
Linear Equations Module Contents

Module 5.2: nag sym lin sys

Symmetric Systems of Linear Equations

nag sym lin sys provides a procedure for solving real or complex, symmetric or

Hermitian systems of linear equations with one or many right-hand sides:

Ax = b or AX = B.

It also provides procedures for factorizing A and solving a system of equations when the
matrix A has already been factorized. Positive definite matrices are treated as a special
case.

Contents

Introduction . 5.2.3

Procedures

nag sym lin sol . 5.2.5

Solves a real or complex, symmetric or Hermitian system of linear equations with one
or many right-hand sides

nag sym lin fac . 5.2.9

Performs a Cholesky or Bunch–Kaufman factorization of a real or complex, symmetric
or Hermitian matrix

nag sym lin sol fac . 5.2.15

Solves a real or complex, symmetric or Hermitian system of linear equations, with
coefficient matrix previously factorized by nag sym lin fac

Examples

Example 1: Solution of a Real Symmetric Indefinite System of Linear Equations 5.2.21

Example 2: Solution of a Real Symmetric Positive Definite System of Linear Equations . . . 5.2.23

Example 3: Factorization of a Complex Symmetric Matrix and Use of the Factorization to
Solve a System of Linear Equations . 5.2.25

Additional Examples . 5.2.29

References . 5.2.31

[NP3506/4] Module 5.2: nag sym lin sys 5.2.1

Module Contents Linear Equations

5.2.2 Module 5.2: nag sym lin sys [NP3506/4]

Linear Equations Module Introduction

Introduction

1 Notation and Background

We use the following notation for a system of linear equations:

Ax = b, if there is one right-hand side b;

AX = B, if there are many right-hand sides (the columns of the matrix B).

In this module, the matrix A (the coefficient matrix) is assumed to be real symmetric, complex Hermitian
or complex symmetric. The procedures take advantage of this in order to economize on the work and
storage required. If A is real symmetric or complex Hermitian, it may also be positive definite, and the
procedures can take advantage of this property if it is known, to make further savings in work and to
achieve greater reliability.

The module provides options to return forward or backward error bounds on the computed solution.
It also provides options to evaluate the determinant of A and to estimate the condition number of A,
which is a measure of the sensitivity of the computed solution to perturbations of the original data or to
rounding errors in the computation. For more details on error analysis, see the Chapter Introduction.

To solve the system of equations, the first step is to factorize A, using

the Cholesky factorization if A is known to be positive definite;

the Bunch–Kaufman factorization otherwise.

The system of equations can then be solved by forward and backward substitution.

2 Choice of Procedures

The procedure nag sym lin sol should be suitable for most purposes; it performs the factorization of A
and solves the system of equations in a single call. It also has options to estimate the condition number
of A, and to return forward and backward error bounds on the computed solution.

The module also provides lower-level procedures which perform the two computational steps in the
solution process:

nag sym lin fac computes a factorization of A, with options to evaluate the determinant and to
estimate the condition number;

nag sym lin sol fac solves the system of equations, assuming that A has already been factorized
by a call to nag sym lin fac. It has options to return forward and backward error bounds on the
solution.

These lower-level procedures are intended for more experienced users. For example, they enable
a factorization computed by nag sym lin fac to be reused several times in repeated calls to
nag sym lin sol fac.

3 Storage of Matrices

The procedures in this module allow a choice of storage schemes for the symmetric or Hermitian matrix
A: conventional storage or packed storage. The choice is determined by the rank of the corresponding
argument a.

[NP3506/4] Module 5.2: nag sym lin sys 5.2.3

Module Introduction Linear Equations

3.1 Conventional Storage

a is a rank-2 array, of shape (n,n). Matrix element aij is stored in a(i, j). Only the elements of either the
upper or the lower triangle need be stored, as specified by the argument uplo; the remaining elements
of a need not be set.

This storage scheme is more straightforward and carries less risk of user error than packed storage; on
some machines it may result in more efficient execution. It requires almost twice as much memory as
packed storage, although the other triangle of a may be used to store other data.

3.2 Packed Storage

a is a rank-1 array of shape (n(n + 1)/2). The elements of either the upper or the lower triangle of A,
as specified by uplo, are packed by columns into contiguous elements of a.

Packed storage is more economical in use of memory than conventional storage, but may result in less
efficient execution on some machines.

The details of packed storage are as follows:

• if uplo = 'u' or 'U', aij is stored in a(i+ j(j − 1)/2), for i ≤ j;

• if uplo = 'l' or 'L', aij is stored in a(i+ (2n− j)(j − 1)/2), for i ≥ j.

For example

uplo Hermitian Matrix Packed storage in array a

'u' or 'U'







a11 a12 a13 a14

a12 a22 a23 a24

a13 a23 a33 a34

a14 a24 a34 a44







a11 a12 a22
︸ ︷︷ ︸

a13 a23 a33
︸ ︷︷ ︸

a14 a24 a34 a44
︸ ︷︷ ︸

'l' or 'L'







a11 a21 a31 a41

a21 a22 a32 a42

a31 a32 a33 a43

a41 a42 a43 a44







a11 a21 a31 a41
︸ ︷︷ ︸

a22 a32 a42
︸ ︷︷ ︸

a33 a43
︸ ︷︷ ︸

a44

Note that for symmetric matrices, packing the upper triangle by columns is equivalent to packing the
lower triangle by rows; packing the lower triangle by columns is equivalent to packing the upper triangle
by rows. For Hermitian matrices, packing the upper triangle by columns is equivalent to packing the
conjugate of the lower triangle by rows; packing the lower triangle by columns is equivalent to packing
the conjugate of the upper triangle by rows.

5.2.4 Module 5.2: nag sym lin sys [NP3506/4]

Linear Equations nag sym lin sol

Procedure: nag sym lin sol

1 Description

nag sym lin sol is a generic procedure which computes the solution of a system of linear equations with
one or many right-hand sides, where the matrix of coefficients may be

real symmetric indefinite,

complex Hermitian indefinite,

complex symmetric,

real symmetric positive definite, or

complex Hermitian positive definite.

Here the term indefinite means a matrix that is not known to be positive definite, although it may in
fact be so.

We write:

Ax = b, if there is one right-hand side b;

AX = B, if there are many right-hand sides (the columns of the matrix B).

The procedure allows conventional or packed storage for A.

The procedure also has options to return an estimate of the condition number of A, and forward and
backward error bounds for the computed solution or solutions. See the Chapter Introduction for an
explanation of these terms. If error bounds are requested, the procedure performs iterative refinement
of the computed solution in order to guarantee a small backward error.

