
Special Functions Module Contents

Module 3.8: nag airy fun

Airy Functions

nag airy fun contains procedures for approximating Airy functions, or their derivatives,
with real or complex arguments.

Contents

Introduction . 3.8.3

Procedures

nag airy ai . 3.8.5
Airy function Ai(z)

nag airy bi . 3.8.9
Airy function Bi(z)

Examples

Example 1: A simple use of nag airy ai . 3.8.13

Example 2: A simple use of nag airy bi . 3.8.17

References . 3.8.20

[NP3245/3/pdf] Module 3.8: nag airy fun 3.8.1

Module Contents Special Functions

3.8.2 Module 3.8: nag airy fun [NP3245/3/pdf]

Special Functions Module Introduction

Introduction
This module contains procedures for approximating Airy functions, or their derivatives, with real or
complex arguments.

The Airy functions Ai(z) and Bi(z) are linearly independent solutions of the differential equation

d2y

dz2
− z y = 0.

Given a real/complex value of the argument z, the procedures nag airy ai and nag airy bi approximate
the values of Ai(z) and Bi(z); or their derivatives Ai′(z) and Bi′(z) respectively.

Airy functions are related to Bessel functions of fractional order by the equations:

Ai(z) =
√

zK1/3(w)

π
√
3

, Ai′(z) =
−zK2/3(w)

π
√
3

Bi(z) =
√

z√
3
(I−1/3(w) + I1/3(w)), Bi′(z) =

z√
3
(I−2/3(w) + I2/3(w)),

where Kν and Iν are the modified Bessel functions and w = 2z
√

z/3.

In the case of real arguments, the algorithms are based on a number of Chebyshev expansions; while in
the complex case the algorithms are based on an efficient recurrence relation used in the right half plane
and analytically continued into the left half plane. Further details appear in Section 6.1 of the individual
procedure documents.

For further details of Airy functions, see Abramowitz and Stegun [1], Chapter 10.

[NP3245/3/pdf] Module 3.8: nag airy fun 3.8.3

Module Introduction Special Functions

3.8.4 Module 3.8: nag airy fun [NP3245/3/pdf]

Special Functions nag airy ai

Procedure: nag airy ai

1 Description

nag airy ai evaluates an approximation to the Airy function Ai(z) or its derivative Ai′(z).

2 Usage

USE nag airy fun

[value =] nag airy ai(z [, optional arguments])

The function result is a scalar, of the same type as z, containing Ai(z) or Ai′(z).

3 Arguments

3.1 Mandatory Argument

z — real(kind=wp)/complex(kind=wp), intent(in)
Input: the argument z of the function.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

deriv — logical, intent(in), optional
Input: specifies whether the function or its derivative is required.

If deriv = .false., Ai(z) is returned;
if deriv = .true., Ai′(z) is returned.

Default: deriv = .false..

scale — logical, intent(in), optional
Input: specifies whether or not the result should be scaled when z is complex.

If scale = .true., and z is complex the result is returned scaled by the factor e2z
√

z/3;
if scale = .false., the result is returned unscaled.

Default: scale = .false..
Note: when z is real, scale is ignored.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

[NP3245/3/pdf] Module 3.8: nag airy fun 3.8.5

nag airy ai Special Functions

4 Error Codes

Failures (error%level = 2):

error%code Description

201 Possibility of underflow.

z is real, large and positive. There is a danger of underflow since Ai(z) and Ai′(z)
decay exponentially. The value zero is returned.

202 Impossible to calculate phase accurately.

z is real, large and negative. It is impossible to calculate the phase of the oscillatory
function with any precision. The value zero is returned.

203 Partial loss of accuracy.

z is complex and |z| is too large, so that errors due to argument reduction in
elementary functions make it likely that the result is accurate to less than half of
machine precision.

204 Total loss of accuracy.

z is complex and |z| is too large, so that errors due to argument reduction in
elementary functions mean that all precision in the result would be lost. The value
zero is returned.

