
Special Functions Module Contents

Module 3.4: nag bessel fun

Bessel Functions

nag bessel fun contains procedures for approximating Bessel functions and modified
Bessel functions for real arguments x or complex arguments z.

Contents

Introduction . 3.4.3

Procedures

nag bessel j0 . 3.4.5
Bessel function J0(x)

nag bessel j1 . 3.4.9
Bessel function J1(x)

nag bessel j . 3.4.13
Bessel function Jν(z)

nag bessel y0 . 3.4.17
Bessel function Y0(x)

nag bessel y1 . 3.4.21
Bessel function Y1(x)

nag bessel y . 3.4.25
Bessel function Yν(z)

nag bessel i0 . 3.4.29
Modified Bessel function I0(x)

nag bessel i1 . 3.4.33
Modified Bessel function I1(x)

nag bessel i . 3.4.37
Modified Bessel function Iν(z)

nag bessel k0 . 3.4.41
Modified Bessel function K0(x)

nag bessel k1 . 3.4.45
Modified Bessel function K1(x)

nag bessel k . 3.4.49
Modified Bessel function Kν(z)

Examples

Example 1: Evaluation of Real Bessel Functions . 3.4.53

Example 2: Evaluation of Complex Bessel Functions . 3.4.57

Additional Examples . 3.4.59

References . 3.4.60

[NP3506/4] Module 3.4: nag bessel fun 3.4.1

Module Contents Special Functions

3.4.2 Module 3.4: nag bessel fun [NP3506/4]

Special Functions Module Introduction

Introduction

This module contains procedures for approximating Bessel functions and modified Bessel functions of
the first and second kinds, for real or complex arguments.

The Bessel functions Jν(z) and Yν(z) are linearly independent solutions of the differential equation

z2 d2w

dz2
+ z

dw

dz
+ (z2 − ν2)w = 0,

such that Jν(z) is bounded as z → 0. Jν(z) and Yν(z) are known as Bessel functions of the first
and second kinds respectively. For complex arguments the procedures nag bessel j and nag bessel y
approximate the values of the functions Jν(z) and Yν(z) respectively. The procedures nag bessel j0,
nag bessel j1, nag bessel y0 and nag bessel y1 are for real arguments and approximate the values
of the functions J0(x), J1(x), Y0(x) and Y1(x) respectively.

Similarly, the modified Bessel functions Iν(z) and Kν(z) are linearly independent solutions of the
differential equation

z2 d2w

dz2
+ z

dw

dz
− (z2 + ν2)w = 0,

such that Iν(z) is bounded as z → 0. Iν(z) and Kν(z) are known as modified Bessel functions of the first
and second kinds respectively. For complex arguments the procedures nag bessel i and nag bessel k
approximate the values of the functions Iν(z) and Kν(z) respectively. The procedures nag bessel i0,
nag bessel i1, nag bessel k0 and nag bessel k1 are for real arguments and approximate the values
of the functions I0(x), I1(x), K0(x) and K1(x) respectively.

The procedures for functions of a real argument are in general based on expansions in terms of Chebyshev
polynomials Tr(t) = cos(r arccos t), where t = t(x) is a mapping from the region of interest to the interval
[−1, 1], on which the Chebyshev polynomials are defined. Further details appear in Section 6.1 of the
individual procedure documents.

The procedures for functions of a complex argument relate all functions to the modified Bessel functions
Iν and Kν computed in the right-hand half complex plane, including their analytic continuations. Iν

and Kν are computed by different methods according to the values of z and ν. The methods include
power series, asymptotic expansions and Wronskian evaluations.

For further details of Bessel and modified Bessel functions, see Abramowitz and Stegun [1], Chapter 9.

[NP3506/4] Module 3.4: nag bessel fun 3.4.3

Module Introduction Special Functions

3.4.4 Module 3.4: nag bessel fun [NP3506/4]

Special Functions nag bessel j0

Procedure: nag bessel j0

1 Description

nag bessel j0 evaluates an approximation to the Bessel function of the first kind J0(x).

2 Usage

USE nag bessel fun

[value =] nag bessel j0(x [, optional arguments])

The function result is a scalar, of type real(kind=wp), containing J0(x).

3 Arguments

3.1 Mandatory Argument

x — real(kind=wp), intent(in)
Input: the argument x of the function.

3.2 Optional Argument

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Failures (error%level = 2):

error%code Description

201 The result is not accurate.

Argument x is too large for meaningful accuracy. Phase cannot be calculated
accurately. This procedure returns the amplitude of the J0 oscillation,

√
2/(π|x|).

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Algorithmic Detail

Since J0(−x) = J0(x), we need only consider the case x ≥ 0.

• For 0 < x ≤ 8, the procedure uses a Chebyshev expansion of the form

J0(x) =
∑′

r=0

arTr(t), with t = 2
(x

8

)2

− 1.

[NP3506/4] Module 3.4: nag bessel fun 3.4.5

nag bessel j0 Special Functions

• For x > 8, it uses

J0(x) =

√
2

πx

[
P0(x) cos

(
x − π

4

)
− Q0(x) sin

(
x − π

4

)]

where P0(x) =
∑′

r=0

brTr(t), and Q0(x) =
8
x

∑′

r=0

crTr(t), with t = 2
(

8
x

)2

− 1.

• For x near zero, J0(x) � 1. This approximation is used when x is sufficiently small for the result
to be correct to EPSILON(1.0 wp).

• For very large x, it becomes impossible to provide results with any reasonable accuracy (see Section
6.2), hence the procedure fails. Such arguments contain insufficient information to determine
the phase of oscillation of J0(x); only the amplitude,

√
2/(π|x|), can be determined and this is

returned if error%code = 201 on exit. The range for which this occurs is roughly related to
EPSILON(1.0 wp); the procedure will fail if |x| >∼ 1/EPSILON(1.0 wp).

6.2 Accuracy

Let δ be the relative error in the argument and E be the absolute error in the result. (Since J0(x)
oscillates about zero, absolute error and not relative error is significant.)

If δ is somewhat larger than EPSILON(1.0 wp) (e.g., if δ is due to data errors etc.), then E and δ are
approximately related by

E � |θ|δ, where θ = xJ1(x)

(provided E is also within machine bounds). The behaviour of the amplification factor |θ| is shown in
Figure 1.

0 2 4 6 8 1 0 1 2 1 4 1 6
0

0 . 5

1

1 . 5

2

2 . 5

3

E/δ

x

Figure 1: The error amplification factor |θ|.
However, if δ is of the same order as EPSILON(1.0 wp), then rounding errors could make E slightly
larger than the above relation predicts.

For very large x, the above relation ceases to apply. In this region,

J0(x) �
√

2
π|x| cos

(
x − π

4

)
.

The amplitude
√

2/(π|x|) can be calculated with reasonable accuracy for all x, but cos
(
x − π

4

)
cannot.

If x − π
4 is written as 2Nπ + φ where N is an integer and 0 ≤ φ < 2π, then cos

(
x − π

4

)
is determined

3.4.6 Module 3.4: nag bessel fun [NP3506/4]

Special Functions nag bessel j0

by φ only. If x >∼ δ−1, φ cannot be determined with any accuracy at all. Thus if x is greater than, or
of the order of, the inverse of EPSILON(1.0 wp), it is impossible to calculate the phase of J0(x) and the
procedure must fail.

[NP3506/4] Module 3.4: nag bessel fun 3.4.7

nag bessel j0 Special Functions

3.4.8 Module 3.4: nag bessel fun [NP3506/4]

Special Functions nag bessel j1

Procedure: nag bessel j1

1 Description

nag bessel j1 evaluates an approximation to the Bessel function of the first kind J1(x).

2 Usage

USE nag bessel fun

[value =] nag bessel j1(x [, optional arguments])

The function result is a scalar, of type real(kind=wp), containing J1(x).

3 Arguments

3.1 Mandatory Argument

x — real(kind=wp), intent(in)
Input: the argument x of the function.

