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Chapter 5

Linear Equations

1 Scope of the Chapter

This chapter provides procedures for solving systems of linear equations.

Separate modules are provided to handle systems with special structure; this offers possibilities for
greater efficiency, more economical storage and increased reliability.

All the procedures in this chapter are generic procedures which can handle either real or complex data.

2 Available Modules

Module 5.1: nag gen lin sys — General systems of linear equations

Provides procedures for:

• solving a system of linear equations with one or many right-hand sides Ax = b or AX = B,
where the coefficient matrix A is a general square matrix;

• computing an LU factorization of a general square matrix and solving a system of equations,
using a previously computed factorization. (These are lower-level procedures, intended for
more experienced users.)

Optional facilities are provided in these procedures for evaluating the determinant of A, estimating
the condition number of A and computing error bounds on the solution.

Module 5.2: nag sym lin sys — Symmetric systems of linear equations

Provides procedures for:

• solving a system of linear equations with one or many right-hand sides Ax = b or AX = B,
where the coefficient matrix A is real symmetric, complex symmetric or complex Hermitian.
If A is known to be positive definite, this is treated as a special case;

• computing a Bunch–Kaufman factorization of a symmetric or Hermitian matrix, or a Cholesky
factorization of a positive definite matrix, and solving a system of equations, using a previously
computed factorization. (These are lower-level procedures, intended for more experienced
users.)

Optional facilities are provided in these procedures for evaluating the determinant of A, estimating
the condition number of A and computing error bounds on the solution.

Module 5.3: nag tri lin sys — Triangular systems of linear equations

Provides procedures for:

• solving a system of linear equations with one or many right-hand sides Ax = b or AX = B,
where the coefficient matrix A is upper or lower triangular , with optional facilities for
computing error bounds on the solution;

• estimating the condition number of an upper or lower triangular matrix.

• evaluating the determinant of an upper or lower triangular matrix.
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Module 5.4: nag gen bnd lin sys — General banded systems of linear equations

Provides procedures for:

• solving a system of linear equations with one or many right-hand sides Ax = b or AX = B,
where the coefficient matrix A is a general square banded matrix;

• computing an LU factorization of a general square band matrix and solving a system of
equations, using a previously computed factorization. (These are lower-level procedures,
intended for more experienced users.)

Optional facilities are provided in these procedures for evaluating the determinant of A, estimating
the condition number of A and computing error bounds on the solution.

Module 5.5: nag sym bnd lin sys — Symmetric positive definite banded systems of linear

equations

Provides procedures for:

• solving a system of linear equations with one or many right-hand sides Ax = b or AX = B,
where the coefficient matrix A is a real symmetric, or complex Hermitian, positive definite

band matrix.

• computing a Cholesky factorization of a symmetric or Hermitian positive definite matrix,
and solving a system of equations, using a previously computed factorization. (These are
lower-level procedures, intended for more experienced users.)

Optional facilities are provided in these procedures for evaluating the determinant of A, estimating
the condition number of A and computing error bounds on the solution.

Module 5.6: nag sparse prec — Sparse matrix preconditioner set-up and solve

Provides procedures for:

• initializing a sparse Jacobi preconditioner;

• initializing a sparse SSOR preconditioner;

• initializing a sparse incomplete LU preconditioner;

• solving a system of linear equations Mz = r, where M is supplied as a previously initialized
sparse preconditioner.

Module 5.7: nag sparse lin sys — Sparse linear system iterative solvers

Provides procedures for:

• the iterative solution of a general sparse system of linear equations Ax = b, where A is real
non-symmetric or complex non-Hermitian.

3 Background

3.1 Direct Methods

For the direct methods of modules nag gen lin sys, nag sym lin sys, nag tri lin sys,
nag gen bnd lin sys and nag sym bnd lin sys, this chapter provides optional facilities for obtaining
information about the accuracy of the computed solution to a system of linear equations, and about
the sensitivity of the system to perturbations in the original data. The rest of this section explains the
relevant concepts and mathematical background. For more details, see Section 2.7 of Golub and Van
Loan [3] or Chapter 4 of Anderson et al. [1].

For simplicity we fix on systems with a single right-hand side, Ax = b. If there are several right-hand
sides, the remarks apply to each right-hand side individually.
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Perturbation Theory

Frequently in practical problems the data A and b are not known exactly, and then it is important to
understand how uncertainties or perturbations in the data can affect the solution. Some systems are
highly sensitive: a small perturbation in the data can result in a large change in the solution. Such
systems are called ill conditioned .

This can be expressed in more precise mathematical terms. If x is the exact solution to Ax = b, and
x+ δx is the solution to a perturbed problem (A+ δA)(x+ δx) = b+ δb, then

‖δx‖

‖x‖
≤ κ(A)

(

‖δA‖

‖A‖
+
‖δb‖

‖b‖

)

+ · · · (2nd order terms) (1)

where κ(A) is the condition number of A defined by

κ(A) = ‖A‖ ‖A−1‖. (2)

In other words, κ(A) can be regarded as an amplification factor, which describes how relative errors in
the data may be amplified in the solution. An ill conditioned matrix has a large value of κ(A). If A is
singular, we define κ(A) =∞.

To compute κ(A) directly from the definition (2) is expensive. Therefore the procedures in this chapter
estimate it by a method which is much cheaper, and in practice almost always reliable.

Because of the risk of overflow if A is singular or almost so, the procedures actually return an estimate
of its reciprocal 1/κ(A), which is zero if A is singular.

Error Analysis

Perturbation theory can be applied to analyse the effects of rounding errors introduced by computation
in finite precision.

