the
procedure nag _deallocate, as illustrated in Example 3 of this module document.
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3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

prec_max_nnz — integer, intent(in), optional

Input: an upper bound on the maximum number of non-zero entries in the incomplete LU
factorization of A. This determines the size of storage arrays and must be large enough to include
all added fill elements.

Default: precmax nnz = nnz + max(10,nnz/10), where nnz is the number of non-zero entries in

A.

Constraints: prec_max nnz > nnz.

fill_level — integer, intent(in), optional
Input: the required level of fill of the decomposition (for more details see Section 6.1).
Default: £i11 level = 0.
Constraints: £i11 level > 0; drop_tol must not be present if £ill level is present.

drop_tol — real(kind=wp), intent(in), optional
Input: the drop tolerance of the decomposition. A fill element a;; will be dropped if |a;;| <
drop_tol X max |age| (for more details see Section 6.1).
<k, £<n
Default: drop-tol = 0.0.
Constraints: drop_tol > 0.0; £i11_level must not be present if drop_tol is present.

pivoting — character(len=1), intent(in), optional

Input: specifies the pivoting strategy when this is not determined by the arguments pivot _row and

pivot_col.
If pivoting = 'N' or 'n', no pivoting is performed;
if pivoting = 'P' or 'p', partial pivoting by columns for stability is performed;
if pivoting = 'C' or 'c', complete pivoting by rows for sparsity and by columns for stability

is performed.
Default: pivoting = 'C'.

Constraints: pivoting = 'n', 'N', 'p', 'P', 'c' or 'C'; pivot_row and pivot_col must not be
present if pivoting is present.

pivot_row(n) — integer, intent(in), optional

pivot_col(n) — integer, intent(in), optional
Input: pivot_row(k) and pivot_col(k) must specify the row and column indices of the pivot
element to be used at elimination stage k.

Constraints: pivot_row and pivot_col must both contain valid permutations of the integers [1,n];
pivoting must not be present if pivot_row and pivot_col are present.

row_sum — logical, intent(in), optional

Input: indicates whether the factorization is to be modified to preserve row sums.

If row_sum = .true., row sums are preserved;
if row_sum = .false., row sums are not preserved.
Default: row_sum = .false..
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num_pivot — integer, intent(out), optional
Output: pivot information.

If num_pivot > 0, this is the number of pivots which were modified during the factorization
to ensure that M exists;

if num_pivot = 0, no pivot modifications or local restarts were required;

if num_pivot = —1, no pivot modifications were required, but a local restart occurred.

error — type(nag_error), intent(inout), optional

The NAG 190 error-handling argument. See the Essential Introduction, or the module document
nag_error_handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag_set_error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description
301 An input argument has an invalid value.
302 An array argument has an invalid shape.
303 Array arguments have inconsistent shapes.
304 Invalid presence of an optional argument.
305 Invalid absence of an optional argument.
320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):
error%code Description
201 The storage defined by prec max nnz is too small to contain the fill.

Either increase prec_max nnz or reduce the values of £i11 level or drop_tol.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 3 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The factorization is constructed row by row. At each elimination stage a row index is chosen. In the
case of complete pivoting this index is chosen in order to reduce fill-in. Otherwise the rows are treated
in the order given, or some user-defined order.

The chosen row is copied from the original matrix A and modified according to those previous elimination
stages which affect it. During this process any fill-in elements are either dropped or kept according to
the values of £ill level or drop_tol. In the case of a modified factorization (row_sum = .true.) the
sum of the dropped terms for the given row is stored.

Finally, the pivot element for the row is chosen and the multipliers are computed for this elimination
stage. For partial or complete pivoting the pivot element is chosen in the interests of stability as the
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element of largest absolute value in the row. Otherwise the pivot element is chosen in the order given,
or some user-defined order.