2 Usage

USE nag sym lin sys

CALL nag sym lin sol(nag key, uplo, a, b [, optional arguments])

2.1 Interfaces

Distinct interfaces are provided for each of the 24 combinations of the following cases:

Symmetric indefinite / Hermitian indefinite / positive definite matrix

Symmetric indefinite: nag key = nag key sym.

Hermitian indefinite: nag key = nag key herm;
for real matrices this is equivalent to nag key sym.

Positive definite: nag key = nag key pos.

Real / complex data
Real data: a and b are of type real(kind=wp).

Complex data: a and b are of type complex(kind=wp).

One / many right-hand sides

One r.h.s.: b is a rank-1 array, and the optional arguments bwd err and fwd err are
scalars.

Many r.h.s.: b is a rank-2 array, and the optional arguments bwd err and fwd err are
rank-1 arrays.

[NP3506/4] Module 5.2: nag sym lin sys 5.2.5

nag sym lin sol Linear Equations

Conventional / packed storage (see the Module Introduction)
Conventional: a is a rank-2 array.

Packed: a is a rank-1 array.

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

n — the order of the matrix A

r — the number of right-hand sides

3.1 Mandatory Arguments

nag key — a “key” argument, intent(in)

Input: must have one of the following values (which are named constants, each of a different derived
type, defined by the Library, and accessible from this module).

nag key sym: if the matrix A is real symmetric indefinite or complex symmetric;

nag key herm: if the matrix A is real or complex Hermitian indefinite;

nag key pos: if the matrix A is real symmetric positive definite or complex Hermitian positive
definite.

For further explanation of “key” arguments, see the Essential Introduction.

Note: for real matrices, nag key herm is equivalent to nag key sym.

uplo — character(len=1), intent(in)

Input: specifies whether the upper or lower triangle of A is supplied, and whether the factorization
involves an upper triangular matrix U or a lower triangular matrix L.

If uplo = 'u' or 'U', the upper triangle is supplied, and is overwritten by an upper triangular
factor U ;

if uplo = 'l' or 'L', the lower triangle is supplied, and is overwritten by a lower triangular
factor L.

Constraints: uplo = 'u', 'U', 'l' or 'L'.

a(n, n) / a(n(n+ 1)/2) — real(kind=wp) / complex(kind=wp), intent(inout)

Input: the matrix A.

Conventional storage (a has shape (n, n))

If uplo = 'u', the upper triangle of A must be stored, and elements below the diagonal
need not be set;

if uplo = 'l', the lower triangle of A must be stored, and elements above the diagonal
need not be set.

Packed storage (a has shape (n(n+ 1)/2))

If uplo = 'u', the upper triangle of A must be stored, packed by columns, with aij in
a(i+ j(j − 1)/2) for i ≤ j;

if uplo = 'l', the lower triangle of A must be stored, packed by columns, with aij in
a(i+ (2n− j)(j − 1)/2) for i ≥ j.

Output: the supplied triangle of A is overwritten by details of the factorization; the other elements
of a are unchanged.

Constraints: if A is complex Hermitian, its diagonal elements must have zero imaginary parts.

5.2.6 Module 5.2: nag sym lin sys [NP3506/4]

Linear Equations nag sym lin sol

b(n) / b(n, r) — real(kind=wp) / complex(kind=wp), intent(inout)

Input: the right-hand side vector b or matrix B.

Output: overwritten on exit by the solution vector x or matrix X.

Constraints: b must be of the same type as a.

Note: if optional error bounds are requested then the solution returned is that computed by iterative
refinement.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

bwd err / bwd err(r) — real(kind=wp), intent(out), optional

Output: if bwd err is a scalar, it returns the component-wise backward error bound for the single
solution vector x. Otherwise, bwd err(i) returns the component-wise backward error bound for
the ith solution vector, returned in the ith column of b, for i = 1, 2, . . . , r.

Constraints: if b has rank 1, bwd err must be a scalar; if b has rank 2, bwd err must be a rank-1
array.

fwd err / fwd err(r) — real(kind=wp), intent(out), optional

Output: if fwd err is a scalar, it returns an estimated bound for the forward error in the single
solution vector x. Otherwise, fwd err(i) returns an estimated bound for the forward error in the
ith solution vector, returned in the ith column of b, for i = 1, 2, . . . , r.

Constraints: if b has rank 1, fwd err must be a scalar; if b has rank 2, fwd err must be a rank-1
array.

rcond — real(kind=wp), intent(out), optional

Output: an estimate of the reciprocal of the condition number of A, κ∞(A)(= κ1(A) for A
symmetric or Hermitian). rcond is set to zero if exact singularity is detected or the estimate
underflows. If rcond is less than EPSILON(1.0 wp), then A is singular to working precision.

pivot(n) — integer, intent(out), optional

Output: the pivot indices used in the Bunch–Kaufman factorization; see nag sym lin fac for
details. If nag key = nag key pos (Cholesky factorization), pivot is not needed but, if it is
present, it is set to the vector (1, 2, . . . , n).

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

[NP3506/4] Module 5.2: nag sym lin sys 5.2.7

nag sym lin sol Linear Equations

Failures (error%level = 2):

error%code Description

201 Singular matrix.

This error can only occur if nag key = nag key sym or nag key herm. The Bunch–
Kaufman factorization has been completed, but the factor D has a zero diagonal block
of order 1, and so is exactly singular. No solutions or error bounds are computed.

202 Matrix not positive definite.

This error can only occur if nag key = nag key pos. The Cholesky factorization
cannot be completed. Either A is close to singularity, or it has at least one negative
eigenvalue. No solutions or error bounds are computed.

Warnings (error%level = 1):

error%code Description

101 Approximately singular matrix.

The estimate of the reciprocal condition number (returned in rcond if present) is less
than or equal to EPSILON(1.0 wp). The matrix is singular to working precision, and
it is likely that the computed solution returned in b has no accuracy at all. You
should examine the forward error bounds returned in fwd err, if present.

5 Examples of Usage

Complete examples of the use of this procedure appear in Examples 1 and 2 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The procedure first calls nag sym lin fac to factorize A, and to estimate the condition number. It then
calls nag sym lin sol fac to compute the solution to the system of equations, and, if required, the error
bounds. See the documents for those procedures for more details, and Chapter 4 of Golub and Van Loan
[2] for background. The algorithms are derived from LAPACK (see Anderson et al. [1]).