205 Possibility of overflow.

z is complex and the real part of 2.0z
√
z/3.0 is too large, so that overflow may occur

during the calculations. This problem may be avoided by supplying the optional
argument scale set to .true..

206 Termination condition has not been met.

This error may occur because z is complex and the arguments would have caused
overflow or underflow. This problem may be avoided if the optional argument scale
is used and set to .true..

207 Possibility of underflow.

The returned result is set to zero since there is a danger of underflow. This can only
occur when z is complex and scale = .false..

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Algorithmic Detail

Real Arguments

For real arguments the following expansions are used to evaluate Ai(z) and Ai′(z):

• For z < −5,

Ai(z) = 4
√
−z [a1(t) sin y − b1(t) cos y] ,

Ai′(z) = 4
√
−z

[
a2(t) cos y +

b2(t)
ζ

sin y

]
,

where y = π/4+ζ, ζ = 2
√
−z3/3 and a1(t), b1(t), a2(t) and b2(t) are expansions in t = −2(5/z)3−1.

3.8.6 Module 3.8: nag airy fun [NP3245/3/pdf]

Special Functions nag airy ai

• For −5 ≤ z ≤ 0,

Ai(z) = f1(t)− zg1(t), Ai′(z) = z2f2(t)− g2(t),

where f1, g1, f2 and g2 are expansions in t = −2(z/5)3 − 1.

• For 0 < z < 4.5,

Ai(z) = e−3z/2s1(t), Ai′(z) = e−11z/8s2(t),

where s1 and s2 are expansions in t = 4z/9− 1.

• For 4.5 ≤ z < 9,

Ai(z) = e−5z/2u1(t), Ai′(z) = e−5z/2u2(t),

where u1 and u2 are expansions in t = 4z/9− 3.

• For z ≥ 9,

Ai(z) = 4
√

ze−yv1(t), Ai′(z) = 4
√
−ze−yv2(t),

where y = 2
√

z3/3 and v1 and v2 are expansions in t = 36/y − 1.

• For |z| < EPSILON(1.0 wp), the results are set directly to Ai(0) and Ai′(0) respectively. This saves
time and guards against underflow in intermediate calculations.

• For large negative arguments it becomes impossible to calculate the phase of the oscillatory function
with any accuracy and the procedure fails. This occurs when

z < −
(

3
2× EPSILON(1.0 wp)

)2/3

for evaluation of Ai(z) and when

z < −
(√

π

EPSILON(1.0 wp)

)4/7

for evaluation of Ai′(z).

• For large positive arguments, where Ai and Ai′ decay in an essentially exponential manner, there
is a danger of underflow so the procedure fails.

Complex Arguments

For complex arguments the procedure is derived from the routine CAIRY in Amos [2]. It is based on

the relations Ai(z) =
√

zK1/3(w)

π
√
3

, and Ai′(z) =
−zK2/3(w)

π
√
3

, where Kν is the modified Bessel function

and w = 2z
√

z/3.

For very large |z|, argument reduction will cause total loss of accuracy, and so no computation is
performed. For slightly smaller |z|, the computation is performed but the results are accurate to less
than half of the machine precision. If the real part of w is too large and an unscaled function is required,
there is a risk of overflow and no computation is performed.

6.2 Accuracy

Real Arguments

For a real argument z, the accuracy in calculating Ai(z) or Ai′(z) depends on the value of z.

For negative arguments the functions are oscillatory and hence absolute error is the appropriate measure.
In the positive region the function is essentially exponential in character and here relative error is

[NP3245/3/pdf] Module 3.8: nag airy fun 3.8.7

nag airy ai Special Functions

appropriate. The absolute error E1 and the relative error ε1 in the computed value of Ai(z) are related
in principle to the relative error in the argument, δ, by

E1 � |zAi′(z)|δ, ε1 �
∣∣∣∣zAi

′(z)
Ai(z)

∣∣∣∣ δ.