The effects of rounding errors can be shown to be equivalent to perturbations in the original data, such
that ‖δA‖/‖A‖ and ‖δb‖/‖b‖ are usually at most p(n)ε, where ε = EPSILON(1.0 wp), and p(n) is an
increasing function of n, which is seldom larger than 10n (although in theory it can be as large as 2n−1).
This is a backward error bound , because it relates the effect of rounding errors backward to equivalent
perturbations in the original data.

A forward error bound analyses rounding errors in terms of their forward effect on the computed solution,
in other words, it gives a bound on the error in the computed solution ‖δx‖/‖x‖. The equation (1) can
be used to convert a backward error bound on ‖δA‖/‖A‖ and ‖δb‖/‖b‖ to a forward error bound on
‖δx‖/‖x‖ (though this may sometimes be unduly pessimistic; see Section 3.3).

If the system is ill conditioned, rounding errors in the computation may result in a computed solution
which deviates quite markedly from the exact solution. If the condition number is of the order of
1/EPSILON(1.0 wp) or larger, then the errors in the computed solution may be as large as, or larger
than, the solution itself; there may be no meaningful digits at all in the computed solution. In this case
A is said to be singular to working precision.

Computable Error Bounds

Error bounds derived from (1) have two limitations. First they are norm wise error bounds: they are
expressed in terms of vector and matrix norms, and so they are dominated by the largest elements in the
data. They do not reflect any special structure in A and b, for example a pattern of elements which are
known to be zero. Second, they can be unduly pessimistic because they are based solely on the condition
number of A, and do not take into account the properties of b.

The procedures in this chapter provide options for computing error bounds which do not suffer from
these limitations.

First, they compute a componentwise backward error bound. This bounds the relative perturbation in
each component of A and b which would make the computed solution x̂ exact. Formally, if x̂ is the exact
solution of a perturbed system of equations

(A+ δA)x̂ = b+ δb,
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then the backward error bound is an upper bound on

max
i,j,k

(

|δaij |

|aij |
,
|δbk|

|bk|

)

.

Second, the procedures compute a forward error bound, which takes into account the properties of the
right-hand side b and is sometimes much sharper than the norm wise bound based on (1). This bound
is defined by

‖x− x̂‖∞
‖x̂‖∞

≤
‖ |A−1| |r| ‖∞

‖x‖∞
,

where r is the residual b− Ax̂, and |r| and |A−1| denote the vector and matrix whose elements are the
absolute values of the elements of r and A−1 respectively. The norm ‖ |A−1| |r| ‖∞ is estimated cheaply
(without computing A−1) by a modification of the method used to estimate κ(A).

Iterative Refinement

If x̂ is an approximate computed solution, and r is the corresponding residual b−Ax̂, then a process of
iterative refinement of x̂ can be defined as follows, starting with x(0) = x̂:
for i = 0, 1, . . ., until convergence

compute r(i) = b−Ax(i);

solve Ad(i) = r(i) for d(i);

compute x(i+1) = x(i) + d(i).

This process can guarantee a small backward error (except in rare cases when A is very ill conditioned
or when A and x are sparse in such a way that |A| |x| has a component which is zero or very small).
The iterations continue until the backward error has been reduced as much as possible; usually only one
iteration is needed, and at most five are allowed.

The procedures in this chapter always perform iterative refinement if error bounds are requested.

Note that iterative refinement cannot guarantee a small forward error unless additional precision is used
to compute r(i); this facility is not currently provided in the Library.

3.2 Iterative Methods for Sparse Linear Systems

Many of the most effective iterative methods for the solution of a sparse linear system

Ax = b (3)

lie in the class of non-stationary Krylov subspace methods (see Barrett et al. [2]). At this release
methods for real non-symmetric and complex non-Hermitian matrices are available, with or without
preconditioning (see modules nag sparse prec and nag sparse lin sys).

Preconditioning

Faster convergence of an iterative solver for a linear system can often be achieved by using a
preconditioner, where (3) is replaced by the modified system

Āx̄ = b̄. (4)

A left preconditioner M−1 is chosen such that Ā = M−1A ∼ In in (4), where In is the identity matrix of
order n, while a right preconditionerM−1 is such that Ā = AM−1 ∼ In. Preconditioning matricesM are
typically based on incomplete factorizations (see Meijerink and van der Vorst [4]), or on the approximate
inverses occurring in stationary iterative methods (see Young [5]). A common example is the incomplete
LU factorization

M = PLDUQ = A−R,
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where L is unit lower triangular, D is diagonal, U is unit upper triangular, P and Q are permutation
matrices, and R is a remainder matrix. A zero-fill incomplete LU factorization is one for which the
matrix

S = P (L+D + U)Q

has the same pattern of non-zero entries as A. This is obtained by discarding any fill elements (non-zero
elements of S arising during the factorization in locations where A has zero elements). Allowing some of
these fill elements to be kept rather than discarded, generally increases the accuracy of the factorization
at the expense of some loss of sparsity. For further details see Barrett et al. [2].

Convergence

Iterative methods for (3) approach the solution through a sequence of approximations until some user-
specified termination criterion is met or until some predefined maximum number of iterations has been
reached. The number of iterations required for convergence is not generally known in advance, as it
depends on the accuracy required and on the matrix A— its sparsity pattern, conditioning and eigenvalue
spectrum. Note that, in general, convergence, when it occurs, is not monotonic. The procedures provide
a choice of termination criteria and the norms used in them. They allow monitoring of the approximate
solution and can return estimates of the norm of A and the largest singular value of the preconditioned
matrix Ā.
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