
Utilities Module Contents

Module 1.3: nag write mat

Matrix Printing

nag write mat contains procedures for formatted output of matrices.

Contents

Introduction . 1.3.3

Procedures

nag write gen mat . 1.3.5
Writes a real, complex or integer general matrix

nag write tri mat . 1.3.9
Writes a real or complex triangular matrix

nag write bnd mat . 1.3.15
Writes a real or complex band matrix

Examples

Example 1: Writing a Real General Matrix . 1.3.19

Example 2: Writing a Real Triangular Matrix . 1.3.21

Example 3: Writing a Complex General Matrix . 1.3.23

Example 4: Writing a Real Band Matrix . 1.3.25

Additional Examples . 1.3.27

[NP3506/4] Module 1.3: nag write mat 1.3.1

Module Contents Utilities

1.3.2 Module 1.3: nag write mat [NP3506/4]

Utilities Module Introduction

Introduction

1 Choice of Procedures

This module contains generic procedures for formatted output of matrices. The available procedures are:

• nag write gen mat: for writing a real, complex or integer general matrix.

• nag write tri mat: for writing a real or complex triangular matrix; this procedure may also be
used for writing the upper or lower triangle of a symmetric or Hermitian matrix.

• nag write bnd mat: for writing a real or complex band matrix.

In this document the term ‘print’ is often used loosely to mean ‘write to a formatted file’, even though
the file may never actually be printed.

2 Storage of Triangular, Symmetric, or Hermitian Matrices

The procedure nag write tri mat allows a choice of storage schemes for triangular, symmetric or
Hermitian matrices: conventional storage or packed storage. The choice is determined by the rank
of the corresponding argument a.

2.1 Conventional Storage

The argument a is a rank-2 array, of shape (n,n). Matrix element aij is stored in a(i, j). Only the
elements of either the upper or the lower triangle need be stored and will be output, as specified by the
argument uplo; the remaining elements of a need not be set.

2.2 Packed Storage

The elements of either the upper or the lower triangle of a square matrix A of order n are packed by
columns into contiguous elements of a rank-1 array a of shape (n(n + 1)/2). The argument uplo is used
to specify which part of the matrix is packed.

The details of packed storage are as follows.

• If uplo = 'u' or 'U', the upper triangle is supplied,
i.e., aij is stored in a(i + j(j − 1)/2), for i ≤ j.

• If uplo = 'l' or 'L', the lower triangle is supplied,
i.e., aij is stored in a(i + (2n − j)(j − 1)/2), for i ≥ j.

For example

uplo Square Matrix Packed storage in array a

'u' or 'U'




a11 a12 a13 a14

a22 a23 a24

a33 a34

a44


 a11; a12 a22︸ ︷︷ ︸; a13 a23 a33︸ ︷︷ ︸; a14 a24 a34 a44︸ ︷︷ ︸

'l' or 'L'




a11

a21 a22

a31 a32 a33

a41 a42 a43 a44


 a11 a21 a31 a41︸ ︷︷ ︸; a22 a32 a42︸ ︷︷ ︸; a33 a43︸ ︷︷ ︸; a44

[NP3506/4] Module 1.3: nag write mat 1.3.3

Module Introduction Utilities

3 Storage of Band Matrices

The procedure nag write bnd mat uses the following storage scheme for the square band matrix A with
kl sub-diagonals and ku super-diagonals:

• aij must be stored in a(ku + i − j + 1, j), for max(j − ku, 1) ≤ i ≤ min(j + kl, n).

For example

Square band matrix A Band storage in array a




a11 a12

a21 a22 a23

a31 a32 a33 a34

a42 a43 a44 a45

a53 a54 a55




∗ a12 a23 a34 a45

a11 a22 a33 a44 a55

a21 a32 a43 a54 ∗
a31 a42 a53 ∗ ∗

1.3.4 Module 1.3: nag write mat [NP3506/4]

Utilities nag write gen mat

Procedure: nag write gen mat

1 Description

nag write gen mat writes a real, complex or integer general matrix A to a formatted file.