3.2 Optional Argument

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Failures (error%level = 2):

error%code Description

201 The result is not accurate.

Argument x is too large for meaningful accuracy. Phase cannot be calculated
accurately. This procedure returns the amplitude of the J1 oscillation,

√
2/(π|x|).

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Algorithmic Detail

Since J1(−x) = −J1(x), we need only consider the case x ≥ 0.

• For 0 < x ≤ 8, the procedure uses a Chebyshev expansion of the form

J1(x) =
x

8

∑′

r=0

arTr(t), with t = 2
(x

8

)2

− 1.

[NP3506/4] Module 3.4: nag bessel fun 3.4.9

nag bessel j1 Special Functions

• For x > 8, it uses

J1(x) =

√
2

πx

[
P1(x) cos

(
x − 3π

4

)
− Q1(x) sin

(
x − 3π

4

)]

where P1(x) =
∑′

r=0

brTr(t) , and Q1(x) =
8
x

∑′

r=0

crTr(t) , with t = 2
(

8
x

)2

− 1.

• For x near zero, J1(x) � x/2. This approximation is used when x is sufficiently small for the result
to be correct to EPSILON(1.0 wp).

• For very large x, it becomes impossible to provide results with any reasonable accuracy (see Section
6.2), hence the procedure fails. Such arguments contain insufficient information to determine
the phase of oscillation of J1(x); only the amplitude,

√
2/(π|x|), can be determined and this is

returned if error%code = 201 on exit. The range for which this occurs is roughly related to
EPSILON(1.0 wp); the procedure will fail if |x| >∼ 1/EPSILON(1.0 wp).

6.2 Accuracy

Let δ be the relative error in the argument and E be the absolute error in the result. (Since J1(x)
oscillates about zero, absolute error and not relative error is significant.)

If δ is somewhat larger than EPSILON(1.0 wp) (e.g., if δ is due to data errors etc.), then E and δ are
approximately related by

E � |θ|δ, where θ = xJ0(x) − J1(x)

(provided E is also within machine bounds). The behaviour of the amplification factor |θ| is shown in
Figure 2.

0 2 4 6 8 1 0 1 2 1 4 1 6
0

0 . 5

1

1 . 5

2

2 . 5

3

E/δ

x

Figure 2: The error amplification factor |θ|.
However, if δ is of the same order as EPSILON(1.0 wp), then rounding errors could make E slightly
larger than the above relation predicts.

For very large x, the above relation ceases to apply. In this region,

J1(x) �
√

2
π|x| cos

(
x − 3π

4

)
.

The amplitude
√

2/(π|x|) can be calculated with reasonable accuracy for all x, but cos
(
x − 3π

4

)
cannot.

If x − 3π
4 is written as 2Nπ + φ where N is an integer and 0 ≤ φ < 2π, then cos

(
x − 3π

4

)
is determined

3.4.10 Module 3.4: nag bessel fun [NP3506/4]

Special Functions nag bessel j1

by φ only. If x >∼ δ−1, φ cannot be determined with any accuracy at all. Thus if x is greater than, or of
the order of the reciprocal of EPSILON(1.0 wp), it is impossible to calculate the phase of J1(x) and the
procedure must fail.

[NP3506/4] Module 3.4: nag bessel fun 3.4.11

nag bessel j1 Special Functions

3.4.12 Module 3.4: nag bessel fun [NP3506/4]

Special Functions nag bessel j

Procedure: nag bessel j

1 Description

nag bessel j evaluates an approximation to either the Bessel function of the first kind Jν(z), or the
sequence of Bessel functions of the first kind Jν+n(z), n = 0, 1, . . . , N − 1. The real non-negative order
is given by ν (or ν + n) and the complex argument z is such that −π < arg z ≤ π. There is also an
option for scaling the result.

2 Usage

USE nag bessel fun

[value =] nag bessel j(z, nu [, optional arguments])

The function result is a scalar of type complex(kind=wp), or
[value =] nag bessel j(z, nu, n [, optional arguments])

The function returns an array-valued result of type complex(kind=wp) and dimension N .

3 Arguments

3.1 Mandatory Arguments

z — complex(kind=wp), intent(in)
Input: the argument z of the function.

nu — real(kind=wp), intent(in)
Input: the order, ν, of the first member of the sequence of functions.
Constraints: nu ≥ 0.0.

n — integer, intent(in)
Input: the number of terms, N , in the sequence of functions Jν+n(z), n = 0, 1, . . . , N − 1.
Constraints: n ≥ 1.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

scale — logical, intent(in), optional
Input: determines whether or not the results are scaled.

If scale = .true., then the results are scaled by the factor e−|Im(z)|;
if scale = .false., then the results are returned unscaled.

This option can be used to prevent underflow or overflow from occurring, thus increasing the range
of the valid arguments.
Default: scale = .false..

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

[NP3506/4] Module 3.4: nag bessel fun 3.4.13

nag bessel j Special Functions

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

Failures (error%level = 2):

error%code Description

201 Possibility of overflow.

Im(z) is too large. No computation has been performed due to the likelihood of
overflow.

202 Total loss of accuracy.

|z| or nu + n − 1 is too large, so that errors due to argument reduction in elementary
functions mean that all precision would be lost.

203 Partial loss of accuracy.

|z| or nu + n − 1 is too large, so that errors due to argument reduction in elementary
functions make it likely that the result is accurate to less than half of machine
precision.

204 Termination condition has not been met.

This error may occur because the arguments supplied would have caused overflow or
underflow. This problem may be avoided by supplying the optional argument scale
set to .true..

205 Possibility of underflow.

All or some of the returned results have been set to zero because of underflow.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.

6 Further Comments

If the function required is J0(z) or J1(z), i.e., ν = 0.0 or ν = 1.0, where z is real and positive, and only
a single unscaled function is required, then it is much cheaper to use the procedure nag bessel j0 or
nag bessel j1 respectively.

6.1 Algorithmic Detail

The procedure is derived from the routine CBESJ in Amos [2]. It is based on the relation

Jν(z) =
{

eνπi/2Iν(−iz), Im(z) ≥ 0.0,

e−νπi/2Iν(iz), Im(z) < 0.0.

The Bessel function Iν(z) is computed using a variety of techniques depending on the region under
consideration.

When N > 1, extra values of Jν(z) are computed using recurrence relations.

Although the procedure may not be called with ν less than zero, for negative orders the formulae

J−ν(z) = Jν(z) cos(πν) − Yν(z) sin(πν)

3.4.14 Module 3.4: nag bessel fun [NP3506/4]

Special Functions nag bessel j

may be used (for the Bessel function Yν(z) see the procedure nag bessel y).

For very large |z| or (ν + N − 1), argument reduction will cause total loss of accuracy, and so no
computation is performed. For slightly smaller |z| or (ν + N − 1), the computation is performed but the
results are accurate to less than half of machine precision. If Im(z) is large, there is the risk of overflow
and so no computation is performed.

6.2 Accuracy

All constants used by this procedure are given to approximately 18 digits of precision. Let t denote the
number of digits of precision in the floating-point arithmetic being used. Clearly the maximum number
of correct digits in the results obtained is limited by p = min(t, 18). Because of errors in argument
reduction occurring during the evaluation of elementary functions by this procedure, the actual number
of correct digits is limited, in general, by p − s, where s ≈ max(1, | log10 |z||), | log10 ν|) represents the
number of digits lost due to the argument reduction. Thus the larger the values of |z| and ν, the less
the precision in the result. If this procedure is called with N > 1, then computation of function values
via recurrence may lead to some further small loss of accuracy.

If function values which should nominally be identical are computed by calls to this procedure with
different base values of ν and different N , the computed values may not agree exactly. Empirical tests
with modest values of ν and z have shown that the discrepancy is limited to the least significant 3–4
digits of precision.

[NP3506/4] Module 3.4: nag bessel fun 3.4.15

nag bessel j Special Functions

3.4.16 Module 3.4: nag bessel fun [NP3506/4]

Special Functions nag bessel y0

Procedure: nag bessel y0

1 Description

nag bessel y0 evaluates an approximation to the Bessel function of the second kind Y0(x).