If the factorization breaks down because the chosen pivot element is zero, or there is no non-zero pivot
available, a local restart recovery process is implemented. The modification of the given pivot row
according to previous elimination stages is repeated, but this time keeping all fill. Note that in this
case the final factorization will include more fill than originally specified by the user-supplied value of
£ill level or drop-tol. The local restart usually results in a suitable non-zero pivot arising. The
original criteria for dropping fill-in elements is then resumed for the next elimination stage (hence the
local nature of the restart process). Should this restart process also fail to produce a non-zero pivot
element an arbitrary unit pivot is introduced in an arbitrarily chosen column. An integer parameter
num_pivot is optionally returned, which gives the number of these arbitrary unit pivots introduced. If
no pivots were modified, but local restarts occurred, num_pivot is returned with a value of —1.

There is unfortunately no choice of the various algorithmic parameters which is optimal for all types of
matrix, and some experimentation will generally be required for each new type of matrix encountered.
The recommended approach is to start with £ill level = 0 and pivoting = ’C’ (the default). If the
value returned for num_pivot is significantly larger than zero, i.e., a large number of pivot modifications
were required to ensure that M existed, the preconditioner is unlikely to be satisfactory. In this case
increase £ill level until num_pivot falls to a value close to zero.

For certain classes of matrices (typically those arising from the discretisation of elliptic or parabolic
partial differential equations) the convergence rate of the preconditioned iterative solver can sometimes
be significantly improved by using an incomplete factorization which preserves the row-sums of the
original matrix. In such cases, the setting row_sum = .true. is recommended.

Although it is not the primary purpose, nag_sparse _prec_init_ilu and nag sparse prec_sol may be
used together to obtain a direct solution to a non-singular sparse non-Hermitian linear system. To
achieve this the call to nag_sparse_prec_sol should be preceded by a complete LU factorization

A= PLDUQ = M.

A complete factorization is obtained from a call to nag-sparse_prec_init_ilu with
drop-tol = 0.0, provided num_pivot = 0 or —1 on exit. A positive value of num_pivot indicates that
A is singular or ill-conditioned. A factorization with num_pivot> 0 may serve as a preconditioner, but
will not result in a direct solution. It is therefore essential to check the output value of num_pivot if a
direct solution is required.

If£i11 level > 0, the amount of fill-in occurring in the incomplete factorization is controlled by limiting
the maximum level of fill-in to £ill_ level. The original non-zero elements of A are defined to be of
level 0. The fill level of a new non-zero location occurring during the factorization is defined as

k = max(ke, k) + 1,

where k. is the level of fill of the element being eliminated, and k. is the level of fill of the element
causing the fill-in.

The fill-in can also be controlled by means of drop_tol, the drop tolerance. A potential fill-in element
a;; occurring in row ¢ and column j will not be included if

la;j| < drop_tol x «,
where « is the maximum modulus element in the matrix A.

For either method of control, any elements which are not included are discarded unless
row_sum = .true., in which case their contributions are subtracted from the pivot element in the
relevant elimination row, in order to preserve the row-sums of the original matrix.

Should the factorization break down a local restart process is implemented as described above. This will
affect the amount of fill present in the final factorization.

6.2 Timing

The time taken for a call to nag_sparse_prec_init_ilu is roughly proportional to (prec.nnz)?/n, where
prec_nnz is the number of non-zero entries in the incomplete factorization matrix.
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Procedure: nag_sparse_prec_sol

1 Description

nag _sparse_prec_sol is a generic procedure which computes the solution vector, z, of the system Mz = r
or its transpose MTz = r according to the value of the argument trans. The matrix M must be
supplied as a structure of the sparse matrix derived type and previously initialized by a call to one of
the set-up procedures contained in this module. nag_sparse_prec_sol may be used in combination with
nag_sparse_prec_init_ilu to solve a sparse system of linear equations directly. See also the description
of nag _sparse prec_init_ilu.

2 Usage

USE nag_sparse_prec

CALL nag_sparse_prec_sol(p,r,z [, optional arguments])

2.1 Interfaces
Distinct interfaces are provided for each of the following two cases.

Real / complex data

Real data: the arguments r and z are of type real(kind=wp), p is of type
nag _sparse mat_real_wp.

Complex data: the arguments r and z are of type complex(kind=wp), p is of type
nag sparse mat_cmplx_wp.

