
Matrix and Vector Operations Chapter Introduction

Chapter 4

Matrix and Vector Operations

1 Scope of the Chapter

This chapter provides procedures for matrix and vector operations.

This chapter (and Chapters 5 and 6) can handle general matrices, matrices with special structure and
sparse matrices. Using the special structure of matrices offers possibilities for greater efficiency, more
economical storage and increased reliability.

All the procedures in this chapter are generic procedures which can handle either real or complex data.

2 Available Modules

Module 4.1: nag mat norm — Matrix norms

Provides procedures to compute the 1-norm, ∞-norm, Frobenius (Euclidean) norm or the element
of largest absolute value, of a real or complex matrix. It caters for different types of matrices and
storage schemes.

Module 4.2: nag mat inv — Matrix inversion

provides procedures for matrix inversion.

Module 4.3: nag sparse mat — Sparse matrix utilities

provides procedures for initialization and manipulation of sparse matrices.

3 Storage of Matrices

In this section we assume that A is a matrix and a is the corresponding argument. For symmetric or
triangular matrices, it is assumed that the argument uplo is used to specify that the elements of either
the upper or the lower triangle are referenced.

3.1 Symmetric Matrices

There are two storage schemes for the symmetric or Hermitian matrix A: conventional storage or packed
storage. The choice is determined by the rank of the corresponding argument a.

Conventional storage

a is a rank-2 array, of shape (n,n). Matrix element aij is stored in a(i, j). Only the elements of either
the upper or the lower triangle need be stored in a as specified by the argument uplo; the remaining
elements need not be set.

This storage scheme is more straightforward and carries less risk of user error than packed storage; on
some machines it may result in more efficient execution. It requires almost twice as much memory as
packed storage, although the unused triangle of a may be used to store other data.

Packed storage

a is a rank-1 array of shape (n(n + 1)/2). The elements of either the upper or the lower triangle of A,
as specified by uplo, are packed by columns into contiguous elements of a.

Packed storage is more economical in use of memory than conventional storage, but may result in less
efficient execution on some machines.

The details of packed storage are as follows:

[NP3506/4] 4.0.1

Chapter Introduction Matrix and Vector Operations

• if uplo = 'u' or 'U', aij is stored in a(i+ j(j − 1)/2), for i ≤ j;

• if uplo = 'l' or 'L', aij is stored in a(i+ (2n− j)(j − 1)/2), for i ≥ j.

For example,

uplo Hermitian Matrix A Packed storage in array a

'u' or 'U'







a11 a12 a13 a14

a12 a22 a23 a24

a13 a23 a33 a34

a14 a24 a34 a44







a11 a12 a22
︸ ︷︷ ︸

a13 a23 a33
︸ ︷︷ ︸

a14 a24 a34 a44
︸ ︷︷ ︸

'l' or 'L'







a11 a21 a31 a41

a21 a22 a32 a42

a31 a32 a33 a43

a41 a42 a43 a44







a11 a21 a31 a41
︸ ︷︷ ︸

a22 a32 a42
︸ ︷︷ ︸

a33 a43
︸ ︷︷ ︸

a44

Note that for symmetric matrices, packing the upper triangle by columns is equivalent to packing the
lower triangle by rows; packing the lower triangle by columns is equivalent to packing the upper triangle
by rows. For Hermitian matrices, packing the upper triangle by columns is equivalent to packing the
conjugate of the lower triangle by rows; packing the lower triangle by columns is equivalent to packing
the conjugate of the upper triangle by rows.

3.2 Triangular Matrices

There are two storage schemes for the triangular matrix A: conventional storage or packed storage. The
choice is determined by the rank of the corresponding argument a.

Conventional storage

a is a rank-2 array, of shape (n,n). Matrix element aij is stored in a(i, j). If A is upper triangular, only
the elements of the upper triangle (i ≤ j) need be stored; if A is lower triangular, only the elements of
the lower triangle (i ≥ j) need be stored; the remaining elements of a need not be set.

This storage scheme is more straightforward and carries less risk of user error than packed storage; on
some machines it may result in more efficient execution. It requires almost twice as much memory as
packed storage, although the other triangle of a may be used to store other data.