Several optional arguments enable you to control the format in which the matrix is output, but the
defaults may well be suitable.

2 Usage

USE nag write mat

CALL nag write gen mat(a [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

m — the number of rows of the matrix
n — the number of columns of the matrix

3.1 Mandatory Argument

a(m,n) — integer / real(kind=wp) / complex(kind=wp), intent(in)
Input: the matrix A to be output.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

format — character(len=*), intent(in), optional
Input: specifies the format to be used for printing elements of the matrix A. It must be a valid
Fortran format code or one of the special values given below. For complex matrices see also the
argument cmplx form.

A Fortran format code may be any format code allowed on the system, whether it is standard
Fortran or not. It need not be enclosed in brackets. Examples of valid values for format are
'(F11.4)', '1PE13.5', 'G14.5', for a real or complex matrix, and '(I6)', 'I4,2X' for an integer
matrix.

In addition, there are special values which force this procedure to choose its own format.

Real or complex data
If format = ' ', this procedure will choose a format code such that numbers will be
printed with either an 'F8.4', an 'F11.4' or a '1PE13.4' format. The 'F8.4' code is
chosen if the sizes of all the matrix elements to be printed lie between 0.001 and 1.0. The
'F11.4' code is chosen if the sizes of all the matrix elements to be printed lie between
0.001 and 9999.9999. Otherwise the '1PE13.4' code is chosen.

If format = '*', this procedure will choose a format code such that numbers will be
printed to as many significant digits as are necessary to distinguish between neighbouring
machine numbers. Thus any two numbers that are stored with different internal
representations should look different on output. Whether they do in fact look different
will depend on the run-time library of the Fortran 90 compiler in use.

[NP3506/4] Module 1.3: nag write mat 1.3.5

nag write gen mat Utilities

Integer data
If format = ' ', this procedure will choose a format code such that numbers will be
printed using the smallest field width that is large enough to hold all the numbers to be
printed.

Constraints: format must be supplied if cmplx form is present. The character length of format
must be ≤ 80.
Default: format = ' '.

cmplx form — character(len=1), intent(in), optional
Input: this argument is only applicable to complex matrices, and indicates how the value of format
is to be used to print complex matrix elements.

If cmplx form = 'B' or 'b' (Bracketed), format is assumed to contain a single real edit-
descriptor, which is used to print the real and imaginary parts of each complex number
separated by a comma, and surrounded by brackets. Complex numbers printed in this format
can be read using list-directed input. With cmplx form = 'b' and format = '(F8.3)', a
complex number might be printed as (12.345, −11.323).
If cmplx form = 'D' or 'd' (Direct), format is used unaltered to print a complex number.
This cmplx form option allows the user flexibility to specify exactly how the number is printed.
With cmplx form = 'd' and format = '(S, F6.3, SP, F6.3, ’i’)', a complex number
might be printed as 0.123+3.214i.

If cmplx form = 'A' or 'a' (Above), format is assumed to contain a single real edit-descriptor
which is to be used to print the real and imaginary parts of each complex number one above the
other. Each row of the matrix is separated from the next by a blank line, and any row labels
are attached only to the real parts. This option means that about twice as many columns can
be fitted into rec len characters than if any other cmplx form option is used. A typical value
of format for this cmplx form option might be format = 'E13.4', '*' or ' '.

Constraints: cmplx form must only be used for complex matrices and must be one of 'A', 'a',
'B', 'b', 'D' or 'd'.
Default: cmplx form = 'B'.

rec len — integer, intent(in), optional
Input: the maximum output record length. If the number of columns of the matrix is too large to
be accommodated in rec len characters, the matrix will be printed in parts, containing the largest
possible number of matrix columns, and each part separated by a blank line. rec len must be
large enough to hold at least one column of the matrix using the format specifier in format, any
row labels specified by int row labels or row labels, and any indentation specified by indent.
Constraints: 0 < rec len ≤ 132.
Default: rec len = 80.

title — character(len=*), intent(in), optional
Input: a title to be printed above the matrix. If title = ' ', no title (and no blank line) will be
printed. If title contains more than rec len characters, the contents of title will be wrapped
onto more than one line, with the break after rec len characters. Any trailing blank characters in
title are ignored.
Default: title = ' '.

row labels(m) — character(len=*), intent(in), optional
Input: the labels for the rows of the matrix. Labels are right-justified when output, in a field which
is as wide as necessary to hold the longest row label.
Default: see int row labels.