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

3.1 Mandatory Arguments

p — type(nag_sparse_mat_real_wp)/type(nag_sparse_mat_cmplx_wp), intent(in)
Input: a structure containing details of the representation of the sparse preconditioning matrix M.

Constraints: p must be as output from a call to one of the procedures nag_sparse_prec_init_jac,
nag_sparse_prec_init_ssor or nag_sparse_prec_init_ilu.

r(n) — real(kind=wp)/complex(kind=wp), intent(in)
Input: the right-hand-side of the linear system.

z(n) — real(kind=wp)/complex(kind=wp), intent(out)

Output: the solution of the linear system.

Constraints: z must be of the same type as r.
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3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

trans — logical, intent(in), optional
Input: specifies which system is solved.

If trans = .false., the preconditioned system Mz = r is solved;
if trans = .true., the transposed preconditioned system M7z = r is solved.
Default: trans = .false..

error — type(nag_error), intent(inout), optional
The NAG f190 error-handling argument. See the Essential Introduction, or the module document
nag_error_handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag_set_error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

302 An array argument has an invalid shape.

Warnings (error%level = 1):

error%code Description

101 The argument trans is ignored when the Jacobi preconditioner is used.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 3 of this module document.

6 Further Comments

6.1 Accuracy

For the SSOR method, initialized by a call to nag_sparse_prec_init_ssor, the matrix M is

1 -1

If trans = .false.(the default), the computed solution z is the exact solution of a perturbed system
of equations (M + dM)z = r, where

|6M| < ¢(n)e|D + wL||D7Y|D + wU],

¢(n) is a modest linear function of n and € is the machine precision. An equivalent result holds when
trans = .true..

For the ILU method initialized by a call to nag_sparse_prec_init_ilu, the matrix M is
M = PLDUQ.

If trans = .false., the computed solution x is the exact solution of a perturbed system of equations
(M + 0M)z =y, where

[0M] < ¢(n)eP|L||DI|U|Q,

where ¢(n) and € are as described above, with an equivalent result when trans = .true..
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6.2 Timing

The time taken for a call to nag_sparse_prec_sol is proportional to nnz, the number of non-zero entries
in the matrix M.
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Example 1: Solution of a Real, Non-symmetric Sparse
Linear System Using Jacobi Preconditioned TFQMR

This example program initializes the sparse matrix A from the supplied data and sets up the Jacobi
preconditioner by a call to nag sparse_prec_init_jac. The preconditioned linear system is solved
iteratively by the TFQMR method using the procedure nag_sparse_gen lin_sol.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_sparse_prec_ex01

! Example Program Text for nag_sparse_prec
! NAG £190, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_sparse_mat, ONLY : nag_sparse_mat_init_csc, &
nag_sparse_mat_real_wp => nag_sparse_mat_real_dp, nag_deallocate
USE nag_sparse_prec, ONLY : nag_sparse_prec_init_jac

USE nag_sparse_lin_sys, ONLY : nag_sparse_gen_lin_sol

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0DO)

! .. Local Scalars ..

INTEGER :: i, n, nnz

TYPE (nag_sparse_mat_real_wp) :: a, c_jac

! .. Local Arrays ..

INTEGER, ALLOCATABLE :: col_ptr(:), row(:)

REAL (wp), ALLOCATABLE :: b(:), value(:), x(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_sparse_prec_ex01’

READ (nag_std_in,*) ! Skip heading in data file
READ (nag_std_in,*) n, nnz

ALLOCATE (row(nnz),col_ptr(n),value(nnz),b(n),x(n))
DO i =1, nnz
READ (nag_std_in,*) value(i), row(i)
END DO
READ (nag_std_in,*) col_ptr
READ (nag_std_in,*) b
x = 0.0_wp
CALL nag_sparse_mat_init_csc(a,value,row,col_ptr)
CALL nag_sparse_prec_init_jac(a,c_jac)
WRITE (nag_std_out,*)
WRITE (nag_std_out,*) ’Method: TFQMR with Jacobi preconditioner’
WRITE (nag_std_out,*)

CALL nag_sparse_gen_lin_sol(a,b,x,method=’t’,p=c_jac)