Similarly, the absolute error E2 and relative error ε2 in the computed value of Ai′(z) satisfy

E2 � |z2Ai(z)|δ, ε2 �
∣∣∣∣z

2Ai(z)
Ai′(z)

∣∣∣∣ δ

in principle. In practice, approximate equality is the best that can be expected. When δ, E1, E2, ε1 or
ε2 is of the order of EPSILON(1.0 wp), the errors in the result will be somewhat larger.

For small z, errors are strongly damped by the function and hence will be bounded essentially by the
value of EPSILON(1.0 wp).

For moderate to large negative z, the error in Ai(z) is oscillatory, and the amplitude E1/δ of the error
grows like |z|5/4/

√
π. However the phase error will be growing roughly like 2|z|3/2/3 and hence all

accuracy will be lost for large negative arguments due to the impossibility of calculating sin and cos to
any accuracy if 2|z|3/2/3 > 1/δ. Similarly, the amplitude E2/δ of the error in Ai′(z) grows like |z|7/4/

√
π.

Therefore it becomes impossible to calculate the function with any accuracy if |z|7/4 >
√

π/δ.

For large positive arguments, the relative error amplification for computation of both Ai(z) and Ai′(z)
is considerable:

ε1

δ
∼

√
z3,

ε2

δ
∼

√
z3.

However, very large arguments are not possible due to the danger of underflow. Thus in practice error
amplification is limited.

Complex Arguments

For complex z, all constants used by this procedure are given to approximately 18 digits of precision.
Let t denote the number of digits of precision in the floating-point arithmetic being used. Clearly the
maximum number of correct digits in the results obtained is limited by p = min(t, 18). Because of errors
in argument reduction occurring during the evaluation of elementary functions by this procedure, the
actual number of correct digits is limited, in general, by p − s, where s ≈ max(1, | log10 |z||) represents
the number of digits lost due to the argument reduction. Thus the larger the value of |z|, the less the
precision in the result.

Empirical tests with modest values of z, checking relations between Airy functions Ai(z), Ai′(z), Bi(z)
and Bi′(z), have shown errors limited to the least significant 3–4 digits of precision.

3.8.8 Module 3.8: nag airy fun [NP3245/3/pdf]

Special Functions nag airy bi

Procedure: nag airy bi

1 Description

nag airy bi evaluates an approximation to the Airy function Bi(z) or its derivative Bi′(z).

2 Usage

USE nag airy fun

[value =] nag airy bi(z [, optional arguments])

The function result is a scalar, of the same type as z, containing Bi(z) or Bi′(z).

3 Arguments

3.1 Mandatory Argument

z — real(kind=wp)/complex(kind=wp), intent(in)
Input: the argument z of the function.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

deriv — logical, intent(in), optional
Input: specifies whether the function or its derivative is required.

If deriv = .false., Bi(z) is returned;
if deriv = .true., Bi′(z) is returned.

Default: deriv = .false..

scale — logical, intent(in), optional
Input: specifies whether or not the result is scaled when z is complex.

If scale = .true., and z is complex the result is returned scaled by the factor e|Re(2z
√

z/3)|;
if scale = .false., the result is returned unscaled.

Default: scale = .false..
Note: when z is real, scale is ignored.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

[NP3245/3/pdf] Module 3.8: nag airy fun 3.8.9

nag airy bi Special Functions

4 Error Codes

Failures (error%level = 2):

error%code Description

201 Possibility of overflow.

z is real, large and positive. No computation has been performed due to the likelihood
of overflow since Bi(z) grows in an exponential manner. The value zero is returned.

202 Impossible to calculate phase accurately.

z is real, large and negative. It is impossible to calculate the phase of the oscillatory
function with any precision. The value zero is returned.

203 Partial loss of accuracy.

z is complex and |z| is too large, so that errors due to argument reduction in
elementary functions make it likely that the result is accurate to less than half of
machine precision.

204 Total loss of accuracy.

z is complex and |z| is too large, so that errors due to argument reduction in
elementary functions mean that all precision in the result would be lost. The value
zero is returned.

205 Possibility of overflow.

z is complex and the real part of (z) is too large, so that overflow may occur during
the calculations. This problem may be avoided by supplying the optional argument
scale set to .true..