Packed storage

a is a rank-1 array of shape (n(n + 1)/2). The elements of either the upper or the lower triangle of A,
as specified by uplo, are packed by columns into contiguous elements of a.

Packed storage is more economical in use of memory than conventional storage, but may result in less
efficient execution on some machines.

The details of packed storage are as follows:

• if uplo = 'u' or 'U', aij is stored in a(i+ j(j − 1)/2), for i ≤ j;

• if uplo = 'l' or 'L', aij is stored in a(i+ (2n− j)(j − 1)/2), for i ≥ j.

4.0.2 [NP3506/4]

Matrix and Vector Operations Chapter Introduction

For example,

uplo Triangular Matrix A Packed storage in array a

'u' or 'U'







a11 a12 a13 a14

a22 a23 a24

a33 a34

a44







a11 a12 a22
︸ ︷︷ ︸

a13 a23 a33
︸ ︷︷ ︸

a14 a24 a34 a44
︸ ︷︷ ︸

'l' or 'L'







a11

a21 a22

a31 a32 a33

a41 a42 a43 a44







a11 a21 a31 a41
︸ ︷︷ ︸

a22 a32 a42
︸ ︷︷ ︸

a33 a43
︸ ︷︷ ︸

a44

Unit triangular matrices

A unit triangular matrix is a triangular matrix whose diagonal elements are known to be unity. Some
procedures have an optional argument unit diag which can be used to specify that the matrix is unit
triangular, and then the diagonal elements do not need to be stored; the storage of the other elements
of the matrix is not affected.

3.3 Square Banded Matrices

The following storage scheme is used for the general band matrix A with kl sub-diagonals and ku super-
diagonals:

• aij is stored in a(ku + i− j + 1, j), for max(j − ku, 1) ≤ i ≤ min(j + kl, n).

For example,

General band matrix A Band storage in array a









a11 a12

a21 a22 a23

a31 a32 a33 a34

a42 a43 a44 a45

a53 a54 a55









∗ a12 a23 a34 a45

a11 a22 a33 a44 a55

a21 a32 a43 a54 ∗
a31 a42 a53 ∗ ∗

The elements marked by * in the upper left and lower right corners of a are not referenced and need not
be set.

3.4 Symmetric Banded Matrices

The following storage scheme is used for the symmetric or Hermitian band matrix A with k super-
diagonals or sub-diagonals:

• if uplo = 'u' or 'U', aij is stored in a(k + i− j + 1, j), for max(j − k, 1) ≤ i ≤ j;

• if uplo = 'l' or 'L', aij is stored in a(i− j + 1, j), for j ≤ i ≤ min(j + k, n).

[NP3506/4] 4.0.3

Chapter Introduction Matrix and Vector Operations

For example,

uplo Hermitian band matrix A Band storage in array a

'u' or 'U'









a11 a12 a13

a12 a22 a23 a24

a13 a23 a33 a34 a35

a24 a34 a44 a45

a35 a45 a55









∗ ∗ a13 a24 a35

∗ a12 a23 a34 a45

a11 a22 a33 a44 a55

'l' or 'L'









a11 a21 a31

a21 a22 a32 a42

a31 a32 a33 a43 a53

a42 a43 a44 a54

a53 a54 a55









a11 a22 a33 a44 a55

a21 a32 a43 a54 ∗
a31 a42 a53 ∗ ∗

The elements marked by * in the upper left and lower right corners of a are not referenced and need not
be set.

3.5 Triangular Banded Matrices

The following storage scheme is used for the triangular band matrix A with k super-diagonals or sub-
diagonals:

• if uplo = 'u' or 'U', aij is stored in a(k + i− j + 1, j), for max(j − k, 1) ≤ i ≤ j;

• if uplo = 'l' or 'L', aij is stored in a(i− j + 1, j), for j ≤ i ≤ min(j + k, n).

For example,

uplo Triangular band matrix A Band storage in array a

'u' or 'U'









a11 a12 a13

a22 a23 a24

a33 a34 a35

a44 a45

a55









∗ ∗ a13 a24 a35

∗ a12 a23 a34 a45

a11 a22 a33 a44 a55

'l' or 'L'









a11

a21 a22

a31 a32 a33

a42 a43 a44

a53 a54 a55









a11 a22 a33 a44 a55

a21 a32 a43 a54 ∗
a31 a42 a53 ∗ ∗

The elements marked by * in the upper left and lower right corners of a are not referenced and need not
be set.