2 Usage

USE nag bessel fun

[value =] nag bessel y0(x [, optional arguments])

The function result is a scalar, of type real(kind=wp), containing Y0(x).

3 Arguments

3.1 Mandatory Argument

x — real(kind=wp), intent(in)
Input: the argument x of the function.
Constraints: x > 0.0.

3.2 Optional Argument

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

Failures (error%level = 2):

error%code Description

201 The result is not accurate.

Argument x is too large for meaningful accuracy. Phase cannot be calculated
accurately. This procedure returns the amplitude of the Y0 oscillation,

√
2/(πx).

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

[NP3506/4] Module 3.4: nag bessel fun 3.4.17

nag bessel y0 Special Functions

6 Further Comments

6.1 Algorithmic Detail

• For x ≤ 0, the result Y0(x) is undefined and the procedure will fail for such arguments.

• For 0 < x ≤ 8, the procedure uses a Chebyshev expansion of the form

Y0(x) =
2
π

ln x
∑′

r=0

arTr(t) +
∑′

r=0

brTr(t), with t = 2
(x

8

)2

− 1,

• For x > 8, it uses

Y0(x) =

√
2

πx

[
P0(x) sin

(
x − π

4

)
+ Q0(x) cos

(
x − π

4

)]

where P0(x) =
∑′

r=0

crTr(t), and Q0(x) =
8
x

∑′

r=0

drTr(t), with t = 2
(

8
x

)2

− 1.

• For x near zero,

Y0(x) � 2
π

(
ln

(x

2

)
+ γ

)
,

where γ denotes Euler’s constant. This approximation is used when x is sufficiently small for the
result to be correct to EPSILON(1.0 wp).

• For very large x, it becomes impossible to provide results with any reasonable accuracy (see Section
6.2), hence the procedure fails. Such arguments contain insufficient information to determine the
phase of oscillation of Y0(x); only the amplitude,

√
2/(πx), can be determined and this is returned if

error%code = 201 on exit. The range for which this occurs is roughly related to EPSILON(1.0 wp):
the procedure will fail if x >∼ 1/EPSILON(1.0 wp).

6.2 Accuracy

Let δ be the relative error in the argument and E be the absolute error in the result. (Since Y0(x)
oscillates about zero, absolute error and not relative error is significant, except for very small x.)

If δ is somewhat larger than the machine representation error (e.g., if δ is due to data errors etc.), then
E and δ are approximately related by

E � |θ|δ where θ = xY1(x)

(provided E is also within machine bounds). The behaviour of the amplification factor |θ| is shown in
Figure 3.
However, if δ is of the same order as the machine representation errors, then rounding errors could make
E slightly larger than the above relation predicts.

For very small x, the errors are essentially independent of δ and the procedure should provide relative
accuracy bounded by EPSILON(1.0 wp).

For very large x, the above relation ceases to apply. In this region,

Y0(x) �
√

2
πx

sin
(
x − π

4

)
.

3.4.18 Module 3.4: nag bessel fun [NP3506/4]

Special Functions nag bessel y0

0 2 4 6 8 1 0 1 2 1 4 1 6
0

0 . 5

1

1 . 5

2

2 . 5

3

E/δ

x

Figure 3: The error amplification factor |θ|.

The amplitude
√

2/(πx) can be calculated with reasonable accuracy for all x, but sin
(
x − π

4

)
cannot.

If x − π
4 is written as 2Nπ + φ where N is an integer and 0 ≤ φ < 2π, then sin

(
x − π

4

)
is determined

by φ only. If x >∼ δ−1, φ cannot be determined with any accuracy at all. Thus if x is greater than, or
of the order of the inverse of EPSILON(1.0 wp), it is impossible to calculate the phase of Y0(x) and the
procedure must fail.

[NP3506/4] Module 3.4: nag bessel fun 3.4.19

nag bessel y0 Special Functions

3.4.20 Module 3.4: nag bessel fun [NP3506/4]

Special Functions nag bessel y1

Procedure: nag bessel y1

1 Description

nag bessel y1 evaluates an approximation to the Bessel function of the second kind Y1(x).

2 Usage

USE nag bessel fun

[value =] nag bessel y1(x [, optional arguments])

The function result is a scalar, of type real(kind=wp), containing Y1(x).

3 Arguments

3.1 Mandatory Argument

x — real(kind=wp), intent(in)
Input: the argument x of the function.
Constraints: x > 0.0.

3.2 Optional Argument

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

Failures (error%level = 2):

error%code Description

201 Possibility of overflow.

Argument x is too close to zero. This procedure returns the value of Y1(x) at the
nearest valid argument.

202 The result is not accurate.

Argument x is too large for meaningful accuracy. Phase cannot be calculated
accurately. This procedure returns the amplitude of the Y1 oscillation,

√
2/(πx).

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

[NP3506/4] Module 3.4: nag bessel fun 3.4.21

nag bessel y1 Special Functions

6 Further Comments

6.1 Algorithmic Detail

• For x ≤ 0, the result Y1(x) is undefined and the procedure will fail for such arguments.

• For 0 < x ≤ 8, the procedure uses a Chebyshev expansion of the form

Y1(x) =
2
π

ln x
x

8

∑′

r=0

arTr(t) − 2
πx

+
x

8

∑′

r=0

brTr(t), with t = 2
(x

8

)2

− 1.

• For x > 8, it uses

Y1(x) =

√
2

πx

[
P1(x) sin

(
x − 3π

4

)
+ Q1(x) cos

(
x − 3π

4

)]

where P1(x) =
∑′

r=0

crTr(t), and Q1(x) =
8
x

∑′

r=0

drTr(t), with t = 2
(

8
x

)2

− 1.

• For x near zero, Y1(x) � −2/(πx). This approximation is used when x is sufficiently small for the
result to be correct to EPSILON(1.0 wp). For extremely small x, there is a danger of overflow in
calculating −2/(πx) and for such arguments the procedure will fail.

• For very large x, it becomes impossible to provide results with any reasonable accuracy (see Section
6.2), hence the procedure fails. Such arguments contain insufficient information to determine the
phase of oscillation of Y1(x), only the amplitude,

√
2/(πx), can be determined and this is returned if

error%code = 202 on exit. The range for which this occurs is roughly related to EPSILON(1.0 wp);
the procedure will fail if x >∼ 1/EPSILON(1.0 wp).

6.2 Accuracy

Let δ be the relative error in the argument and E be the absolute error in the result. (Since Y1(x)
oscillates about zero, absolute error and not relative error is significant, except for very small x.)

If δ is somewhat larger than EPSILON(1.0 wp) (e.g., if δ is due to data errors etc.), then E and δ are
approximately related by

E � |θ|δ, where θ = xY0(x) − Y1(x)

(provided E is also within machine bounds). The behaviour of the amplification factor |θ| is shown in
Figure 4.

0 2 4 6 8 1 0 1 2 1 4 1 6
0

0 . 5

1

1 . 5

2

2 . 5

3

E/δ

x

Figure 4: The error amplification factor |θ|.

3.4.22 Module 3.4: nag bessel fun [NP3506/4]

Special Functions nag bessel y1

However, if δ is of the same order as EPSILON(1.0 wp), then rounding errors could make E slightly
larger than the above relation predicts.

For very small x, the absolute error becomes large, but the relative error in the result is of the same
order as δ.

For very large x, the above relation ceases to apply. In this region,

Y1(x) � 2
πx

sin
(

x − 3π

4

)
.

The amplitude 2/(πx) can be calculated with reasonable accuracy for all x, but sin
(
x − 3π

4

)
cannot. If

x − 3π
4 is written as 2Nπ + φ where N is an integer and 0 ≤ φ < 2π, then sin

(
x − 3π

4

)
is determined

by φ only. If x > δ−1, φ cannot be determined with any accuracy at all. Thus if x is greater than, or
of the order of, the inverse of EPSILON(1.0 wp), it is impossible to calculate the phase of Y1(x) and the
procedure must fail.