1.3.6 Module 1.3: nag write mat [NP3506/4]

Utilities nag write gen mat

int row labels — logical, intent(in), optional
Input: if row labels is not present, then int row labels indicates the type of labelling to be
applied to the rows of the matrix, as follows:

if int row labels = .true., integer labels (the row numbers);
if int row labels = .false., no labels.

Note: if row labels is present, int row labels will be ignored.
Default: int row labels = .false..

col labels(m) — character(len=*), intent(in), optional
Input: the labels for the columns of the matrix. Labels are right-justified when output. Any label
that is too long for the column width, which is determined by format, is truncated.
Default: see int col labels.

int col labels — logical, intent(in), optional
Input: if col labels is not present, then int col labels indicates the type of labelling to be
applied to the columns of the matrix, as follows:

if int col labels = .true., integer labels (the column numbers);
if int col labels = .false., no labels.

Note: if col labels is present, int col labels will be ignored.
Default: int col labels = .false..

indent — integer, intent(in), optional
Input: the number of columns by which the matrix (and any title and labels) should be indented.
Constraints: 0 ≤ indent < rec len.
Default: indent = 0.

unit — integer, intent(in), optional
Input: unit specifies the Fortran unit number which identifies the file to be written to.
Constraints: unit ≥ 0.
Default: unit = the default output unit number for the implementation.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

303 Array arguments have inconsistent shapes.

305 Invalid absence of an optional argument.

[NP3506/4] Module 1.3: nag write mat 1.3.7

nag write gen mat Utilities

Failures (error%level = 2):

error%code Description

201 Inadequate width for printing a column of the matrix.

The quantity rec len − indent − wL (where wL is the width needed for the row
labels) is not large enough to hold at least one column of the matrix.

Warnings (error%level = 1):

error%code Description

101 Optional argument present but not used.

One or both of the following may have occurred:

both row labels and int row labels are present, int row labels will be
ignored;
both col labels and int col labels are present, int col labels will be
ignored.

102 The matrix contains no elements.

At least one of the dimensions of the matrix a is zero.

103 Long column label.

At least one of the elements of col labels, after deleting the trailing spaces, is
longer than the width of the field allowed to print a column. Any such element will
be truncated.

5 Examples of Usage

Complete examples of the use of this procedure appear in Examples 1 and 3 of this module document.

These two examples could be modified to cater for different combinations of the optional arguments and
different types of data.

1.3.8 Module 1.3: nag write mat [NP3506/4]

Utilities nag write tri mat

Procedure: nag write tri mat

1 Description

nag write tri mat writes a real or complex triangular matrix A to a formatted file. It allows either
conventional or packed storage for A (see the Module Introduction).

Several optional arguments enable you to control the format in which the matrix is output, but the
defaults may well be suitable.

Strictly speaking, this procedure outputs the upper or lower triangle of a square matrix. It may therefore
be used to output the upper or lower triangle of a symmetric or Hermitian matrix.

2 Usage

USE nag write mat

CALL nag write tri mat(uplo, a [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

n — the order of the matrix A

The mandatory argument a may have rank 1 or 2, depending on whether packed or conventional storage
is used.

3.1 Mandatory Arguments

uplo — character(len=1), intent(in)
Input: specifies whether the upper or lower triangle of A is supplied and is to be output as
follows:

if uplo = 'u' or 'U', the upper triangle is supplied and is to be output;
if uplo = 'l' or 'L', the lower triangle is supplied and is to be output.

Constraints: uplo = 'u', 'U', 'l' or 'L'.

a(n, n) / a(n(n + 1)/2) — real(kind=wp) / complex(kind=wp), intent(in)
Input: the matrix A to be output.