Unit triangular matrices

A unit triangular banded matrix is a triangular banded matrix whose diagonal elements are known to
be unity. Some procedures have an optional argument unit diag which can be used to specify that the
matrix is unit triangular banded, and then the diagonal elements do not need to be stored; the storage
of the other elements of the matrix is not affected.

4.0.4 [NP3506/4]

Matrix and Vector Operations Chapter Introduction

4 Sparse Vectors

A vector is sparse when it is beneficial to identify which entries have non-zero values. Sparse vectors are
represented by a pair of conventional vectors, one denoting the non-zero values and the other denoting
the indices. That is, if a is a sparse vector, then it is represented by a one-dimensional array of the
non-zero entries of a and an integer vector of equal length whose values indicate the location in a of the
corresponding floating point value. For example, the sparse vector

a = (11.0 0.0 13.0 14.0 0.0)

can be represented by two vectors as

value = (11.0 13.0 14.0)
indx = (1 3 4)

4.1 Storage Scheme

Two derived types nag sparse vec real wp and nag sparse vec cmplx wp are defined by the Library
to store real and complex sparse vectors. A structure of one of the derived types will contain all the
information needed to define the sparse vector. The module nag sparse vec contains the definition of
the derived types and procedures to manipulate these types.

5 Sparse Matrices

A matrix is sparse when it is beneficial to identify which entries have non-zero values. Many problems
arising from engineering and scientific computing require the solution of large, sparse systems, hence
their importance in numerical linear algebra. Typically, sparse matrices provide an opportunity to
conserve storage and reduce computational requirements by storing only the significant (typically, non-
zero) entries.
The sparse matrix formats include:

Point entry:

COO - Coordinate

CSC - Compressed sparse column

CSR - Compressed sparse row

DIA - Sparse diagonal

Block entry:

BCO - Block coordinate

BSC - Block compressed sparse column

BSR - Block compressed sparse row

BDI - Block sparse diagonal

VBR - Variable block compressed sparse row

Each of these formats is intended to support an important class of problems or algorithms. The following
is a list of the point entry data structure and one or more of its intended uses. The intended uses for
block entry data structures are analogous, with the added property that they exploit the property of
multiple unknowns per grid point or related properties.

COO - Coordinate: Most flexible data structure when constructing or modifying a sparse matrix.

CSC - Compressed sparse column: Natural data structure for many common matrix operations
including matrix multiplication and constructing or solving sparse triangular factors.

CSR - Compressed sparse row: Natural data structure for many common matrix operations
including matrix multiplication and constructing or solving sparse triangular factors.

[NP3506/4] 4.0.5

Chapter Introduction Matrix and Vector Operations

DIA - Sparse diagonal: Particularly useful for matrices coming from finite difference approximations
to partial differential equations on uniform grids.

VBR - Variable Block Row: It is often the case for problems with multiple unknowns per node,
that the number of unknowns per node will vary from node to node, generating a block entry
matrix with a block structure where the size of the blocks varies correspondingly. If the variation
in size is small, it may be advantageous to make all block rows the same size by adding identity
equations to smaller blocks. However, this is an unnatural restriction and may lead to significant
wasted storage space if the variation is large. For this situation, we provide the variable block
compressed sparse row (VBR) data structure.

The VBR data structure handles variations in block size in an efficient and natural way. Also,
in addition to supporting natural variations due to problem characteristics, VBR allows for the
agglomeration of neighbouring nodes, or the splitting of equations at a node in a natural way. This
can be an important capability for developing robust preconditioners. Although more difficult to
work with than constant block entry data structures like BSR, VBR is essential for application
that have multiphysics capabilities or other complicated coupled equation formulations.

Point entry data structures

In this section we describe the supported point entry data structures for an m by n matrix A.

5.1 COO - Coordinate

The point-entry form of coordinate storage (COO) stores the entries of the matrix, along with their
corresponding row and column indices. Three arrays are required for the COO format:

value - a scalar array of length nnz consisting of non-zero the entries of A, in any order.

row indx - an integer array of length nnz consisting of the row indices of the entries in value.

col indx - an integer array of length nnz consisting of the column indices of the entries in value.