[NP3506/4] Module 3.4: nag bessel fun 3.4.23

nag bessel y1 Special Functions

3.4.24 Module 3.4: nag bessel fun [NP3506/4]

Special Functions nag bessel y

Procedure: nag bessel y

1 Description

nag bessel y evaluates an approximation to either the Bessel function of the second kind Yν(z), or the
sequence of Bessel functions of the second kind Yν+n(z), n = 0, 1, . . . , N −1. The real non-negative order
is given by ν (or ν + n) and the complex argument z is such that −π < arg z ≤ π. There is also an
option for scaling the result.

2 Usage

USE nag bessel fun

[value =] nag bessel y(z, nu [, optional arguments])

The function result is a scalar of type complex(kind=wp), or
[value =] nag bessel y(z, nu, n [, optional arguments])

The function returns an array-valued result of type complex(kind=wp) and dimension N .

3 Arguments

3.1 Mandatory Arguments

z — complex(kind=wp), intent(in)
Input: the argument z of the function.
Constraints: z �= (0.0, 0.0).

nu — real(kind=wp), intent(in)
Input: the order, ν, of the first member of the sequence of functions.
Constraints: nu ≥ 0.0.

n — integer, intent(in)
Input: the number of terms, N , in the sequence of functions Yν+n(z), n = 0, 1, . . . , N − 1.
Constraints: n ≥ 1.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

scale — logical, intent(in), optional
Input: determines whether or not the results are scaled.

If scale = .true., then the results are scaled by the factor e−|Im(z)|;
if scale = .false., then the results are returned unscaled.

This option can be used to prevent underflow or overflow from occurring, thus increasing the range
of the valid arguments.
Default: scale = .false..

[NP3506/4] Module 3.4: nag bessel fun 3.4.25

nag bessel y Special Functions

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

Failures (error%level = 2):

error%code Description

201 Possibility of overflow.

|z| is too small. No computation has been performed due to the likelihood of overflow.

202 Total loss of accuracy.

|z| or nu + n − 1 is too large, so that errors due to argument reduction in elementary
functions mean that all precision would be lost.

203 Partial loss of accuracy.

|z| or nu + n − 1 is too large, so that errors due to argument reduction in elementary
functions make it likely that the result is accurate to less than half of machine
precision.

204 Termination condition has not been met.

This error may occur because the arguments supplied would have caused overflow or
underflow. This problem may be avoided by supplying the optional argument scale
set to .true..

205 Possibility of underflow.

All or some of the returned results have been set to zero because of underflow.

206 Possibility of overflow.

nu + n −1 is too large for the given z. No computation has been performed due to
the likelihood of overflow.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.

6 Further Comments

If the function required is Y0(z) or Y1(z), i.e., ν = 0.0 or ν = 1.0, where z is real and positive, and only
a single unscaled function is required, then it is much cheaper to use the procedure nag bessel y0 or
nag bessel y1 respectively.

3.4.26 Module 3.4: nag bessel fun [NP3506/4]

Special Functions nag bessel y

6.1 Algorithmic Detail

The procedure is derived from the routine CBESY in Amos [2]. It is based on the relation

Yν(z) =
H

(1)
ν (z) − H

(2)
ν (z)

2i
,

where H(1)
ν (z) and H(2)

ν (z) are the Hankel functions of the first and second kinds respectively.

When N > 1 extra values of Yν(z) are computed using recurrence relations.

Although the procedure may not be called with ν less than zero, for negative orders the formulae

Y−ν(z) = Yν(z) cos(πν) + Jν(z) sin(πν)

may be used (for the Bessel function Jν(z) see the procedure nag bessel j).

For very large |z| or (ν + N − 1), argument reduction will cause total loss of accuracy, and so no
computation is performed. For slightly smaller |z| or (ν + N − 1), the computation is performed but
the results are accurate to less than half of machine precision. If |z| is very small, near the machine
underflow threshold, or (ν + N − 1) is too large, there is the risk of overflow and so no computation is
performed.

6.2 Accuracy

All constants used by this procedure are given to approximately 18 digits of precision. Let t denote the
number of digits of precision in the floating-point arithmetic being used. Clearly the maximum number
of correct digits in the results obtained is limited by p = min(t, 18). Because of errors in argument
reduction occurring during the evaluation of elementary functions by this procedure, the actual number
of correct digits is limited, in general, by p − s, where s ≈ max(1, | log10 |z||, | log10 ν|) represents the
number of digits lost due to the argument reduction. Thus the larger the values of |z| and ν, the less
the precision in the result. If this procedure is called with N > 1, then computation of function values
via recurrence may lead to some further small loss of accuracy.

If function values which should nominally be identical are computed by calls to this procedure with
different base values of ν and different N , the computed values may not agree exactly. Empirical tests
with modest values of ν and z have shown that the discrepancy is limited to the least significant 3–4
digits of precision.

[NP3506/4] Module 3.4: nag bessel fun 3.4.27

nag bessel y Special Functions

3.4.28 Module 3.4: nag bessel fun [NP3506/4]

Special Functions nag bessel i0

Procedure: nag bessel i0

1 Description

nag bessel i0 evaluates an approximation to the modified Bessel function of the first kind I0(x) or to
the exponentially scaled value e−|x|I0(x).

2 Usage

USE nag bessel fun

[value =] nag bessel i0(x [, optional arguments])

The function result is a scalar, of type real(kind=wp), containing I0(x) or e−|x|I0(x).

3 Arguments

3.1 Mandatory Argument

x — real(kind=wp), intent(in)
Input: the argument x of the function.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

scale — logical, intent(in), optional
Input: determines whether or not the result is scaled.

If scale = .true., then the result is scaled by the factor e−|x|;
if scale = .false., then the result is returned unscaled.

This option can be used to prevent overflow from occurring, thus increasing the range of the valid
arguments.
Default: scale = .false..

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Failures (error%level = 2):

error%code Description

201 Possibility of overflow.

Argument x is too large. This procedure returns the approximate value of I0(x) at
the nearest valid argument. This problem may be avoided by supplying the optional
argument scale set to .true..

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

[NP3506/4] Module 3.4: nag bessel fun 3.4.29

nag bessel i0 Special Functions

6 Further Comments

6.1 Algorithmic Detail

Since I0(−x) = I0(x), we need only consider the case x ≥ 0.

• For 0 < x ≤ 4, the procedure uses a Chebyshev expansion of the form

I0(x) = ex
∑′

r=0

arTr(t) where t = 2
(x

4

)
− 1.

• For 4 < x ≤ 12, it uses

I0(x) = ex
∑′

r=0

brTr(t) where t =
x − 8

4
.

• For x > 12,

I0(x) =
ex

√
x

∑′

r=0

crTr(t) where t = 2
(

12
x

)
− 1.

• For small x, I0(x) � 1. This approximation is used when x is sufficiently small for the result to be
correct to EPSILON(1.0 wp).

• For large x, the procedure must fail because of the danger of overflow in calculating ex. To avoid
overflow you could calculate the scaled value e−|x|I0(x) (see the optional argument scale).

6.2 Accuracy

Let δ and ε be the relative errors in the argument and result respectively.

If δ is somewhat larger than EPSILON(1.0 wp) (i.e., if δ is due to data errors etc.), then ε and δ are
approximately related by

ε � |θ|δ, where θ =
xI1(x)
I0(x)

.

The behaviour of the error amplification factor |θ| is shown in Figure 5.

0 1 2 3 4 5 6 7
1 0 -1

1 0 0

ε/δ

x

Figure 5: The error amplification factor |θ|.

3.4.30 Module 3.4: nag bessel fun [NP3506/4]

Special Functions nag bessel i0

However, if δ is of the same order as EPSILON(1.0 wp), then rounding errors could make ε slightly larger
than the above relation predicts.

For small x, the amplification factor is approximately x2/2, which implies strong attenuation of the error,
but in general ε can never be less than EPSILON(1.0 wp).

