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Module 3.5: nag fresnel intg

Fresnel Integrals

nag fresnel intg contains procedures for approximating the Fresnel integrals S(x) and
C(x).
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Special Functions Module Introduction

Introduction
This module contains procedures for approximating Fresnel integrals.

• nag fresnel s approximates the Fresnel integral

S(x) =
∫ x

0

sin
(π

2
t2

)
dt.

• nag fresnel c approximates the Fresnel integral

C(x) =
∫ x

0

cos
(π

2
t2

)
dt.

Further details of Fresnel integrals may be found in Abramowitz and Stegun [1], Chapter 7.

In general the approximations are based on expansions in terms of Chebyshev polynomials Tr(t) =
cos(r arccos t). Further details appear in Section 6.1 of the individual procedure documents.
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Special Functions nag fresnel s

Procedure: nag fresnel s

1 Description

nag fresnel s evaluates an approximation to the Fresnel integral

S(x) =
∫ x

0

sin
(π

2
t2

)
dt.

2 Usage

USE nag fresnel intg

[value =] nag fresnel s(x)

The function result is a scalar, of type real(kind=wp), containing S(x).

3 Arguments

3.1 Mandatory Argument

x — real(kind=wp), intent(in)
Input: the argument x of the function.

4 Error Codes

None.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Algorithmic Detail

Since S(x) = −S(−x) it is only necessary to consider the case x ≥ 0.0.

• For 0 < x ≤ 3, the procedure uses a Chebyshev expansion of the form

S(x) = x3
∑′

r=0

arTr(t), with t = 2
(x

3

)4

− 1.

• For x > 3, it uses

S(x) =
1
2
− f(x)

x
cos

(π

2
x2

)
− g(x)

x3
sin

(π

2
x2

)
,

where f(x) =
∑′

r=0

brTr(t), and g(x) =
∑′

r=0

crTr(t), with t = 2
(
3
x

)4

− 1.

• For small x, S(x) � πx3/6. This approximation is used when x is sufficiently small for the result
to be correct to EPSILON(1.0 wp). For very small x, this approximation would underflow; the
result is then set exactly to zero.
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nag fresnel s Special Functions

• For large x, f(x) � 1/π and g(x) � 1/π2. Therefore for moderately large x, when 1/(π2x3) is
negligible compared with 0.5, the second term in the approximation for x > 3 may be dropped.
For very large x, when 1/(πx) becomes negligible, S(x) � 0.5. However there will be considerable
difficulties in calculating cos(πx2/2) accurately before this final limiting value can be used. Since
cos(πx2/2) is periodic, its value is essentially determined by the fractional part of x2. If x2 = N+θ
where N is an integer and 0 ≤ θ < 1, then cos(πx2/2) depends on θ and on N modulo 4. By
exploiting this fact, it is possible to retain significance in the calculation of cos(πx2/2) either all
the way to the very large x limit or at least until the integer part of x/2 is equal to the maximum
integer allowed on the machine.

6.2 Accuracy

Let δ and ε be the relative errors in the argument and result respectively.

If δ is somewhat larger than EPSILON(1.0 wp) (i.e., if δ is due to data errors etc.), then ε and δ are
approximately related by:

ε � |θ|δ, where θ =
x sin(πx2/2)

S(x)
.

The behaviour of the error amplification factor |θ| is shown in Figure 1.
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Figure 1: The error amplification factor |θ|.

However, if δ is of the same order as EPSILON(1.0 wp), then rounding errors could make ε slightly larger
than the above relation predicts.

For small x, ε � 3δ and hence there is only moderate amplification of relative error. Of course for very
small x where the correct result would underflow and exact zero is returned, relative error-control is lost.

For moderately large values of x, |ε| � |2x sin(πx2/2)||δ| and the result will be subject to increasingly
large amplification of errors. However, the above relation breaks down for large values of x (i.e., when
1/x2 is of the order of EPSILON(1.0 wp); in this region the relative error in the result is essentially
bounded by 2/(πx)).

Hence, the effects of error amplification are limited and at worst the relative error loss should not exceed
half the possible number of significant figures.
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Procedure: nag fresnel c

1 Description

nag fresnel c evaluates an approximation to the Fresnel integral

C(x) =
∫ x

0

cos
(
πt2/2

)
dt.

2 Usage

USE nag fresnel intg

[value =] nag fresnel c(x)

The function result is a scalar, of type real(kind=wp), containing C(x).

3 Arguments

3.1 Mandatory Argument

x — real(kind=wp), intent(in)
Input: the argument x of the function.

4 Error Codes

None.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Algorithmic Detail

Since C(x) = −C(−x) it is only necessary to consider the case x ≥ 0.0.