206 Termination condition has not been met.

This error may occur because z is complex and the arguments would have caused
overflow or underflow. This problem may be avoided if the optional argument scale
is used and set to .true..

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.

6 Further Comments

6.1 Algorithmic Detail

Real Arguments

For real arguments the following expansions are used to evaluate Bi(z) and Bi′(z):

• For z < −5,

Bi(z) = 4
√
−z [a1(t) cos y + b1(t) sin y] ,

Bi′(z) = 4
√
−z

[
−a2(t) sin y +

b2(t)
ζ

cos y
]

,

where y = π/4+ζ, ζ = 2
√
−z3/3 and a1(t), b1(t), a2(t) and b2(t) are expansions in t = −2(5/z)3−1.

• For −5 ≤ z ≤ 0,

Bi(z) =
√
3(f1(t) + zg1(t)), Bi′(z) =

√
3(z2f2(t) + g2(t)),

where f1, g1, f2 and g2 are expansions in t = −2(z/5)3 − 1.

3.8.10 Module 3.8: nag airy fun [NP3245/3/pdf]

Special Functions nag airy bi

• For 0 < z < 4.5,

Bi(z) = e11z/8s1(t), Bi′(z) = e3z/2s2(t),

where s1 and s2 are expansions in t = 4z/9− 1.

• For 4.5 ≤ z < 9,

Bi(z) = e5z/2u1(t), Bi′(z) = e21z/8u2(t),

where u1 and u2 are expansions in t = 4z/9− 3.

• For z ≥ 9,

Bi(z) = 4
√

zeyv1(t), Bi′(z) = 4
√

zeyv2(t),

where y = 2
√

z3/3 and v1 and v2 are expansions in t = 36/y − 1.

• For |z| < EPSILON(1.0 wp), the results are set directly to Bi(0) and Bi′(0) respectively. This saves
time and guards against underflow in intermediate calculations.

• For large negative arguments it becomes impossible to calculate the phase of the oscillatory function
with any accuracy and the procedure fails. This occurs when

z < −
(

3
2× EPSILON(1.0 wp)

)2/3

for evaluation of Bi(z) and when

z < −
(√

π

EPSILON(1.0 wp)

)4/7

for evaluation of Bi′(z).

• For large positive arguments, where Bi and Bi′ grow in an essentially exponential manner, there is
a danger of overflow so the procedure fails.

Complex Arguments

For complex arguments the procedure is derived from the routine CBIRY in Amos [2]. It is based on

the relations Bi(z) =
√

z√
3
(I−1/3(w) + I1/3(w)), and Bi

′(z) =
z√
3
(I−2/3(w) + I2/3(w)), where Iν is the

modified Bessel function and w = 2z
√

z/3.

For very large |z|, argument reduction will cause total loss of accuracy, and so no computation is
performed. For slightly smaller |z|, the computation is performed but the results are accurate to less
than half of the machine precision. If the real part of z is too large and an unscaled function is required,
there is a risk of overflow and no computation is performed.

6.2 Accuracy

Real Arguments

For a real argument z, the accuracy in calculating Bi(z) or Bi′(z) depends on the value of z.

For negative arguments the functions are oscillatory and hence absolute error is the appropriate measure.
In the positive region the function is essentially exponential in character and here relative error is
appropriate. The absolute error E1 and the relative error ε1 are related in principle to the relative error
in the argument, δ, by

E1 � |zBi′(z)|δ, ε1 �
∣∣∣∣zBi

′(z)
Bi(z)

∣∣∣∣ δ.

[NP3245/3/pdf] Module 3.8: nag airy fun 3.8.11

nag airy bi Special Functions

Similarly, the absolute error E2 and relative error ε2 in the computed value of Bi′(z) satisfy

E2 � |z2 Bi(z)|δ, ε2 �
∣∣∣∣z

2 Bi(z)
Bi′(z)

∣∣∣∣ δ

in principle. In practice, approximate equality is the best that can be expected. When δ, E1, E2, ε1 or
ε2 is of the order of EPSILON(1.0 wp), the errors in the result will be somewhat larger.