For example, suppose

A =









11 0 13 14 0
0 0 23 24 0
31 32 33 34 0
0 42 0 44 0
51 52 0 0 55









, (1)

then one representation of A in COO format is:

value = (11 51 31 32 34 52 13 23 33 14 24 42 55 44),
row indx = (1 5 3 3 3 5 1 2 3 1 2 4 5 4),
col indx = (1 1 1 2 4 2 3 3 3 4 4 2 5 4).

It is possible to assert that index values are zero-based instead of one-based. In this case, one
representation of A is:

value = (11 51 31 32 34 52 13 23 33 14 24 42 55 44),
row indx = (0 4 2 2 2 4 0 1 2 0 1 3 4 3),
col indx = (0 0 0 1 3 1 2 2 2 3 3 1 4 3).

If A is symmetric (or Hermitian or triangular) then we only need to store the lower (or upper) triangle.
In this case one representation of the lower triangle of A is:

value = (11 51 31 32 52 33 42 55 44),
row indx = (1 5 3 3 5 3 4 5 4),
col indx = (1 1 1 2 2 3 2 5 4).

If A is Hermitian and the diagonal of A is stored, then we will assume that the imaginary part of the
diagonal is zero.

4.0.6 [NP3506/4]

Matrix and Vector Operations Chapter Introduction

5.2 CSC - Compressed Sparse Column

The point-entry form of compressed sparse column storage (CSC) stores the matrix entries in each of
the columns A∗j as a sparse vector. A matrix A is stored in the CSC format using four arrays.

value - a scalar array of length nnz consisting of non-zero the entries of A stored column by column,
in any order:

value = (A
∗σ(1), A∗σ(2), . . . , A∗σ(n)).

row indx - an integer array of length nnz consisting of the row indices of the entries in value. As
in the COO format, this can be one-based or zero-based.

col begin - an integer array of length n such that col begin(j)−α+1, where α =
n

min
i=1

col begin(i),

points to the location (within the range 1 : nnz) in value and row indx of the first element of
column j.

col end - an integer array of length n such that col end(j)−α, where α =
n

min
i=1

col begin(i), points

to the location (within the range 1 : nnz) in value and row indx of the last element of column j.

For example, one CSC representation of the matrix in (1) would be:

value = (11 31 51 32 42 52 13 23 33 14 24 34 44 55),
row indx = (1 3 5 3 4 5 1 2 3 1 2 3 4 5),
col begin = (1 4 7 10 14),
col end = (4 7 10 14 15),

The mapping σ() used above is a permutation of the first n integers. Much of the time σ() will be
the identity mapping. However, for technical accuracy we wanted to indicate that the columns of
A can be arranged in any order within value.

The actual values in col begin and col end are not important, only their relative position from

α =
n

min
i=1

col begin(i). This allows greater flexibility for the user. In particular, it is common to

construct pointer arrays starting at 0. Also, again we are able to assert a zero-based index vector.
For (1), we could then define row indx, col begin and col end as

row indx = (0 2 4 2 3 4 0 1 2 0 1 2 3 4),
col begin = (0 3 6 9 13),
col end = (3 6 9 13 14).

If column j is empty, then col begin(j) = col end(j).

If the columns are in consecutive order, one can represent col end in terms of col begin. In this
case col end(1 : n− 1) = col begin(2 : n) and col end(n) = nnz + 1

The two-array approach to pointers offers much more flexibility than the one array approach. For
example, if we define the array

diag ptr = (1 4 9 13 14),

to point to the diagonal elements, then letting col begin = diag ptr we can use just the lower
triangular part of the general CSC representation without modifying or copying the other data
structures.

A second example of increased flexibility is that there is no longer an implicit storage association
between contiguous columns. The columns can be specified in any order. In particular, for the
example above it is possible to put column one as the last column stored:

value = (32 42 52 13 23 33 14 24 34 44 55 11 31 51),
row indx = (3 4 5 1 2 3 1 2 3 4 5 1 3 5),
col begin = (12 1 4 7 11),
col end = (15 4 7 11 12),

[NP3506/4] 4.0.7

Chapter Introduction Matrix and Vector Operations

If A is symmetric then we only need to store the lower (or upper) triangle. In this case we have (for the
lower triangle)

value = (11 31 51 32 42 52 33 44 55),
row indx = (1 3 5 3 4 5 3 4 5),
col begin = (1 4 7 8 9),
col end = (4 7 8 9 10).