For large x, ε � xδ and we have strong amplification of errors. However, the procedure must fail for
quite moderate values of x, because I0(x) would overflow; hence in practice the loss of accuracy for large
x is not excessive. Note that for large x the errors will be dominated by those of the Fortran intrinsic
function EXP.

[NP3506/4] Module 3.4: nag bessel fun 3.4.31

nag bessel i0 Special Functions

3.4.32 Module 3.4: nag bessel fun [NP3506/4]

Special Functions nag bessel i1

Procedure: nag bessel i1

1 Description

nag bessel i1 evaluates an approximation to the modified Bessel function of the first kind I1(x) or to
the exponentially scaled value e−|x|I1(x).

2 Usage

USE nag bessel fun

[value =] nag bessel i1(x [, optional arguments])

The function result is a scalar, of type real(kind=wp), containing I1(x) or e−|x|I1(x).

3 Arguments

3.1 Mandatory Argument

x — real(kind=wp), intent(in)
Input: the argument x of the function.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

scale — logical, intent(in), optional
Input: determines whether or not the result is scaled.

If scale = .true., then the result is scaled by the factor e−|x|;
if scale = .false., then the result is returned unscaled.

This option can be used to prevent overflow from occurring, thus increasing the range of the valid
arguments.
Default: scale = .false..

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Failures (error%level = 2):

error%code Description

201 Possibility of overflow.

Argument x is too large. This procedure returns the approximate value of I1(x) at
the nearest valid argument. This problem may be avoided by supplying the optional
argument scale set to .true..

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

[NP3506/4] Module 3.4: nag bessel fun 3.4.33

nag bessel i1 Special Functions

6 Further Comments

6.1 Algorithmic Detail

Since I1(−x) = −I1(x), we need only consider the case x ≥ 0.

• For 0 < x ≤ 4, the procedure uses a Chebyshev expansion of the form

I1(x) = x
∑′

r=0

arTr(t), where t = 2
(x

4

)2

− 1.

• For 4 < x ≤ 12, it uses

I1(x) = ex
∑′

r=0

brTr(t), where t =
x − 8

4
.

• For x > 12,

I1(x) =
ex

√
x

∑′

r=0

crTr(t), where t = 2
(

12
x

)
− 1.

• For small x, I1(x) � x. This approximation is used when x is sufficiently small for the result to be
correct to EPSILON(1.0 wp).

• For large x, the procedure must fail because I1(x) cannot be represented without overflow. To
avoid overflow you could calculate the scaled value e−|x|I1(x), (see the optional argument scale).

6.2 Accuracy

Let δ and ε be the relative errors in the argument and result respectively.
If δ is somewhat larger than EPSILON(1.0 wp) (i.e., if δ is due to data errors etc.), then ε and δ are
approximately related by

ε � |θ|δ, where θ =
xI0(x) − I1(x)

I1(x)
.

The behaviour of the error amplification factor |θ| is shown in Figure 6.

0 1 2 3 4 5 6 7
1 0 0

1 0 1

ε/δ

x

Figure 6: The error amplification factor |θ|.

3.4.34 Module 3.4: nag bessel fun [NP3506/4]

Special Functions nag bessel i1

However, if δ is of the same order as EPSILON(1.0 wp), then rounding errors could make ε slightly larger
than the above relation predicts.
For small x, ε � δ and there is no amplification of errors.
For large x, ε � xδ and we have strong amplification of errors. However, the procedure must fail for
quite moderate values of x because I1(x) would overflow; hence in practice the loss of accuracy for large
x is not excessive. Note that for large x, the errors will be dominated by those of the Fortran intrinsic
function EXP.

[NP3506/4] Module 3.4: nag bessel fun 3.4.35

nag bessel i1 Special Functions

3.4.36 Module 3.4: nag bessel fun [NP3506/4]

Special Functions nag bessel i

Procedure: nag bessel i

1 Description

nag bessel i evaluates an approximation to either the modified Bessel function of the first kind Iν(z),
or the sequence of modified Bessel functions of the first kind Iν+n(z), n = 0, 1, . . . , N − 1. The real
non-negative order is given by ν (or ν + n) and the complex argument z is such that −π < arg z ≤ π.
There is also an option for scaling the result.

2 Usage

USE nag bessel fun

[value =] nag bessel i(z, nu [, optional arguments])

The function result is a scalar of type complex(kind=wp), or
[value =] nag bessel i(z, nu, n [, optional arguments])

The function returns an array-valued result of type complex(kind=wp) and dimension N .

3 Arguments

3.1 Mandatory Arguments

z — complex(kind=wp), intent(in)
Input: the argument z of the function.

nu — real(kind=wp), intent(in)
Input: the order, ν, of the first member of the sequence of functions.
Constraints: nu ≥ 0.0.

n — integer, intent(in)
Input: the number of terms, N , in the sequence of functions Iν+n(z), n = 0, 1, . . . , N − 1.
Constraints: n ≥ 1.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

scale — logical, intent(in), optional
Input: determines whether or not the results are scaled.

If scale = .true., then the results are scaled by the factor e−|Re(z)|;
if scale = .false., then the results are returned unscaled.

This option can be used to prevent underflow or overflow from occurring, thus increasing the range
of the valid arguments.
Default: scale = .false..

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

[NP3506/4] Module 3.4: nag bessel fun 3.4.37

nag bessel i Special Functions

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

Failures (error%level = 2):

error%code Description

201 Possibility of overflow.

Re(z) is too large. No computation has been performed due to the likelihood of
overflow.

202 Total loss of accuracy.

|z| or nu + n − 1 is too large, so that errors due to argument reduction in elementary
functions mean that all precision would be lost.

203 Partial loss of accuracy.

|z| or nu + n − 1 is too large, so that errors due to argument reduction in elementary
functions make it likely that the result is accurate to less than half of machine
precision.

204 Termination condition has not been met.

This error may occur because the arguments supplied would have caused overflow or
underflow. This problem may be avoided by supplying the optional argument scale
set to .true..

205 Possibility of underflow.

All or some of the returned results have been set to zero because of underflow.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.

6 Further Comments

If the function required is I0(z) or I1(z), i.e., ν = 0.0 or ν = 1.0, where z is real and positive, and only
a single unscaled function is required, then it is much cheaper to use the procedure nag bessel i0 or
nag bessel i1 respectively.

6.1 Algorithmic Detail

The procedure is derived from the routine CBESI in Amos [2].

When N > 1 extra values of Iν(z) are computed using recurrence relations.

Although the procedure may not be called with ν less than zero, for negative orders the formulae

I−ν(z) = Iν(z) +
2
π

sin(πν)Kν(z)

may be used (for the Bessel function Kν(z) see the procedure nag bessel k).

For very large |z| or (ν + N − 1), argument reduction will cause total loss of accuracy, and so no
computation is performed. For slightly smaller |z| or (ν + N − 1), the computation is performed but
the results are accurate to less than half of machine precision. If Re(z) is too large and the unscaled
function is required, there is the risk of overflow and so no computation is performed.

3.4.38 Module 3.4: nag bessel fun [NP3506/4]

Special Functions nag bessel i

6.2 Accuracy

All constants used by this procedure are given to approximately 18 digits of precision. Let t denote the
number of digits of precision in the floating-point arithmetic being used. Clearly the maximum number
of correct digits in the results obtained is limited by p = min(t, 18). Because of errors in argument
reduction occurring during the evaluation of elementary functions by this procedure, the actual number
of correct digits is limited, in general, by p − s, where s ≈ max(1, | log10 |z||, | log10 ν|) represents the
number of digits lost due to the argument reduction. Thus the larger the values of |z| and ν, the less
the precision in the result. If this procedure is called with N > 1, then computation of function values
via recurrence may lead to some further small loss of accuracy.

If function values which should nominally be identical are computed by calls to this procedure with
different base values of ν and different N , the computed values may not agree exactly. Empirical tests
with modest values of ν and z have shown that the discrepancy is limited to the least significant 3–4
digits of precision.