For small z, errors are strongly damped and hence will be bounded essentially by the value of
EPSILON(1.0 wp).

For moderate to large negative z, the error in Bi(z) is oscillatory, and the amplitude E1/δ of the error
grows like |z|5/4/

√
π. However the phase error will be growing roughly like 2|z|3/2/3 and hence all

accuracy will be lost for large negative arguments due to the impossibility of calculating sin and cos to
any accuracy if 2|z|3/2/3 > 1/δ. Similarly, the amplitude E2/δ of the error in Bi′(z) grows like |z|7/4/

√
π.

Therefore it becomes impossible to calculate the function with any accuracy if |z|7/4 >
√

π/δ.

For large positive arguments, the relative error amplification for computation of both Bi(z) and Bi′(z)
is considerable:

ε1

δ
∼

√
z3,

ε2

δ
∼

√
z3.

However, very large arguments are not possible due to the danger of underflow. Thus in practice error
amplification is limited.

Complex Arguments

For complex z, all constants used by this procedure are given to approximately 18 digits of precision.
Let t denote the number of digits of precision in the floating-point arithmetic being used. Clearly the
maximum number of correct digits in the results obtained is limited by p = min(t, 18). Because of errors
in argument reduction occurring during the evaluation of elementary functions by this procedure, the
actual number of correct digits is limited, in general, by p − s, where s ≈ max(1, | log10 |z||) represents
the number of digits lost due to the argument reduction. Thus the larger the value of |z|, the less the
precision in the result.

Empirical tests with modest values of z, checking relations between Airy functions Ai(z), Ai′(z), Bi(z)
and Bi′(z), have shown errors limited to the least significant 3–4 digits of precision.

3.8.12 Module 3.8: nag airy fun [NP3245/3/pdf]

Special Functions Example 1

Example 1: A simple use of nag airy ai

This example program uses the function nag airy ai to evaluate Ai(z) and Ai′(z) for real and complex
values.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_airy_fun_ex01

! Example Program Text for nag_airy_fun

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_out

USE nag_airy_fun, ONLY : nag_airy_ai

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i

REAL (wp) :: result_r

COMPLEX (wp) :: result_c

! .. Local Arrays ..

REAL (wp) :: x(7)

COMPLEX (wp) :: z(4)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_airy_fun_ex01’

x = (/ -10.0_wp, -1.0_wp, 0.0_wp, 1.0_wp, 5.0_wp, 10.0_wp, 20.0_wp/)

! Airy function Ai - real arguments

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’ x Ai(x)’

DO i = 1, 7

result_r = nag_airy_ai(x(i))

WRITE (nag_std_out,’(2(1x,1p,E12.3))’) x(i), result_r

END DO

! Derivative of Airy function Ai - real arguments

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’ x Ai’’(x)’

DO i = 1, 7

result_r = nag_airy_ai(x(i),deriv=.TRUE.)

WRITE (nag_std_out,’(2(1x,1p,E12.3))’) x(i), result_r

END DO

z(1) = (0.3_wp,0.4_wp)

z(2) = (0.2_wp,0.0_wp)

z(3) = (1.1_wp,-6.6_wp)

z(4) = (-1.0_wp,0.0_wp)

[NP3245/3/pdf] Module 3.8: nag airy fun 3.8.13

Example 1 Special Functions

! Airy function Ai - complex arguments, no scaling

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’ z Ai(z)’

DO i = 1, 4

result_c = nag_airy_ai(z(i))

WRITE (nag_std_out,’(2(2x,’’(’’,F8.4,’’,’’,F8.4,’’)’’))’) z(i), result_c

END DO

! Airy function Ai - complex arguments, scaled

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’ z scaled Ai(z)’

DO i = 1, 4

result_c = nag_airy_ai(z(i),scale=.TRUE.)