! Output results
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WRITE (nag_std_out,*) ’ Solution’
WRITE (nag_std_out,’(10F7.1)°) x

CALL nag_deallocate(a)
CALL nag_deallocate(c_jac)
DEALLOCATE (row,col_ptr,value,b,x)

END PROGRAM nag_sparse_prec_ex01

2 Program Data

Example Program Data for nag_sparse_prec_ex01
5 14 : n, nnz

5. 1 : value(1l), col(1)
1. 2
1. 4
3. 2
1. 3
1. 1
4. 3
-1. 4
1. 5
1. 2
3
4
2
5

: value(nnz), col(nnz)
1 4 6 10 13 : col_ptr(l:n)
8.0 8.0 12.0 4.0 8.0 : b(1:n)

3 Program Results
Example Program Results for nag_sparse_prec_ex01
Method: TFQMR with Jacobi preconditioner

Solution
1.0 2.0 3.0 2.0 1.0
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Example 2: Solution of a Complex, Non-Hermitian Sparse
Linear System Using SSOR Preconditioned BiCGSTAB(Y)

This example program initializes the sparse matrix A, using the supplied data and sets up the
corresponding SSOR preconditioner by a call to nag_sparse_prec_init_ssor. The preconditioned linear
system is solved iteratively by the BICGSTAB(¢) method using the procedure nag_sparse_gen lin_sol.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_sparse_prec_ex02

! Example Program Text for nag_sparse_prec
! NAG £190, Release 4. NAG Copyright 2000.

! .. Use Statements
USE nag_examples_io, ONLY : nag_std_in, nag_std_out
USE nag_sparse_mat, ONLY : nag_sparse_mat_init_coo, &
nag_sparse_mat_cmplx_wp => nag_sparse_mat_cmplx_dp, nag_deallocate

USE nag_sparse_prec, ONLY : nag_sparse_prec_init_ssor
USE nag_sparse_lin_sys, ONLY : nag_sparse_gen_lin_sol
! .. Implicit None Statement

IMPLICIT NONE

! .. Intrinsic Functions

INTRINSIC CMPLX, KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0DO)

! .. Local Scalars ..

INTEGER :: i, n, nnz, num_iter
REAL (wp) :: resid_norm
TYPE (nag_sparse_mat_cmplx_wp) :: a, C_ssor

! .. Local Arrays ..

INTEGER, ALLOCATABLE :: col(:), row(:)

COMPLEX (wp), ALLOCATABLE :: b(:), value(:), x(:)

! .. Executable Statements

WRITE (nag_std_out,*) ’Example Program Results for nag_sparse_prec_ex02’

READ (nag_std_in,*) ! Skip heading in data file
READ (nag_std_in,*) n, nnz

ALLOCATE (row(nnz),col(nnz),value(nnz),b(n),x())
DO i =1, nnz
READ (nag_std_in,*) value(i), row(i), col(i)
END DO
READ (nag_std_in,*) b
x = CMPLX(0.0_wp,0.0_wp,kind=wp)
CALL nag_sparse_mat_init_coo(a,n,value,row,col)
CALL nag_sparse_prec_init_ssor(a,c_ssor)
WRITE (nag_std_out,*)
WRITE (nag_std_out,*) ’Method: BiCGSTAB with SSOR preconditioner’

WRITE (nag_std_out,*)

CALL nag_sparse_gen_lin_sol(a,b,x,method=’b’,p=c_ssor, &
resid_norm=resid_norm,num_iter=num_iter)
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! Output results

WRITE (nag_std_out,*) ’ Solution’

WRITE (nag_std_out,’(BX,"(”,F4.1,”,",F4.1,”)”)’) X

WRITE (nag_std_out,’(2x,’’residual norm . . . =’’,1PE9.1)’) resid_norm
WRITE (nag_std_out,’(2x,’’number of iterations =’’,I4)’) num_iter

CALL nag_deallocate(a)
CALL nag_deallocate(c_ssor)
DEALLOCATE (row,col,value,b,x)