[NP3506/4] Module 3.4: nag bessel fun 3.4.39

nag bessel i Special Functions

3.4.40 Module 3.4: nag bessel fun [NP3506/4]

Special Functions nag bessel k0

Procedure: nag bessel k0

1 Description

nag bessel k0 evaluates an approximation to the modified Bessel function of the second kind K0(x) or
to the exponentially scaled value exK0(x).

2 Usage

USE nag bessel fun

[value =] nag bessel k0(x [, optional arguments])

The function result is a scalar, of type real(kind=wp), containing K0(x) or exK0(x).

3 Arguments

3.1 Mandatory Argument

x — real(kind=wp), intent(in)
Input: the argument x of the function.
Constraints: x > 0.0.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

scale — logical, intent(in), optional
Input: determines whether or not the result is scaled.

If scale = .true., then the result is scaled by the factor ex;
if scale = .false., then the result is returned unscaled.

This option can be used to prevent underflow from occurring, thus increasing the range of the valid
arguments.
Default: scale = .false..

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

[NP3506/4] Module 3.4: nag bessel fun 3.4.41

nag bessel k0 Special Functions

6 Further Comments

6.1 Algorithmic Detail

• For x ≤ 0, the result K0(x) is undefined and the procedure will fail for such arguments.

• For 0 < x ≤ 1, the procedure uses a Chebyshev expansion of the form

K0(x) = − ln x
∑′

r=0

arTr(t) +
∑′

r=0

brTr(t), where t = 2x2 − 1.

• For 1 < x ≤ 2, it uses

K0(x) = e−x
∑′

r=0

crTr(t), where t = 2x − 3.

• For 2 < x ≤ 4,

K0(x) = e−x
∑′

r=0

drTr(t), where t = x − 3.

• For x > 4,

K0(x) =
e−x

√
x

∑′

r=0

erTr(t), where t =
9 − x

1 + x
.

• For x near zero, K0(x) � −γ − ln (x/2), where γ denotes Euler’s constant. This approximation is
used when x is sufficiently small for the result to be correct to EPSILON(1.0 wp).

• For large x, where there is a danger of underflow due to the smallness of K0, the result is set
exactly to zero.

6.2 Accuracy

Let δ and ε be the relative errors in the argument and result respectively.

If δ is somewhat larger than EPSILON(1.0 wp) (i.e., if δ is due to data errors etc.), then ε and δ are
approximately related by

ε � |θ|δ, where θ =
xK1(x)
K0(x)

.

The behaviour of the error amplification factor |θ| is shown in Figure 7.

0 2 4 6 8 1 0 1 2 1 4

1 0 0

1 0 1

ε/δ

x

Figure 7: The error amplification factor |θ|.

3.4.42 Module 3.4: nag bessel fun [NP3506/4]

Special Functions nag bessel k0

However, if δ is of the same order as EPSILON(1.0 wp), then rounding errors could make ε slightly larger
than the above relation predicts.

For small x, the amplification factor is approximately 1/ |ln x|, which implies strong attenuation of the
error, but in general ε can never be less than EPSILON(1.0 wp).

For large x, ε � xδ and we have strong amplification of the relative error. Eventually K0, which is
asymptotically given by e−x/

√
x, becomes so small that it cannot be calculated without underflow and

hence the procedure will return zero. Note that for large x the errors will be dominated by those of the
Fortran intrinsic function EXP.

[NP3506/4] Module 3.4: nag bessel fun 3.4.43

nag bessel k0 Special Functions

3.4.44 Module 3.4: nag bessel fun [NP3506/4]

Special Functions nag bessel k1

Procedure: nag bessel k1

1 Description

nag bessel k1 evaluates an approximation to the modified Bessel function of the second kind K1(x) or
to the exponentially scaled value exK1(x).

2 Usage

USE nag bessel fun

[value =] nag bessel k1(x [, optional arguments])

The function result is a scalar, of type real(kind=wp), containing K1(x) or exK1(x).

3 Arguments

3.1 Mandatory Argument

x — real(kind=wp), intent(in)
Input: the argument x of the function.
Constraints: x > 0.0.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

scale — logical, intent(in), optional
Input: determines whether or not the result is scaled.

If scale = .true., then the result is scaled by the factor ex;
if scale = .false., then the result is returned unscaled.

This option can be used to prevent underflow or overflow from occurring, thus increasing the range
of the valid arguments.
Default: scale = .false..

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

[NP3506/4] Module 3.4: nag bessel fun 3.4.45

nag bessel k1 Special Functions

Failures (error%level = 2):

error%code Description

201 Possibility of overflow.

Argument x is too close to zero. This procedure returns approximately the largest
representable value.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Algorithmic Detail

• For x ≤ 0, the result K1(x) is undefined and the procedure will fail for such arguments.

• For 0 < x ≤ 1, the procedure uses a Chebyshev expansion of the form

K1(x) =
1
x

+ x ln x
∑′

r=0

arTr(t) − x
∑′

r=0

brTr(t),

where t = 2x2 − 1.

• For 1 < x ≤ 2, it uses

K1(x) = e−x
∑′

r=0

crTr(t),

where t = 2x − 3.

• For 2 < x ≤ 4,

K1(x) = e−x
∑′

r=0

drTr(t),

where t = x − 3.

• For x > 4,

K1(x) =
e−x

√
x

∑′

r=0

erTr(t),

where t =
9 − x

1 + x
.

• For x near zero, K1(x) � 1/x. This approximation is used when x is sufficiently small for the
result to be correct to EPSILON(1.0 wp). For very small x, on some machines it is impossible to
calculate 1/x without overflow and the procedure must fail.

• For large x, where there is a danger of underflow due to the smallness of K1, the result is set
exactly to zero.

6.2 Accuracy

Let δ and ε be the relative errors in the argument and result respectively.

If δ is somewhat larger than EPSILON(1.0 wp) (i.e., if δ is due to data errors etc.), then ε and δ are
approximately related by

ε � |θ|δ, where θ =
xK0(x) − K1(x)

K1(x)
.

The behaviour of the error amplification factor |θ| is shown in Figure 8.

3.4.46 Module 3.4: nag bessel fun [NP3506/4]

Special Functions nag bessel k1

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8
1 0 -1

1 0 0

1 0 1

ε/δ

x

Figure 8: The error amplification factor |θ|.

However, if δ is of the same order as EPSILON(1.0 wp), then rounding errors could make ε slightly larger
than the above relation predicts.

For small x, ε � δ and there is no amplification of errors.

For large x, ε � xδ and we have strong amplification of the relative error. Eventually K1, which is
asymptotically given by e−x/

√
x, becomes so small that it cannot be calculated without underflow and

hence the procedure will return zero. Note that for large x the errors will be dominated by those of the
Fortran intrinsic function EXP.

[NP3506/4] Module 3.4: nag bessel fun 3.4.47

nag bessel k1 Special Functions

3.4.48 Module 3.4: nag bessel fun [NP3506/4]

Special Functions nag bessel k

Procedure: nag bessel k

1 Description

nag bessel k evaluates an approximation to either the modified Bessel function of the second kind
Kν(z), or the sequence of modified Bessel functions of the second kind Kν+n(z), n = 0, 1, . . . , N − 1.
The real non-negative order is given by ν (or ν + n) and the complex argument z is such that −π < arg
z ≤ π. There is also an option for scaling the result.

2 Usage

USE nag bessel fun

[value =] nag bessel k(z, nu [, optional arguments])

The function result is a scalar of type complex(kind=wp), or
[value =] nag bessel k(z, nu, n [, optional arguments])

The function returns an array-valued result of type complex(kind=wp) and dimension N .

3 Arguments

3.1 Mandatory Arguments

z — complex(kind=wp), intent(in)
Input: the argument z of the function.
Constraints: z �= (0.0, 0.0).

nu — real(kind=wp), intent(in)
Input: the order, ν, of the first member of the sequence of functions.
Constraints: nu ≥ 0.0.

n — integer, intent(in)
Input: the number of terms, N , in the sequence of functions Kν+n(z), n = 0, 1, . . . , N − 1.
Constraints: n ≥ 1.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

scale — logical, intent(in), optional
Input: determines whether or not the results are scaled.