WRITE (nag_std_out,’(2(2x,’’(’’,F8.4,’’,’’,F8.4,’’)’’))’) z(i), result_c

END DO

! Derivative of Airy function Ai - complex argument, no scaling

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’ z Ai’’(z)’

DO i = 1, 4

result_c = nag_airy_ai(z(i),deriv=.TRUE.)

WRITE (nag_std_out,’(2(2x,’’(’’,F8.4,’’,’’,F8.4,’’)’’))’) z(i), result_c

END DO

! Derivative of Airy function Ai - complex argument, scaled

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’ z scaled Ai’’(z)’

DO i = 1, 4

result_c = nag_airy_ai(z(i),scale=.TRUE.,deriv=.TRUE.)

WRITE (nag_std_out,’(2(2x,’’(’’,F8.4,’’,’’,F8.4,’’)’’))’) z(i), result_c

END DO

END PROGRAM nag_airy_fun_ex01

2 Program Data

None.

3 Program Results
Example Program Results for nag_airy_fun_ex01

x Ai(x)

-1.000E+01 4.024E-02

-1.000E+00 5.356E-01

0.000E+00 3.550E-01

1.000E+00 1.353E-01

5.000E+00 1.083E-04

1.000E+01 1.105E-10

2.000E+01 1.692E-27

x Ai’(x)

-1.000E+01 9.963E-01

3.8.14 Module 3.8: nag airy fun [NP3245/3/pdf]

Special Functions Example 1

-1.000E+00 -1.016E-02

0.000E+00 -2.588E-01

1.000E+00 -1.591E-01

5.000E+00 -2.474E-04

1.000E+01 -3.521E-10

2.000E+01 -7.586E-27

z Ai(z)

(0.3000, 0.4000) (0.2716, -0.1002)

(0.2000, 0.0000) (0.3037, 0.0000)

(1.1000, -6.6000) (-43.6632,-47.9030)

(-1.0000, 0.0000) (0.5356, 0.0000)

z scaled Ai(z)

(0.3000, 0.4000) (0.2998, -0.0366)

(0.2000, 0.0000) (0.3224, 0.0000)

(1.1000, -6.6000) (0.1655, 0.0597)

(-1.0000, 0.0000) (0.4209, -0.3312)

z Ai’(z)

(0.3000, 0.4000) (-0.2612, 0.0385)

(0.2000, 0.0000) (-0.2524, 0.0000)

(1.1000, -6.6000) (164.8134, 23.5278)

(-1.0000, 0.0000) (-0.0102, 0.0000)

z scaled Ai’(z)

(0.3000, 0.4000) (-0.2744, -0.0236)

(0.2000, 0.0000) (-0.2679, 0.0000)

(1.1000, -6.6000) (-0.4254, 0.1523)

(-1.0000, 0.0000) (-0.0080, 0.0063)

[NP3245/3/pdf] Module 3.8: nag airy fun 3.8.15

Example 1 Special Functions

3.8.16 Module 3.8: nag airy fun [NP3245/3/pdf]

Special Functions Example 2

Example 2: A simple use of nag airy bi

This example program uses the function nag airy bi to evaluate Bi(z) and Bi′(z) for real and complex
values.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_airy_fun_ex02

! Example Program Text for nag_airy_fun

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_out

USE nag_airy_fun, ONLY : nag_airy_bi

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i

REAL (wp) :: result_r

COMPLEX (wp) :: result_c

! .. Local Arrays ..

REAL (wp) :: x(7)

COMPLEX (wp) :: z(4)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_airy_fun_ex02’

x = (/ -10.0_wp, -1.0_wp, 0.0_wp, 1.0_wp, 5.0_wp, 10.0_wp, 20.0_wp/)

! Airy function Bi - real arguments

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’ x Bi(x)’

DO i = 1, 7

result_r = nag_airy_bi(x(i))

WRITE (nag_std_out,’(2(1x,1p,E12.3))’) x(i), result_r

END DO

! Derivative of Airy function Bi - real arguments

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’ x Bi’’(x)’

DO i = 1, 7

result_r = nag_airy_bi(x(i),deriv=.TRUE.)