END PROGRAM nag_sparse_prec_ex02

2 Program Data

Example Program Data for nag_sparse_prec_ex02
5 16 : n, nnz
: value(1), row(1l), col(1)

: value(nnz), row(nnz), col(nnz)
) (23.,48.) (-41., 2.) (-28.,-31.) : b(1:n)
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3 Program Results
Example Program Results for nag_sparse_prec_ex02
Method: BiCGSTAB with SSOR preconditioner

Solution

(1.0, 2.0)
, 3.0)
, 4.0)
, 5.0)

(5.0, 6.0)
residual norm .
number of iterations

~ A~~~
> w N
o O O
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Example 3: Solution of a Real, Non-symmetric Sparse
Linear System Using LU Factorization

This example program computes a complete LU factorization of a sparse matrix by supplying the
optional argument drop_tol = 0.0 to nag sparse_prec_init_ilu. This is followed by a call to
nag_sparse_prec_sol to solve the linear system.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_sparse_prec_ex03

! Example Program Text for nag_sparse_prec
! NAG £190, Release 4. NAG Copyright 2000.

! .. Use Statements

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_sparse_mat, ONLY : nag_sparse_mat_init_coo, &
nag_sparse_mat_real_wp => nag_sparse_mat_real_dp, nag_deallocate
USE nag_sparse_prec, ONLY : nag_sparse_prec_init_ilu, &
nag_sparse_prec_sol

! .. Implicit None Statement

IMPLICIT NONE

! .. Intrinsic Functions

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0DO)

! .. Local Scalars ..

INTEGER :: i, n, nnz, num_pivot

REAL (wp) :: drop_tol

TYPE (nag_sparse_mat_real_wp) :: a, c_ilu

! .. Local Arrays

INTEGER, ALLOCATABLE :: col(:), row(:)

REAL (wp), ALLOCATABLE :: r(:), value(:), z(:)

! .. Executable Statements

WRITE (nag_std_out,*) ’Example Program Results for nag_sparse_prec_ex03’

READ (nag_std_in,*) ! Skip heading in data file
READ (nag_std_in,*) n, nnz

ALLOCATE (row(nnz),col(nnz),value(nnz),r(n),z())
DO i =1, nnz
READ (nag_std_in,*) value(i), row(i), col(i)
END DO
READ (nag_std_in,*) r
CALL nag_sparse_mat_init_coo(a,n,value,row,col)
drop_tol = 0.0_wp
CALL nag_sparse_prec_init_ilu(a,c_ilu,drop_tol=drop_tol, &
num_pivot=num_pivot)
IF (num_pivot>0) THEN
WRITE (nag_std_out,*) ’Factorization is not complete’
ELSE

CALL nag_sparse_prec_sol(c_ilu,r,z)

! OQutput results
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WRITE (nag_std_out,*)
WRITE (nag_std_out,*) ’Solution of linear system’
WRITE (nag_std_out,’(10F7.1)°) z

END IF
CALL nag_deallocate(a)
CALL nag_deallocate(c_ilu)

DEALLOCATE (row,col,value,r,z)

END PROGRAM nag_sparse_prec_ex03

2 Program Data

Example Program Data for nag_sparse_prec_ex03
5 13 : n, nnz
: value(1l), row(1l), col(1l)

GO OO P> WWwWWwNDNDND R
GO WL &P, O0WNOOdNWR

: value(nnz), row(nnz), col(nnz)
.0 13.0 6.0 6.0 14.0 : b(1:n)

3 Program Results
Example Program Results for nag_sparse_prec_ex03

Solution of linear system
1.0 2.0 3.0 4.0 5.0
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Additional Examples

Not all example programs supplied with NAG fl90 appear in full in this module document. The following
additional examples, associated with this module, are available.

nag_sparse_prec_ex04

Iterative solution of a complex, non-Hermitian, sparse system of linear equations by method
BiCGSTAB with Jacobi preconditioning.

nag_sparse_prec_ex05

Iterative solution of a real, non-symmetric, sparse system of linear equations by method CG with
SSOR preconditioning.

nag_sparse_prec_ex06

Direct solution of a complex, non-Hermitan, sparse system of linear equations using LU
factorization.
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