• For 0 < x ≤ 3, the procedure uses a Chebyshev expansion of the form

C(x) = x
∑′

r=0

arTr(t), with t = 2
(x

3

)4

− 1.

• For x > 3, it uses

C(x) =
1
2
+

f(x)
x

sin
(
πx2/2

)
− g(x)

x3
cos

(
πx2/2

)
,

where f(x) =
∑′

r=0

brTr(t), and g(x) =
∑′

r=0

crTr(t), with t = 2
(
3
x

)4

− 1.

• For small x, C(x) � x. This approximation is used when x is sufficiently small for the result to be
correct to EPSILON(1.0 wp).
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• For large x, f(x) � 1/π and g(x) � 1/π2. Therefore for moderately large x, when 1/(π2x3) is
negligible compared with 0.5, the second term in the approximation for x > 3 may be dropped.
For very large x, when 1/(πx) becomes negligible, C(x) � 0.5. However there will be considerable
difficulties in calculating sin(πx2/2) accurately before this final limiting value can be used. Since
sin(πx2/2) is periodic, its value is essentially determined by the fractional part of x2. If x2 = N+θ,
where N is an integer and 0 ≤ θ < 1, then sin(πx2/2) depends on θ and on N modulo 4. By
exploiting this fact, it is possible to retain some significance in the calculation of sin(πx2/2) either
all the way to the very large x limit or at least until the integer part of x/2 is equal to the maximum
integer allowed on the machine.

6.2 Accuracy

Let δ and ε be the relative errors in the argument and result respectively.

If δ is somewhat larger than EPSILON(1.0 wp) (i.e., if δ is due to data errors etc.), then ε and δ are
approximately related by:

ε � |θ|δ, where θ =
x cos(πx2/2)

C(x)
.

The behaviour of the error amplification factor |θ| is shown in Figure 2.
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Figure 2: The error amplification factor |θ|.

However if δ is of the same order as EPSILON(1.0 wp), then rounding errors could make ε slightly larger
than the above relation predicts.

For small x, ε � δ and there is no amplification of relative error.

For moderately large values of x, |ε| � |2x cos(πx2/2)||δ| and the result will be subject to increasingly
large amplification of errors. However, the above relation breaks down for large values of x (i.e., when
1/x2 is of the order of EPSILON(1.0 wp)); in this region the relative error in the result is essentially
bounded by 2/(πx)).

Hence, the effects of error amplification are limited and at worst the relative error loss should not exceed
half the possible number of significant figures.
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Example 1: Evaluation of the Fresnel Integrals

This example program evaluates the functions nag fresnel s and nag fresnel c at a set of values of
the argument x.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_fresnel_intg_ex01

! Example Program Text for nag_fresnel_intg

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_out

USE nag_fresnel_intg, ONLY : nag_fresnel_s, nag_fresnel_c

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: n = 11

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i

REAL (wp) :: c_x, s_x

! .. Local Arrays ..

REAL (wp) :: x(n)

! .. Executable Statements ..

WRITE (nag_std_out,*) &

’Example Program Results for nag_fresnel_intg_ex01’

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’ x S(x) C(x)’

x = (/ -1.0_wp, 0.0_wp, 0.5_wp, 1.0_wp, 2.0_wp, 4.0_wp, 5.0_wp, 6.0_wp, &

8.0_wp, 10.0_wp, 1000.0_wp/)

DO i = 1, n

s_x = nag_fresnel_s(x(i))

c_x = nag_fresnel_c(x(i))

WRITE (nag_std_out,fmt=’(1X,1P,3E12.3)’) x(i), s_x, c_x

END DO

END PROGRAM nag_fresnel_intg_ex01

2 Program Data

None.
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3 Program Results
Example Program Results for nag_fresnel_intg_ex01

x S(x) C(x)

-1.000E+00 -4.383E-01 -7.799E-01

0.000E+00 0.000E+00 0.000E+00

5.000E-01 6.473E-02 4.923E-01

1.000E+00 4.383E-01 7.799E-01

2.000E+00 3.434E-01 4.883E-01

4.000E+00 4.205E-01 4.984E-01

5.000E+00 4.992E-01 5.636E-01

6.000E+00 4.470E-01 4.995E-01

8.000E+00 4.602E-01 4.998E-01

1.000E+01 4.682E-01 4.999E-01

1.000E+03 4.997E-01 5.000E-01
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Additional Examples
Not all example programs supplied with NAG fl90 appear in full in this module document. The following
additional examples, associated with this module, are available.

nag fresnel intg ex02

Evaluation of the Fresnel integral S(x).

nag fresnel intg ex03

Evaluation of the Fresnel integral C(x).
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