5.3 CSR - Compressed Sparse Row

The point-entry form of compressed sparse row storage (CSR) stores the matrix entries in each of the
rows Ai∗ as a sparse vector. A matrix A is stored in the CSR format using four arrays.

value - a scalar array of length nnz consisting of non-zero the entries of A stored row by row, in
any order:

value = (Aσ(1)∗, Aσ(2)∗, . . . , Aσ(n)∗).

col indx - an integer array of length nnz consisting of the column indices of the entries in value.
As in the COO format, this can be one-based or zero-based.

row begin - an integer array of length m such that row begin(i) − α + 1, where α =
m

min
j=1

row begin(j), points to the location (within the range 1 : nnz) in value and col indx of

the first element of row i.

row end - an integer array of length m such that row end(i) − α, where α =
m

min
j=1

row begin(j),

points to the location (within the range 1 : nnz) in value and col indx of the last element of row i.

For example, one CSR representation of the matrix in (1) would be:

value = (11 13 14 23 24 31 32 33 34 42 44 51 52 55),
col indx = (1 3 4 3 4 1 2 3 4 2 4 1 2 5),

row begin = (1 4 6 10 12),
row end = (4 6 10 12 15),

The discussion on the use σ(), row begin and row end follows that of the use of σ(), col begin and
col end of the CSC format.
If A is symmetric then we only need to store the lower (or upper) triangle. In this case we have (for the
lower triangle)

value = (11 31 32 33 42 44 51 52 55),
col indx = (1 1 2 3 2 4 1 2 5),

row begin = (1 2 2 5 7),
row end = (2 2 5 7 10).

5.4 DIA - Sparse Diagonal (Point entry form)

The point-entry form of diagonal storage (DIA) stores each supplied diagonal of A along with its position
relative to the main diagonal. Let l = min(m,n), and let n diag denote the number of non-zero diagonals
of A. Two arrays are required for the DIA format:

value - a two-dimensional (l, n diag) scalar array consisting of the n diag non-zero diagonals of A
in any order.

diag indx - an integer array of length n diag consisting of the corresponding indices of the nonzero
diagonals of A in value. Thus, if diag indx(j) = i then the jth column of value contains the ith

diagonal of A.

4.0.8 [NP3506/4]

Matrix and Vector Operations Chapter Introduction

For example, let

A =









11 0 13 0 0
21 0 0 24 0
31 32 33 0 35
0 42 0 44 0
0 0 53 0 55









,

then A would be stored in DIA format as follows.

value =









∗ ∗ 11 13
∗ 21 0 24
31 32 33 35
42 0 44 ∗
53 0 55 ∗









,

The elements marked by * are not referenced and need not be set.

diag indx =
(
−2 −1 0 2

)
.

Let diag indx(i) = j, then j = 0, implies that value(:, i) (the ith column of value) contains the main
diagonal of A;

For m ≤ n, then:

j < 0, implies that in the column value(:, i), the first |j| elements are not used and the next
m− |j| elements are the |j|th diagonal below the main diagonal in A;

j > 0, implies that in the column value(:, i), the first min(m,n − j) elements are the j th

diagonal above main diagonal in A and the remaining elements are not used.

For the case m > n, then:

j < 0, implies that in the column value(:, i), the first n − min(n,m − |j|) elements are not
used and the next min(n,m− |j|) elements are the |j|th diagonal below the main diagonal in
A;

j > 0, implies that in the column value(:, i), the first n−j elements are the jth diagonal above
main diagonal in A and the remaining elements are not used.

If A is symmetric or Hermitian only the diagonals of lower (or upper) triangle of A are stored.

5.5 Storage Scheme

Two derived types nag sparse mat real wp and nag sparse mat cmplx wp are defined by the Library
to store real and complex sparse matrices. A structure of one of the derived types will contain all the
information needed to define the sparse matrix. The module nag sparse mat contains the definition of
the derived types and procedures to manipulate these types.

[NP3506/4] 4.0.9