6.2 Accuracy

The accuracy of the computed solution is given by the forward and backward error bounds which are
returned in the optional arguments fwd err and bwd err.

The backward error bound bwd err is rigorous; the forward error bound fwd err is an estimate, but is
almost always satisfied.

The condition number κ∞(A) gives a general measure of the sensitivity of the solution of Ax = b, either
to uncertainties in the data or to rounding errors in the computation. An estimate of the reciprocal of
κ∞(A) is returned in the optional argument rcond. However, forward error bounds derived using this
condition number may be more pessimistic than the bounds returned in fwd err, if present.

6.3 Timing

The time taken is roughly proportional to n3, and, if there are only a few right-hand sides, is roughly
half that taken by the procedure nag gen lin sol in the module nag gen lin sys (5.1) which does not
take advantage of symmetry. The time taken for complex data is about 4 times as long as that for real
data.

The procedure is somewhat faster, especially on high-performance computers, when nag key is set to
nag key pos (assuming that A is indeed positive definite).

5.2.8 Module 5.2: nag sym lin sys [NP3506/4]

Linear Equations nag sym lin fac

Procedure: nag sym lin fac

1 Description

nag sym lin fac is a generic procedure which factorizes a real or complex, symmetric or Hermitian
matrix A of order n.

If A is indefinite (that is, not known to be positive definite), the procedure computes a Bunch–
Kaufman factorization:

A = PUDUTPT or A = PLDLTPT , if A is real or complex symmetric;

A = PUDUHPT or A = PLDLHPT , if A is complex Hermitian;

where U is upper triangular, L is lower triangular, P is a permutation matrix, and D is a symmetric
or Hermitian block diagonal matrix, with diagonal blocks of order 1 or 2.

If A is real symmetric or complex Hermitian and also positive definite, the procedure computes a
Cholesky factorization (which is simpler and somewhat more efficient than the Bunch–Kaufman):

A = UTU or A = LLT , if A is real symmetric;

A = UHU or A = LLH , if A is complex Hermitian;

where U is upper triangular and L is lower triangular.

This procedure can also return the determinant of A and an estimate of the condition number κ∞(A)
(= κ1(A)).

2 Usage

USE nag sym lin sys

CALL nag sym lin fac(nag key, uplo, a, pivot [, optional arguments])

or for positive definite matrices only:

CALL nag sym lin fac(nag key, uplo, a [, optional arguments])

2.1 Interfaces

Distinct interfaces are provided for each of the 16 combinations of the following cases:

Symmetric indefinite / Hermitian indefinite / positive definite matrix

For positive definite matrices, two forms of the interface are provided: the first includes pivot as a
mandatory argument for compatibility with the interface for indefinite matrices; the second omits
pivot since it is not needed for Cholesky factorization.

Symmetric indefinite: nag key = nag key sym.

Hermitian indefinite: nag key = nag key herm; for real matrices this is equivalent to
nag key sym.

positive definite (1): nag key = nag key pos, with pivot as a mandatory argument.

positive definite (2): nag key = nag key pos, with pivot not in the argument list.

Real / complex data
Real data: a is of type real(kind=wp).

Complex data: a is of type complex(kind=wp).

[NP3506/4] Module 5.2: nag sym lin sys 5.2.9

nag sym lin fac Linear Equations

Conventional / packed storage (see the Module Introduction)

Conventional: a is a rank-2 array.

Packed: a is a rank-1 array.

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

n — the order of the matrix A

3.1 Mandatory Arguments

nag key — a “key” argument, intent(in)

Input: must have one of the following values (which are named constants, each of a different derived
type, defined by the Library, and accessible from this module).

nag key sym: if the matrix A is real symmetric indefinite or complex symmetric;

nag key herm: if the matrix A is real symmetric indefinite or complex Hermitian indefinite;

nag key pos: if the matrix A is real symmetric positive definite or complex Hermitian positive
definite.

For further explanation of “key” arguments, see the Essential Introduction.

Note: for real matrices, nag key herm is equivalent to nag key sym.

uplo — character(len=1), intent(in)

Input: specifies whether the upper or lower triangle of A is supplied, and whether the factorization
involves an upper triangular matrix U or a lower triangular matrix L.

If uplo = 'u' or 'U', the upper triangle is supplied, and is overwritten by an upper triangular
factor U ;

if uplo = 'l' or 'L', the lower triangle is supplied, and is overwritten by a lower triangular
factor L.

Constraints: uplo = 'u', 'U', 'l' or 'L'.

a(n, n) / a(n(n+ 1)/2) — real(kind=wp) / complex(kind=wp), intent(inout)

Input: the matrix A.

Conventional storage (a has shape (n, n))

If uplo = 'u', the upper triangle of A must be stored, and elements below the diagonal
need not be set;

if uplo = 'l', the lower triangle of A must be stored, and elements above the diagonal
need not be set.

Packed storage (a has shape (n(n+ 1)/2))

If uplo = 'u', the upper triangle of A must be stored, packed by columns, with aij in
a(i+ j(j − 1)/2) for i ≤ j;

if uplo = 'l', the lower triangle of A must be stored, packed by columns, with aij in
a(i+ (2n− j)(j − 1)/2) for i ≥ j.

Output: the supplied triangle of A is overwritten by details of the factorization; the other elements
of a are unchanged.

Constraints: if A is complex Hermitian, its diagonal elements must have zero imaginary parts.

5.2.10 Module 5.2: nag sym lin sys [NP3506/4]

Linear Equations nag sym lin fac

pivot(n) — integer, intent(out)

Output: the pivot indices used in the Bunch–Kaufman factorization. See Section 6.1 for details.

Note: if nag key = nag key pos (Cholesky factorization), pivot need not be included in the
argument list, but if it is included, it is set to the vector (1, 2, . . . , n).

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

rcond — real(kind=wp), intent(out), optional

Output: an estimate of the reciprocal of the condition number of A, κ∞(A)(= κ1(A) for A
symmetric or Hermitian). rcond is set to zero if exact singularity is detected or the estimate
underflows. If rcond is less than EPSILON(1.0 wp), then A is singular to working precision.

det frac — real(kind=wp) / complex(kind=wp), intent(out), optional

det exp — integer, intent(out), optional

Output: det frac returns the fractional part f , and det exp returns the exponent e, of the
determinant of A expressed as f.be, where b is the base of the representation of the floating point
numbers (given by RADIX(1.0 wp)), or as SCALE (det frac,det exp). The determinant is returned
in this form to avoid the risk of overflow or underflow.