If scale = .true., then the results are scaled by the factor ez;
if scale = .false., then the results are returned unscaled.

This option can be used to prevent underflow or overflow from occurring, thus increasing the range
of the valid arguments.
Default: scale = .false..

[NP3506/4] Module 3.4: nag bessel fun 3.4.49

nag bessel k Special Functions

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

Failures (error%level = 2):

error%code Description

201 Possibility of overflow.

|z| is too small. No computation has been performed due to the likelihood of overflow.

202 Total loss of accuracy.

|z| or nu + n − 1 is too large, so that errors due to argument reduction in elementary
functions mean that all precision would be lost.

203 Partial loss of accuracy.

|z| or nu + n − 1 is too large, so that errors due to argument reduction in elementary
functions make it likely that the result is accurate to less than half of machine
precision.

204 Termination condition has not been met.

This error may occur because the arguments supplied would have caused overflow or
underflow. This problem may be avoided by supplying the optional argument scale
set to .true..

205 Possibility of underflow.

All or some of the returned results have been set to zero because of underflow.

206 Possibility of overflow.

nu + n − 1 is too large for the given z. No computation has been performed due to
the likelihood of overflow.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.

6 Further Comments

If the function required is K0(z) or K1(z), i.e., ν = 0.0 or ν = 1.0, where z is real and positive, and
only a single unscaled function is required, then it is much cheaper to use the procedure nag bessel k0
or nag bessel k1 respectively.

3.4.50 Module 3.4: nag bessel fun [NP3506/4]

Special Functions nag bessel k

6.1 Algorithmic Detail

The procedure is derived from the routine CBESK in Amos [2].

When N > 1 extra values of Jν(z) are computed using recurrence relations.

Although the procedure may not be called with ν less than zero, for negative orders the formulae

K−ν(z) = Kν(z)

may be used.

For very large |z| or (ν + N − 1), argument reduction will cause total loss of accuracy, and so no
computation is performed. For slightly smaller |z| or (ν + N − 1), the computation is performed but
the results are accurate to less than half of machine precision. If |z| is very small, near the machine
underflow threshold, or (ν + N − 1) is too large, there is the risk of overflow and so no computation is
performed.

6.2 Accuracy

All constants used by this procedure are given to approximately 18 digits of precision. Let t denote the
number of digits of precision in the floating-point arithmetic being used. Clearly the maximum number
of correct digits in the results obtained is limited by p = min(t, 18). Because of errors in argument
reduction occurring during the evaluation of elementary functions by this procedure, the actual number
of correct digits is limited, in general, by p − s, where s ≈ max(1, | log10 |z||, | log10 ν|) represents the
number of digits lost due to the argument reduction. Thus the larger the values of |z| and ν, the less
the precision in the result. If this procedure is called with N > 1, then computation of function values
via recurrence may lead to some further small loss of accuracy.

If function values which should nominally be identical are computed by calls to this procedure with
different base values of ν and different N , the computed values may not agree exactly. Empirical tests
with modest values of ν and z have shown that the discrepancy is limited to the least significant 3–4
digits of precision.

[NP3506/4] Module 3.4: nag bessel fun 3.4.51

nag bessel k Special Functions

3.4.52 Module 3.4: nag bessel fun [NP3506/4]

Special Functions Example 1

Example 1: Evaluation of Real Bessel Functions

This example program evaluates the functions nag bessel y0, nag bessel y1, nag bessel j0,
nag bessel j1, nag bessel k0, nag bessel k1, nag bessel i0 and nag bessel i1 at a set of values of
the argument x.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_bessel_fun_ex01

! Example Program Text for nag_bessel_fun

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_out

USE nag_bessel_fun, ONLY : nag_bessel_y0, nag_bessel_y1, nag_bessel_i0, &

nag_bessel_i1, nag_bessel_j0, nag_bessel_j1, nag_bessel_k0, &

nag_bessel_k1

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: n = 8

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i

REAL (wp) :: i0, i1, j0, j1, k0, k1, y0, y1

! .. Local Arrays ..

REAL (wp) :: x(n)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_bessel_fun_ex01’

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’ x Y0(x) Y1(x)’

x = (/ 0.5_wp, 1.0_wp, 3.0_wp, 6.0_wp, 8.0_wp, 10.0_wp, 100.0_wp, &

1000.0_wp/)

DO i = 1, n

y0 = nag_bessel_y0(x(i))

y1 = nag_bessel_y1(x(i))

WRITE (nag_std_out,’(1X,1P,3E12.3)’) x(i), y0, y1

END DO

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’ x J0(x) J1(x)’

x = (/ -1.0_wp, 0.0_wp, 0.5_wp, 1.0_wp, 3.0_wp, 6.0_wp, 10.0_wp, &

1000.0_wp/)

DO i = 1, n

j0 = nag_bessel_j0(x(i))

j1 = nag_bessel_j1(x(i))

WRITE (nag_std_out,’(1X,1P,3E12.3)’) x(i), j0, j1

END DO

[NP3506/4] Module 3.4: nag bessel fun 3.4.53

Example 1 Special Functions

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’ x K0(x) K1(x)’

x = (/ 0.4_wp, 0.6_wp, 1.6_wp, 2.5_wp, 3.5_wp, 8.0_wp, 10.0_wp, &

1000.0_wp/)

DO i = 1, n

k0 = nag_bessel_k0(x(i))

k1 = nag_bessel_k1(x(i))

WRITE (nag_std_out,’(1X,1P,3E12.3)’) x(i), k0, k1

END DO

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’ scaled scaled’

WRITE (nag_std_out,*) ’ x K0(x) K1(x)’

x = (/ 0.4_wp, 0.6_wp, 1.6_wp, 2.5_wp, 3.5_wp, 8.0_wp, 10.0_wp, &

1000.0_wp/)

DO i = 1, n

k0 = nag_bessel_k0(x(i),scale=.TRUE.)

k1 = nag_bessel_k1(x(i),scale=.TRUE.)

WRITE (nag_std_out,’(1X,1P,3E12.3)’) x(i), k0, k1

END DO

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’ x I0(x) I1(x)’

x = (/ -1.0_wp, 0.0_wp, 0.5_wp, 1.0_wp, 6.0_wp, 10.0_wp, 15.0_wp, &

20.0_wp/)

DO i = 1, n

i0 = nag_bessel_i0(x(i))

i1 = nag_bessel_i1(x(i))

WRITE (nag_std_out,’(1X,1P,3E12.3)’) x(i), i0, i1

END DO

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’ scaled scaled’

WRITE (nag_std_out,*) ’ x I0(x) I1(x)’

x = (/ -1.0_wp, 0.0_wp, 0.5_wp, 1.0_wp, 6.0_wp, 10.0_wp, 20.0_wp, &

1000.0_wp/)

DO i = 1, n

i0 = nag_bessel_i0(x(i),scale=.TRUE.)

i1 = nag_bessel_i1(x(i),scale=.TRUE.)

WRITE (nag_std_out,’(1X,1P,3E12.3)’) x(i), i0, i1

END DO

END PROGRAM nag_bessel_fun_ex01

2 Program Data

None.