WRITE (nag_std_out,’(2(1x,1p,E12.3))’) x(i), result_r

END DO

z(1) = (0.3_wp,0.4_wp)

z(2) = (0.2_wp,0.0_wp)

z(3) = (1.1_wp,-6.6_wp)

z(4) = (-1.0_wp,0.0_wp)

[NP3245/3/pdf] Module 3.8: nag airy fun 3.8.17

Example 2 Special Functions

! Airy function Bi - complex arguments, no scaling

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’ z Bi(z)’

DO i = 1, 4

result_c = nag_airy_bi(z(i))

WRITE (nag_std_out,’(2(2x,’’(’’,F8.4,’’,’’,F8.4,’’)’’))’) z(i), result_c

END DO

! Airy function Bi - complex arguments, scaled

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’ z scaled Bi(z)’

DO i = 1, 4

result_c = nag_airy_bi(z(i),scale=.TRUE.)

WRITE (nag_std_out,’(2(2x,’’(’’,F8.4,’’,’’,F8.4,’’)’’))’) z(i), result_c

END DO

! Derivative of Airy function Bi - complex argument, no scaling

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’ z Bi’’(z)’

DO i = 1, 4

result_c = nag_airy_bi(z(i),deriv=.TRUE.)

WRITE (nag_std_out,’(2(2x,’’(’’,F8.3,’’,’’,F8.3,’’)’’))’) z(i), result_c

END DO

! Derivative of Airy function Bi - complex argument, scaled

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’ z scaled Bi’’(z)’

DO i = 1, 4

result_c = nag_airy_bi(z(i),scale=.TRUE.,deriv=.TRUE.)

WRITE (nag_std_out,’(2(2x,’’(’’,F8.4,’’,’’,F8.4,’’)’’))’) z(i), result_c

END DO

END PROGRAM nag_airy_fun_ex02

2 Program Data

None.

3 Program Results
Example Program Results for nag_airy_fun_ex02

x Bi(x)

-1.000E+01 -3.147E-01

-1.000E+00 1.040E-01

0.000E+00 6.149E-01

1.000E+00 1.207E+00

5.000E+00 6.578E+02

1.000E+01 4.556E+08

2.000E+01 2.104E+25

x Bi’(x)

-1.000E+01 1.194E-01

3.8.18 Module 3.8: nag airy fun [NP3245/3/pdf]

Special Functions Example 2

-1.000E+00 5.924E-01

0.000E+00 4.483E-01

1.000E+00 9.324E-01

5.000E+00 1.436E+03

1.000E+01 1.429E+09

2.000E+01 9.382E+25

z Bi(z)

(0.3000, 0.4000) (0.7355, 0.1825)

(0.2000, 0.0000) (0.7055, 0.0000)

(1.1000, -6.6000) (-47.9039, 43.6634)

(-1.0000, 0.0000) (0.1040, 0.0000)

z scaled Bi(z)

(0.3000, 0.4000) (0.7051, 0.1750)

(0.2000, 0.0000) (0.6646, 0.0000)

(1.1000, -6.6000) (-0.1300, 0.1185)

(-1.0000, 0.0000) (0.1040, 0.0000)

z Bi’(z)

(0.300, 0.400) (0.409, 0.080)

(0.200, 0.000) (0.462, 0.000)

(1.100, -6.600) (23.526,-164.812)

(-1.000, 0.000) (0.592, 0.000)

z scaled Bi’(z)

(0.3000, 0.4000) (0.3924, 0.0764)

(0.2000, 0.0000) (0.4351, 0.0000)

(1.1000, -6.6000) (0.0638, -0.4473)

(-1.0000, 0.0000) (0.5924, 0.0000)

[NP3245/3/pdf] Module 3.8: nag airy fun 3.8.19

References Special Functions

References

[1] Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions Dover Publications (3rd
Edition)

[2] Amos D E (1986) Algorithm 644: A portable package for Bessel functions of a complex argument
and nonnegative order ACM Trans. Math. Software 12 265–273

3.8.20 Module 3.8: nag airy fun [NP3245/3/pdf]