Constraints: det frac must be of type complex(kind=wp) if a is of type complex(kind=wp) and
nag key is set to nag key sym, otherwise det frac is of type real(kind=wp). If either det frac or
det exp is present the other must also be present.

inertia(3) — integer, intent(out), optional

Output: inertia returns the inertia of the matrix A. The inertia of a real symmetric or complex
Hermitian matrix is defined by the number of positive, negative and zero eigenvalues of the matrix.
The three elements of inertia are:

inertia (1) contains the number of positive eigenvalues of a;

inertia (2) contains the number of negative eigenvalues of a;

inertia (3) contains the number of zero eigenvalues of a.

Note: the inertia of a complex symmetric matrix is not defined. For such a matrix all three elements
of inertia are set to 0.

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

305 Invalid absence of an optional argument.

320 The procedure was unable to allocate enough memory.

[NP3506/4] Module 5.2: nag sym lin sys 5.2.11

nag sym lin fac Linear Equations

Failures (error%level = 2):

error%code Description

201 Singular matrix.

This error can only occur if nag key = nag key sym or nag key herm. The Bunch–
Kaufman factorization has been completed, but the factor D has a zero diagonal block
of order 1, and so is exactly singular. If the factorization is used to solve a system of
linear equations, an error will occur.

202 Matrix not positive definite.

This error can only occur if nag key = nag key pos. The Cholesky factorization
cannot be completed. Either A is close to singularity, or it has at least one negative
eigenvalue. If the factorization is used to solve a system of linear equations, an error
will occur.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 3 of this module document.

6 Further Comments

6.1 Algorithmic Detail

If nag key = nag key pos (A is positive definite), the procedure performs a Cholesky factorization of A:

A = UHU , with U upper triangular, if uplo = 'u';

A = LLH , with L lower triangular, if uplo = 'l'.

See Section 4.2 of Golub and Van Loan [2].

Otherwise, it performs a Bunch–Kaufman factorization with diagonal pivoting:

A = PUDUTPT (or PUDUHPT if A is Hermitian), with U unit upper triangular, if uplo = 'u';

A = PLDLTPT (or PLDLHPT if A is Hermitian), with L unit lower triangular, if uplo = 'l'.

P is a permutation matrix, and D is a symmetric or Hermitian block diagonal matrix with diagonal
blocks of order 1 or 2; U or L has unit diagonal blocks of order 2 corresponding to the 2 × 2 blocks of
D. See Section 4.4 of Golub and Van Loan [2].

If the Bunch–Kaufman factorization is performed on a matrix which is in fact positive definite, no
interchanges are performed, and no diagonal blocks of order 2 occur in D; thus, A is factorized as
UHDU or LDLH , with D being a simple diagonal matrix with positive diagonal elements.

In the Bunch–Kaufman factorization, the argument pivot is used to record details of the interchanges
and the structure of D, as follows.

If pivot(i) = k > 0, then dii is a 1× 1 block, and the ith row and column were interchanged with
the kth row and column.

If uplo = 'u', and pivot(i− 1) = pivot(i) = −k < 0, then the (i− 1)th row and column were
interchanged with the kth row and column, and D has a 2 × 2 block in rows and columns i − 1
and i, of the form

(
di−1,i−1 di−1,i

di−1,i dii

)

if symmetric, or

(
di−1,i−1 di−1,i

di−1,i dii

)

if Hermitian. The

elements of the upper triangle of D overwrite the corresponding elements of A; the corresponding
elements of U are either 1 or 0, and are not stored.

If uplo = 'l', and pivot(i) = pivot(i+ 1) = −k < 0, then the (i+ 1)th row and column were
interchanged with the kth row and column, and D has a 2 × 2 block in rows and columns i and

5.2.12 Module 5.2: nag sym lin sys [NP3506/4]

Linear Equations nag sym lin fac

i + 1, of the form

(
dii di+1,i

di+1,i di+1,i+1

)

if symmetric, or

(
dii di+1,i

di+1,i di+1,i+1

)

if Hermitian. The

elements of the lower triangle of D overwrite the corresponding elements of A; the corresponding
elements of L are either 1 or 0, and are not stored.

To give a simple example, suppose n = 4, uplo = 'u', A is Hermitian, and D has a 2 × 2 block in rows
2 and 3: then U and D have the forms

U =







1 u12 u13 u14

1 0 u24

1 u34

1







D =







d11

d22 d23

d23 d33

d44






;

on exit from this procedure, pivot(1) > 0, pivot(2) = pivot(3) < 0, and pivot(4) > 0; if a is a
rank-2 array, its upper triangle holds:

d11 u12 u13 u14

d22 d23 u24

d33 u34

d44

To estimate the condition number κ∞(A) (= κ1(A) = ‖A‖1‖A−1‖1), the procedure first computes ‖A‖1
directly, and then uses Higham’s modification of Hager’s method (see Higham [3]) to estimate ‖A−1‖1.
The procedure returns the reciprocal ρ = 1/κ∞(A), rather than κ∞(A) itself.

The algorithms are derived from LAPACK (see Anderson et al. [1]).

6.2 Accuracy

If a Cholesky factorization is performed with uplo = 'u', the computed factor U is the exact factor of
a perturbed matrix A+ E, such that

|E| ≤ c(n)ε|UH | |U |,

where c(n) is a modest linear function of n, and ε = EPSILON(1.0 wp). If uplo = 'l', a similar
statement holds for the computed factor L. It follows that in both cases |eij | ≤ c(n)ε

√
aiiajj .

If a Bunch–Kaufman factorization is performed with uplo = 'u', the computed factors U and D are
the exact factors of a perturbed matrix A+ E, such that

|E| ≤ c(n)εP |U | |D| |UT |PT ,

where c(n) is a modest linear function of n, and ε = EPSILON(1.0 wp). If uplo = 'l', a similar
statement holds for the computed factors L and D.

The computed estimate rcond is never less than the true value ρ, and in practice is nearly always less
than 10ρ (although examples can be constructed where the computed estimate is much larger).

Since ρ = 1/κ(A), this means that the procedure never overestimates the condition number, and hardly
ever underestimates it by more than a factor of 10.

6.3 Timing

The total number of floating-point operations required for either the Cholesky or the Bunch–Kaufman
factorization is roughly (1/3)n3 for real A, and (4/3)n3 for complex A. The Cholesky factorization is
somewhat more efficient, especially on high-performance computers.