3.4.54 Module 3.4: nag bessel fun [NP3506/4]

Special Functions Example 1

3 Program Results

Example Program Results for nag_bessel_fun_ex01

x Y0(x) Y1(x)

5.000E-01 -4.445E-01 -1.471E+00

1.000E+00 8.826E-02 -7.812E-01

3.000E+00 3.769E-01 3.247E-01

6.000E+00 -2.882E-01 -1.750E-01

8.000E+00 2.235E-01 -1.581E-01

1.000E+01 5.567E-02 2.490E-01

1.000E+02 -7.724E-02 -2.037E-02

1.000E+03 4.716E-03 -2.478E-02

x J0(x) J1(x)

-1.000E+00 7.652E-01 -4.401E-01

0.000E+00 1.000E+00 0.000E+00

5.000E-01 9.385E-01 2.423E-01

1.000E+00 7.652E-01 4.401E-01

3.000E+00 -2.601E-01 3.391E-01

6.000E+00 1.506E-01 -2.767E-01

1.000E+01 -2.459E-01 4.347E-02

1.000E+03 2.479E-02 4.728E-03

x K0(x) K1(x)

4.000E-01 1.115E+00 2.184E+00

6.000E-01 7.775E-01 1.303E+00

1.600E+00 1.880E-01 2.406E-01

2.500E+00 6.235E-02 7.389E-02

3.500E+00 1.960E-02 2.224E-02

8.000E+00 1.465E-04 1.554E-04

1.000E+01 1.778E-05 1.865E-05

1.000E+03 0.000E+00 0.000E+00

scaled scaled

x K0(x) K1(x)

4.000E-01 1.663E+00 3.259E+00

6.000E-01 1.417E+00 2.374E+00

1.600E+00 9.309E-01 1.192E+00

2.500E+00 7.595E-01 9.002E-01

3.500E+00 6.490E-01 7.365E-01

8.000E+00 4.366E-01 4.631E-01

1.000E+01 3.916E-01 4.108E-01

1.000E+03 3.963E-02 3.965E-02

x I0(x) I1(x)

-1.000E+00 1.266E+00 -5.652E-01

0.000E+00 1.000E+00 0.000E+00

5.000E-01 1.063E+00 2.579E-01

1.000E+00 1.266E+00 5.652E-01

6.000E+00 6.723E+01 6.134E+01

1.000E+01 2.816E+03 2.671E+03

1.500E+01 3.396E+05 3.281E+05

2.000E+01 4.356E+07 4.245E+07

scaled scaled

x I0(x) I1(x)

-1.000E+00 4.658E-01 -2.079E-01

0.000E+00 1.000E+00 0.000E+00

5.000E-01 6.450E-01 1.564E-01

1.000E+00 4.658E-01 2.079E-01

6.000E+00 1.667E-01 1.521E-01

1.000E+01 1.278E-01 1.213E-01

[NP3506/4] Module 3.4: nag bessel fun 3.4.55

Example 1 Special Functions

2.000E+01 8.978E-02 8.751E-02

1.000E+03 1.262E-02 1.261E-02

3.4.56 Module 3.4: nag bessel fun [NP3506/4]

Special Functions Example 2

Example 2: Evaluation of Complex Bessel Functions

This example program evaluates the functions nag bessel i, nag bessel j, nag bessel k and
nag bessel y given values of the arguments z, n and scale.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_bessel_fun_ex02

! Example Program Text for nag_bessel_fun

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_out

USE nag_bessel_fun, ONLY : nag_bessel_i, nag_bessel_j, nag_bessel_k, &

nag_bessel_y

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC CMPLX, KIND

! .. Parameters ..

INTEGER, PARAMETER :: n = 4

INTEGER, PARAMETER :: wp = KIND(1.0D0)

CHARACTER (*), PARAMETER :: fmt1 = &

’(I2, 4(2X,’’(’’,F7.3,’’,’’,F7.3,’’)’’))’

CHARACTER (*), PARAMETER :: fmt2 = &

’(1X,A,1X,’’(’’,F7.3,’’,’’,F7.3,’’)’’,A,F7.3,A)’

! .. Local Scalars ..

INTEGER :: i

REAL (wp) :: nu

COMPLEX (wp) :: z

! .. Local Arrays ..

COMPLEX (wp) :: bess_i(n), bess_j(n), bess_k(n), bess_y(n)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_bessel_fun_ex02’

WRITE (nag_std_out,*)

nu = 5.1_wp

z = CMPLX(3.0_wp,2.0_wp,kind=wp)

WRITE (nag_std_out,fmt2) ’Results for z = ’, z, ’, nu = ’, nu, &

’, scale = .FALSE.’

WRITE (nag_std_out,*) ’n I(z) J(z) &

& K(z) Y(z)’

bess_i = nag_bessel_i(z,nu,n)

bess_j = nag_bessel_j(z,nu,n)

bess_k = nag_bessel_k(z,nu,n)

bess_y = nag_bessel_y(z,nu,n)

DO i = 1, n

WRITE (nag_std_out,fmt1) i, bess_i(i), bess_j(i), bess_k(i), bess_y(i)

END DO

nu = 2.1_wp

z = CMPLX(1.0_wp,-2.0_wp,kind=wp)

WRITE (nag_std_out,*)

WRITE (nag_std_out,fmt2) ’Results for z = ’, z, ’, nu = ’, nu, &

’, scale = .TRUE.’

WRITE (nag_std_out,*) ’n I(z) J(z) &

[NP3506/4] Module 3.4: nag bessel fun 3.4.57

Example 2 Special Functions

& K(z) Y(z)’

bess_i = nag_bessel_i(z,nu,n,scale=.TRUE.)

bess_j = nag_bessel_j(z,nu,n,scale=.TRUE.)

bess_k = nag_bessel_k(z,nu,n,scale=.TRUE.)

bess_y = nag_bessel_y(z,nu,n,scale=.TRUE.)

DO i = 1, n

WRITE (nag_std_out,fmt1) i, bess_i(i), bess_j(i), bess_k(i), bess_y(i)

END DO

END PROGRAM nag_bessel_fun_ex02

2 Program Data

None.

3 Program Results

Example Program Results for nag_bessel_fun_ex02

Results for z = (3.000, 2.000), nu = 5.100, scale = .FALSE.

n I(z) J(z) K(z) Y(z)

1 (-0.166, -0.058) (-0.094, 0.071) (-0.426, 0.243) (0.264, 0.337)

2 (-0.033, -0.038) (-0.035, -0.000) (-0.810, 1.255) (1.502, 0.220)

3 (-0.002, -0.012) (-0.007, -0.006) (-0.351, 5.298) (4.378, -2.539)

4 (0.001, -0.003) (-0.001, -0.002) (9.612, 19.384) (7.298,-18.103)

Results for z = (1.000, -2.000), nu = 2.100, scale = .TRUE.

n I(z) J(z) K(z) Y(z)

1 (-0.149, -0.076) (-0.043, -0.090) (0.486, 1.295) (-0.085, 0.024)

2 (-0.055, 0.033) (-0.034, 0.002) (-1.057, 2.515) (0.049, 0.029)

3 (0.001, 0.018) (-0.003, 0.008) (-7.061, 1.792) (0.074, 0.133)

4 (0.004, 0.002) (0.001, 0.001) (-18.515,-17.705) (-0.365, 0.430)

3.4.58 Module 3.4: nag bessel fun [NP3506/4]

Special Functions Additional Examples

Additional Examples

Not all example programs supplied with NAG fl90 appear in full in this module document. The following
additional examples, associated with this module, are available.

nag bessel fun ex03

Evaluation of the real Bessel functions K0(x) and K1(x) of the second kind.

nag bessel fun ex04

Evaluation of the real Bessel functions I0(x) and I1(x) of the first kind.

nag bessel fun ex05

Evaluation of the real Bessel functions Y0(x) and Y1(x) of the second kind.

nag bessel fun ex06

Evaluation of the real Bessel functions J0(x) and J1(x) of the first kind.

nag bessel fun ex07

Evaluation of the complex Bessel function Yν(z).

nag bessel fun ex08

Evaluation of the complex Bessel function Jν(z).

nag bessel fun ex09

Evaluation of the complex Bessel function Iν(z).

nag bessel fun ex10

Evaluation of the complex Bessel function Kν(z).

[NP3506/4] Module 3.4: nag bessel fun 3.4.59

References Special Functions

References

[1] Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions Dover Publications (3rd
Edition)

[2] Amos D E (1986) Algorithm 644: A portable package for Bessel functions of a complex argument
and nonnegative order ACM Trans. Math. Software 12 265–273

[3] Clenshaw C W (1962) Mathematical tables Chebyshev Series for Mathematical Functions HMSO

3.4.60 Module 3.4: nag bessel fun [NP3506/4]