Estimating the condition number involves solving a number of systems of linear equations with A or AT

as the coefficient matrix; the number is usually 4 or 5 and never more than 11. Each solution involves
approximately 2n2 floating-point operations if A is real, or 8n2 if A is complex. Thus, for large n, the cost
is much less than that of directly computing A−1 and its norm, which would require O(n3) operations.

[NP3506/4] Module 5.2: nag sym lin sys 5.2.13

nag sym lin fac Linear Equations

5.2.14 Module 5.2: nag sym lin sys [NP3506/4]

Linear Equations nag sym lin sol fac

Procedure: nag sym lin sol fac

1 Description

nag sym lin sol fac is a generic procedure which computes the solution of a real or complex, symmetric
or Hermitian system of linear equations with one or many right-hand sides, assuming that the coefficient
matrix has already been factorized by nag sym lin fac.

We write:

Ax = b, if there is one right-hand side b;

AX = B, if there are many right-hand sides (the columns of the matrix B).

The matrix A (the coefficient matrix) may be:

real symmetric indefinite,

complex Hermitian indefinite,

complex symmetric,

real symmetric positive definite, or

complex Hermitian positive definite,

Here the term indefinite means a matrix that is not known to be positive definite, although it may in
fact be so.

The procedure also has options to return forward and backward error bounds for the computed solution
or solutions.

2 Usage

USE nag sym lin sys

CALL nag sym lin sol fac(nag key, uplo, a fac, pivot, b [, optional arguments])

or for positive definite matrices only:

CALL nag sym lin sol fac(nag key, uplo, a fac, b [, optional arguments])

2.1 Interfaces

Distinct interfaces are provided for each of the 32 combinations of the following cases:

Symmetric indefinite / Hermitian indefinite / positive definite matrix

For positive definite matrices, two forms of the interface are provided: the first includes pivot as a
mandatory argument for compatibility with the interface for indefinite matrices; the second omits
pivot since it is not needed for Cholesky factorization.

Symmetric indefinite: nag key = nag key sym.
Hermitian indefinite: nag key = nag key herm; for real matrices this is equivalent to

nag key sym.
positive definite (1): nag key = nag key pos, with pivot as a mandatory argument.
positive definite (2): nag key = nag key pos, with pivot not in the argument list.

Real / complex data
Real data: a fac, b and the optional argument a are of type real(kind=wp).

Complex data: a fac, b and the optional argument a are of type complex(kind=wp).

[NP3506/4] Module 5.2: nag sym lin sys 5.2.15

nag sym lin sol fac Linear Equations

One / many right-hand sides

One r.h.s.: b is a rank-1 array, and the optional arguments bwd err and fwd err are
scalars.

Many r.h.s.: b is a rank-2 array, and the optional arguments bwd err and fwd err are
rank-1 arrays.

Conventional / packed storage (see the Module Introduction)
Conventional: a fac and the optional argument a are rank-2 arrays.

Packed: a fac and the optional argument a are rank-1 arrays.

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

n — the order of the matrix A

r — the number of right-hand sides

3.1 Mandatory Arguments

nag key — a “key” argument, intent(in)

Input: must have one of the following values (which are named constants, each of a different derived
type, defined by the Library, and accessible from this module).

nag key sym: if the matrix A is real symmetric indefinite or complex symmetric;

nag key herm: if the matrix A is real or complex Hermitian indefinite;

nag key pos: if the matrix A is real symmetric positive definite or complex Hermitian positive
definite.

For further explanation of “key” arguments, see the Essential Introduction.

Note: for real matrices, nag key herm is equivalent to nag key sym.

uplo — character(len=1), intent(in)

Input: specifies whether the upper or lower triangle of A was supplied to nag sym lin fac, and
whether the factorization involves an upper triangular matrix U or a lower triangular matrix
L.

If uplo = 'u' or 'U', the upper triangle was supplied, and was overwritten by an upper
triangular factor U ;

if uplo = 'l' or 'L', the lower triangle was supplied, and was overwritten by a lower triangular
factor L.

Constraints: uplo = 'u', 'U', 'l' or 'L'.

Note: the value of uplo must be the same as in the preceding call to nag sym lin fac.

a fac(n, n) / a fac(n(n+ 1)/2) — real(kind=wp) / complex(kind=wp), intent(in)

Input: the factorization of A, as returned by nag sym lin fac.

pivot(n) — integer, intent(in)

Input: the pivot indices, as returned by nag sym lin fac.

Note: if nag key = nag key pos, pivot need not be included in the argument list.

5.2.16 Module 5.2: nag sym lin sys [NP3506/4]

Linear Equations nag sym lin sol fac

b(n) / b(n, r) — real(kind=wp) / complex(kind=wp), intent(inout)

Input: the right-hand side vector b or matrix B.

Output: overwritten on exit by the solution vector x or matrix X.

Constraints: b must be of the same type as a fac.

Note: if optional error bounds are requested then the solution returned is that computed by iterative
refinement.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

bwd err / bwd err(r) — real(kind=wp), intent(out), optional

Output: if bwd err is a scalar, it returns the component-wise backward error bound for the single
solution vector x. Otherwise, bwd err(i) returns the component-wise backward error bound for
the ith solution vector, returned in the ith column of b, for i = 1, 2, . . . , r.

Constraints: if bwd err is present, the original matrix A must be supplied in a; if b has rank 1,
bwd err must be a scalar; if b has rank 2, bwd err must be a rank-1 array.

fwd err / fwd err(r) — real(kind=wp), intent(out), optional

Output: if fwd err is a scalar, it returns an estimated bound for the forward error in the single
solution vector x. Otherwise, fwd err(i) returns an estimated bound for the forward error in the
ith solution vector, returned in the ith column of b, for i = 1, 2, . . . , r.

Constraints: if fwd err is present, the original matrix A must be supplied in a; if b has rank 1,
fwd err must be a scalar; if b has rank 2, fwd err must be a rank-1 array.

a(n, n) / a(n(n+ 1)/2) — real(kind=wp) / complex(kind=wp), intent(in), optional

Input: the original coefficient matrix A, as supplied to nag sym lin fac.

Constraints: a must be present if either bwd err or fwd err is present; a must be of the same type
and rank as a fac.

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

305 Invalid absence of an optional argument.

320 The procedure was unable to allocate enough memory.

[NP3506/4] Module 5.2: nag sym lin sys 5.2.17

nag sym lin sol fac Linear Equations

Failures (error%level = 2):

error%code Description

201 Singular matrix.

This error can only occur if nag key = nag key sym or nag key herm. In the Bunch–
Kaufman factorization supplied in a fac, the factor D has a zero diagonal block of
order 1, and so is exactly singular. No solutions or error bounds are computed.

202 Matrix not positive definite.

This error can only occur if nag key = nag key pos. The supplied array a fac does
not contain a valid Cholesky factorization, indicating that the original matrix A was
not positive definite. No solutions or error bounds are computed.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 3 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The solution x is computed by forward and backward substitution. Assuming uplo = 'u':

if nag key = nag key pos (Cholesky factorization), UHy = b is solved for y, and then Ux = b is
solved for x;

otherwise (Bunch–Kaufman factorization), PUDy = b is solved for y, and then U TPTx = y is
solved for x if nag key = nag key sym, or UHPTx = y if nag key = nag key herm.

A similar method is used if uplo = 'l'.

If error bounds are requested (that is, fwd err or bwd err is present), iterative refinement of the solution
is performed (in working precision), to reduce the backward error as far as possible.

The algorithms are derived from LAPACK (see Anderson et al. [1]).

6.2 Accuracy

The accuracy of the computed solution is given by the forward and backward error bounds which are
returned in the optional arguments fwd err and bwd err.

The backward error bound bwd err is rigorous; the forward error bound fwd err is an estimate, but is
almost always satisfied.

For each right-hand side b, the computed solution x̂ is the exact solution of a perturbed system of
equations (A+ E)x̂ = b. Assuming uplo = 'u':

with a Cholesky factorization

|E| ≤ c(n)ε|UH | |U |

with a Bunch–Kaufman factorization

|E| ≤ c(n)εP |U | |D| |UH |PT

where c(n) is a modest linear function of n, and ε = EPSILON(1.0 wp).

The condition number κ∞(A) gives a general measure of the sensitivity of the solution of Ax = b, either
to uncertainties in the data or to rounding errors in the computation. An estimate of the reciprocal of
κ∞(A) is returned by nag sym lin fac in its optional argument rcond. However, forward error bounds

5.2.18 Module 5.2: nag sym lin sys [NP3506/4]

Linear Equations nag sym lin sol fac

derived using this condition number may be more pessimistic than the bounds returned in fwd err, if
present.

If the reciprocal of the condition number ≤ EPSILON(1.0 wp), then A is singular to working precision;
if the factorization is used to solve a system of linear equations, the computed solution may have no
meaningful accuracy and should be treated with great caution.

6.3 Timing

The number of real floating-point operations required to compute the solutions is roughly 2n2r if A is
real, and 8n2r if A is complex.

To compute the error bounds fwd err and bwd err usually requires about 5 times as much work.

[NP3506/4] Module 5.2: nag sym lin sys 5.2.19

nag sym lin sol fac Linear Equations

5.2.20 Module 5.2: nag sym lin sys [NP3506/4]

Linear Equations Example 1

Example 1: Solution of a Real Symmetric Indefinite

System of Linear Equations

Solve a real symmetric system of linear equations with one right-hand side Ax = b, also estimating
the condition number of A, and forward and backward error bounds on the computed solutions. A
is not known to be positive definite. This example calls the single procedure nag sym lin sol, using
conventional storage for A.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_sym_lin_sys_ex01

! Example Program Text for nag_sym_lin_sys

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_sym_lin_sys, ONLY : nag_key_sym, nag_sym_lin_sol

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, n

REAL (wp) :: bwd_err, fwd_err, rcond

CHARACTER (1) :: uplo

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: a(:,:), b(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_sym_lin_sys_ex01’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) n

READ (nag_std_in,*) uplo

ALLOCATE (a(n,n),b(n)) ! Allocate storage

SELECT CASE (uplo)

CASE (’L’,’l’)

READ (nag_std_in,*) (a(i,:i),i=1,n)

CASE (’U’,’u’)

READ (nag_std_in,*) (a(i,i:),i=1,n)

END SELECT

READ (nag_std_in,*) b

! Solve the system of equations

CALL nag_sym_lin_sol(nag_key_sym,uplo,a,b,bwd_err=bwd_err, &

fwd_err=fwd_err,rcond=rcond)

WRITE (nag_std_out,*)

WRITE (nag_std_out,’(1X,’’kappa(A) (1/rcond)’’/2X,ES11.2)’) 1/rcond

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Solution’

WRITE (nag_std_out,’(4X,F9.4)’) b

[NP3506/4] Module 5.2: nag sym lin sys 5.2.21

Example 1 Linear Equations

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Backward error bound’

WRITE (nag_std_out,’(2X,ES11.2)’) bwd_err

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Forward error bound (estimate)’

WRITE (nag_std_out,’(2X,ES11.2)’) fwd_err

DEALLOCATE (a,b) ! Deallocate storage

END PROGRAM nag_sym_lin_sys_ex01

2 Program Data

Example Program Data for nag_sym_lin_sys_ex01

4 : Value of n

’U’ : Value of uplo

2.07 3.87 4.20 -1.15

-0.21 1.87 0.63

1.15 2.06

-1.81 : End of Matrix A (upper triangle)

-9.50

-8.38

-6.07

-0.96 : End of right-hand side vector b

3 Program Results

Example Program Results for nag_sym_lin_sys_ex01

kappa(A) (1/rcond)

7.57E+01

Solution

-4.0000

-1.0000

2.0000

5.0000

Backward error bound

1.84E-16

Forward error bound (estimate)

4.66E-14

5.2.22 Module 5.2: nag sym lin sys [NP3506/4]

Linear Equations Example 2

Example 2: Solution of a Real Symmetric Positive Definite

System of Linear Equations

Solve a real symmetric positive definite system of linear equations with many right-hand sides AX = B,
also estimating the condition number of A, and forward and backward error bounds on the computed
solutions. This example calls the single procedure nag sym lin sol, using packed storage for A.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_sym_lin_sys_ex02

! Example Program Text for nag_sym_lin_sys

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_sym_lin_sys, ONLY : nag_key_pos, nag_sym_lin_sol

USE nag_write_mat, ONLY : nag_write_gen_mat

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, j, n, nrhs

REAL (wp) :: rcond

CHARACTER (1) :: uplo

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: a(:), b(:,:), bwd_err(:), fwd_err(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_sym_lin_sys_ex02’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) n, nrhs

READ (nag_std_in,*) uplo

ALLOCATE (a((n*(n+1))/2),b(n,nrhs),bwd_err(nrhs), &

fwd_err(nrhs)) ! Allocate storage

SELECT CASE (uplo)

CASE (’L’,’l’)

DO i = 1, n

READ (nag_std_in,*) (a(i+((2*n-j)*(j-1))/2),j=1,i)

END DO

CASE (’U’,’u’)

DO i = 1, n

READ (nag_std_in,*) (a(i+(j*(j-1))/2),j=i,n)

END DO

END SELECT

READ (nag_std_in,*) (b(i,:),i=1,n)

! Solve the system of equations

CALL nag_sym_lin_sol(nag_key_pos,uplo,a,b,bwd_err=bwd_err, &

fwd_err=fwd_err,rcond=rcond)

WRITE (nag_std_out,*)

[NP3506/4] Module 5.2: nag sym lin sys 5.2.23

Example 2 Linear Equations

WRITE (nag_std_out,’(1X,’’kappa(A) (1/rcond)’’/2X,ES11.2)’) 1/rcond

WRITE (nag_std_out,*)

CALL nag_write_gen_mat(b,int_col_labels=.TRUE., &

title=’Solutions (one solution per column)’)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Backward error bounds’

WRITE (nag_std_out,’(2X,4ES11.2)’) bwd_err

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Forward error bounds (estimates)’

WRITE (nag_std_out,’(2X,4ES11.2)’) fwd_err

DEALLOCATE (a,b,bwd_err,fwd_err) ! Deallocate storage

END PROGRAM nag_sym_lin_sys_ex02

2 Program Data

Example Program Data for nag_sym_lin_sys_ex02

4 2 : Values of n, nrhs

’U’ : Value of uplo

4.16 -3.12 0.56 -0.10

5.03 -0.83 1.18

0.76 0.34

1.18 : End of Matrix A (upper triangle)

8.70 8.30

-13.35 2.13

1.89 1.61

-4.14 5.00 : End of right-hand sides (one rhs per column)

3 Program Results

Example Program Results for nag_sym_lin_sys_ex02

kappa(A) (1/rcond)

9.73E+01

Solutions (one solution per column)

1 2

1.0000 4.0000

-1.0000 3.0000

2.0000 2.0000

-3.0000 1.0000

Backward error bounds

6.65E-17 7.89E-17

Forward error bounds (estimates)

4.51E-14 4.48E-14

5.2.24 Module 5.2: nag sym lin sys [NP3506/4]

Linear Equations Example 3

Example 3: Factorization of a Complex Symmetric Matrix and

Use of the Factorization to Solve a System of Linear Equations

Solve a complex symmetric system of linear equations with many right-hand sidesAX = B, also returning
forward and backward error bounds on the computed solution. This example calls nag sym lin fac to
factorize A, and then nag sym lin sol fac to solve the equations using the factorization. The program
uses conventional storage for A.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_sym_lin_sys_ex03

! Example Program Text for nag_sym_lin_sys

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_sym_lin_sys, ONLY : nag_key_sym, nag_sym_lin_fac, &

nag_sym_lin_sol_fac

USE nag_write_mat, ONLY : nag_write_gen_mat, nag_write_tri_mat

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC EPSILON, KIND, SCALE

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: det_exp, i, n, nrhs

REAL (wp) :: rcond

COMPLEX (wp) :: det_frac

CHARACTER (1) :: uplo

! .. Local Arrays ..

INTEGER, ALLOCATABLE :: pivot(:)

REAL (wp), ALLOCATABLE :: bwd_err(:), fwd_err(:)

COMPLEX (wp), ALLOCATABLE :: a(:,:), a_fac(:,:), b(:,:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_sym_lin_sys_ex03’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) n, nrhs

READ (nag_std_in,*) uplo

ALLOCATE (a(n,n),a_fac(n,n),b(n,nrhs),bwd_err(nrhs),fwd_err(nrhs), &

pivot(n)) ! Allocate storage

a = 0.0_wp

SELECT CASE (uplo)

CASE (’L’,’l’)

READ (nag_std_in,*) (a(i,:i),i=1,n)

CASE (’U’,’u’)

READ (nag_std_in,*) (a(i,i:),i=1,n)

END SELECT

a_fac = a

READ (nag_std_in,*) (b(i,:),i=1,n)

! Carry out the Bunch-Kaufman factorization

[NP3506/4] Module 5.2: nag sym lin sys 5.2.25

Example 3 Linear Equations

CALL nag_sym_lin_fac(nag_key_sym,uplo,a_fac,pivot,rcond=rcond, &

det_frac=det_frac,det_exp=det_exp)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Results of the Bunch-Kaufman factorization’

WRITE (nag_std_out,*)

CALL nag_write_tri_mat(uplo,a_fac,format=’(F7.4)’, &

title=’Details of the Bunch-Kaufman factorization’)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Pivotal sequence (pivot)’

WRITE (nag_std_out,’(2X,10I4:)’) pivot

WRITE (nag_std_out,*)

WRITE (nag_std_out,’(1X,’’determinant = det_frac*SCALE(1.0_wp,det_exp) &

&=’’,2X,"(",ES11.3,",",ES11.3,")")’) det_frac*SCALE(1.0_wp,det_exp)

WRITE (nag_std_out,*)

WRITE (nag_std_out,’(1X,’’kappa(A) (1/rcond)’’/9X,ES11.2)’) 1/rcond

IF (rcond<=EPSILON(1.0_wp)) THEN

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’ ** WARNING ** ’

WRITE (nag_std_out,*) &

’The matrix is almost singular: the solution may have no accuracy.’

WRITE (nag_std_out,*) &

’Examine the forward error bounds estimates returned in fwd_err.’

END IF

! Solve the system of equations

CALL nag_sym_lin_sol_fac(nag_key_sym,uplo,a_fac,pivot,b,a=a, &

bwd_err=bwd_err,fwd_err=fwd_err)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) &

’Results of the solution of the simultaneous equations’

WRITE (nag_std_out,*)

CALL nag_write_gen_mat(b,int_col_labels=.TRUE.,format=’(F7.4)’, &

title=’Solutions (one solution per column)’)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Backward error bounds’

WRITE (nag_std_out,’(2X,4(7X,ES11.2:))’) bwd_err

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Forward error bounds (estimates)’

WRITE (nag_std_out,’(2X,4(7X,ES11.2:))’) fwd_err

DEALLOCATE (a,a_fac,b,bwd_err,fwd_err,pivot) ! Deallocate storage

END PROGRAM nag_sym_lin_sys_ex03

5.2.26 Module 5.2: nag sym lin sys [NP3506/4]

Linear Equations Example 3

2 Program Data

Example Program Data for nag_sym_lin_sys_ex03

4 2 : Values of n, nrhs

’U’ : Value of uplo

(-0.39,-0.71) (5.14,-0.64) (-7.86,-2.96) (3.80, 0.92)

(8.86, 1.81) (-3.52, 0.58) (5.32,-1.59)

(-2.83,-0.03) (-1.54,-2.86)

(-0.56, 0.12) : End of Matrix A

(-55.64, 41.22) (-19.09,-35.97)

(-48.18, 66.00) (-12.08,-27.02)

(-0.49, -1.47) (6.95, 20.49)

(-6.43, 19.24) (-4.59,-35.53) : End of right-hand sides (one rhs per column)

3 Program Results

Example Program Results for nag_sym_lin_sys_ex03

Results of the Bunch-Kaufman factorization

Details of the Bunch-Kaufman factorization

(-2.0954,-2.2011) (0.6163, 0.3205) (-0.6361,-0.1468) (0.5427,-0.1831)

(-3.0624, 0.5785) (-6.0558,-3.9193) (0.5412,-0.2900)

(-4.0456, 0.6792) (-0.3685, 0.1408)

(8.8600, 1.8100)

Pivotal sequence (pivot)

1 -1 -1 2

determinant = det_frac*SCALE(1.0_wp,det_exp) = (-1.073E+03, 9.736E+02)

kappa(A) (1/rcond)

1.57E+01

Results of the solution of the simultaneous equations

Solutions (one solution per column)

1 2

(1.0000,-1.0000) (-2.0000,-1.0000)

(-2.0000, 5.0000) (1.0000,-3.0000)

(3.0000,-2.0000) (3.0000, 2.0000)

(-4.0000, 3.0000) (-1.0000, 1.0000)

Backward error bounds

1.93E-16 1.52E-16

Forward error bounds (estimates)

2.45E-14 1.94E-14

[NP3506/4] Module 5.2: nag sym lin sys 5.2.27

Example 3 Linear Equations

5.2.28 Module 5.2: nag sym lin sys [NP3506/4]

Linear Equations Additional Examples

Additional Examples

Not all example programs supplied with NAG fl90 appear in full in this module document. The following
additional examples, associated with this module, are available.

nag sym lin sys ex04

Solution of a real symmetric indefinite system of linear equations with one right-hand side, using
packed storage.

nag sym lin sys ex05

Solution of a real symmetric positive definite system of linear equations with many right-hand
sides, using conventional storage.

nag sym lin sys ex06

Factorization of a complex symmetric matrix and use of the factorization to solve a system of linear
equations with many right-hand sides, using packed storage.

nag sym lin sys ex07

Solution of a real symmetric positive definite system of linear equations with one right-hand side,
using conventional storage.

nag sym lin sys ex08

Solution of a real symmetric positive definite system of linear equations with one right-hand side,
using packed storage.

nag sym lin sys ex09

Solution of a complex Hermitian positive definite system of linear equations with one right-hand
side, using conventional storage.

nag sym lin sys ex10

Solution of a complex Hermitian positive definite system of linear equations with one right-hand
side, using packed storage.

nag sym lin sys ex11

Solution of a complex Hermitian positive definite system of linear equations with many right-hand
sides, using conventional storage.

nag sym lin sys ex12

Solution of a complex Hermitian positive definite system of linear equations with many right-hand
sides, using packed storage.

nag sym lin sys ex13

Factorization of a real symmetric positive definite matrix and use of the factorization to solve a
system of linear equations with many right-hand sides, using conventional storage.

nag sym lin sys ex14

Factorization of a real symmetric positive definite matrix and use of the factorization to solve a
system of linear equations with many right-hand sides, using packed storage.

nag sym lin sys ex15

Factorization of a complex Hermitian positive definite matrix and use of the factorization to solve
a system of linear equations with many right-hand sides, using conventional storage.

nag sym lin sys ex16

Factorization of a complex Hermitian positive definite matrix and use of the factorization to solve
a system of linear equations with many right-hand sides, using packed storage.

nag sym lin sys ex17

Solution of a complex Hermitian indefinite system of linear equations with one right-hand side,
using conventional storage.

nag sym lin sys ex18

Solution of a complex Hermitian indefinite system of linear equations with one right-hand side,
using packed storage.

[NP3506/4] Module 5.2: nag sym lin sys 5.2.29

Additional Examples Linear Equations

nag sym lin sys ex19

Solution of a real symmetric indefinite system of linear equations with many right-hand sides, using
conventional storage.

nag sym lin sys ex20

Solution of a real symmetric indefinite system of linear equations with many right-hand sides, using
packed storage.

nag sym lin sys ex21

Solution of a complex Hermitian indefinite system of linear equations with many right-hand sides,
using conventional storage.

nag sym lin sys ex22

Solution of a complex Hermitian indefinite system of linear equations with many right-hand sides,
using packed storage.

nag sym lin sys ex23

Factorization of a real symmetric indefinite matrix and use of the factorization to solve a system
of linear equations with many right-hand sides, using conventional storage.

nag sym lin sys ex24

Factorization of a real symmetric indefinite matrix and use of the factorization to solve a system
of linear equations with many right-hand sides, using packed storage.

nag sym lin sys ex25

Factorization of a complex Hermitian indefinite matrix and use of the factorization to solve a
system of linear equations with many right-hand sides, using conventional storage.

nag sym lin sys ex26

Factorization of a complex Hermitian indefinite matrix and use of the factorization to solve a
system of linear equations with many right-hand sides, using packed storage.

nag sym lin sys ex27

Solution of a complex symmetric system of linear equations with one right-hand side, using
conventional storage.

nag sym lin sys ex28

Solution of a complex symmetric system of linear equations with one right-hand side, using packed
storage.

nag sym lin sys ex29

Solution of a complex symmetric system of linear equations with many right-hand sides, using
conventional storage.

nag sym lin sys ex30

Solution of a complex symmetric system of linear equations with many right-hand sides, using
packed storage.

5.2.30 Module 5.2: nag sym lin sys [NP3506/4]

Linear Equations References

References

[1] Anderson E, Bai Z, Bischof C, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling
S, McKenney A, Blackford S and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia

[2] Golub G H and Van Loan C F (1989) Matrix Computations Johns Hopkins University Press (2nd
Edition)

[3] Higham N J (1988) Algorithm 674: Fortran codes for estimating the one-norm of a real or complex
matrix, with applications to condition estimation ACM Trans. Math. Software 14 381–396

[NP3506/4] Module 5.2: nag sym lin sys 5.2.31