Conventional storage (a has shape (n, n))
If uplo = 'u', the upper triangle of A is supplied, and elements below the diagonal need
not be set;
if uplo = 'l', the lower triangle of A is supplied, and elements above the diagonal need
not be set.

Packed storage (a has shape (n(n + 1)/2))
If uplo = 'u', the upper triangle of A is supplied, packed by columns, with aij in
a(i + j(j − 1)/2) for i ≤ j;
if uplo = 'l', the lower triangle of A is supplied, packed by columns, with aij in
a(i + (2n − j)(j − 1)/2) for i ≥ j.

[NP3506/4] Module 1.3: nag write mat 1.3.9

nag write tri mat Utilities

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

diag — character(len=1), intent(in), optional
Input: specifies whether the diagonal elements of the matrix are to be printed, as follows:

if diag = 'N' or 'n' (Non-unit diagonal), the diagonal elements of the matrix are referenced
and printed;
if diag = 'B' or 'b' (Blank), the diagonal elements of the matrix are not referenced and not
printed;
if diag = 'U' or 'u' (Unit diagonal), the diagonal elements of the matrix are not referenced,
but are assumed all to be unity, and are printed as such.

Constraints: diag = 'B', 'b', 'U', 'u', 'N' or 'n'.
Default: diag = 'N'.

format — character(len=*), intent(in), optional
Input: specifies the format to be used for printing elements of the matrix A. It must be a valid
Fortran format code or one of the special values given below. For complex matrices see also the
argument cmplx form.

A Fortran format code may be any format code allowed on the system, whether it is standard
Fortran or not. It may or may not be enclosed in brackets. Examples of valid values for format
are '(F11.4)', '1PE13.5', 'G14.5'.

In addition, there are special values which force this procedure to choose its own format.
If format = ' ', this procedure will choose a format code such that numbers will be printed
with either an 'F8.4', an 'F11.4' or a '1PE13.4' format. The 'F8.4' code is chosen if the
sizes of all the matrix elements to be printed lie between 0.001 and 1.0. The 'F11.4' code is
chosen if the sizes of all the matrix elements to be printed lie between 0.001 and 9999.9999.
Otherwise the '1PE13.4' code is chosen.
If format = '*', this procedure will choose a format code such that numbers will be printed
to as many significant digits as are necessary to distinguish between neighbouring machine
numbers. Thus any two numbers that are stored with different internal representations should
look different on output. Whether they do in fact look different will depend on the run-time
library of the Fortran 90 compiler in use.

Constraints: format must be supplied if cmplx form is present. The character length of format
must be ≤ 80.
Default: format = ' '.

cmplx form — character(len=1), intent(in), optional
Input: this argument is only applicable to complex matrices, and indicates how the value of format
is to be used to print complex matrix elements.

If cmplx form = 'B' or 'b' (Bracketed), format is assumed to contain a single real edit-
descriptor, which is used to print the real and imaginary parts of each complex number
separated by a comma, and surrounded by brackets. Complex numbers printed in this format
can be read using list-directed input. With cmplx form = 'b' and format = '(F8.3)', a
complex number might be printed as (12.345, −11.323).
If cmplx form = 'D' or 'd' (Direct), format is used unaltered to print a complex number.
This cmplx form option allows the user flexibility to specify exactly how the number is printed.
With cmplx form = 'd' and format = '(S, F6.3, SP, F6.3, ’i’)', a complex number
might be printed as 0.123+3.214i.
If cmplx form = 'A' or 'a' (Above), format is assumed to contain a single real edit-descriptor
which is to be used to print the real and imaginary parts of each complex number one above the
other. Each row of the matrix is separated from the next by a blank line, and any row labels

1.3.10 Module 1.3: nag write mat [NP3506/4]

Utilities nag write tri mat

are attached only to the real parts. This option means that about twice as many columns can
be fitted into rec len characters than if any other cmplx form option is used. A typical value
of format for this cmplx form option might be format = 'E13.4', '*' or ' '.

Constraints: cmplx form must only be used for complex matrices and must be one of 'A', 'a',
'B', 'b', 'D' or 'd'.
Default: cmplx form = 'B'.

rec len — integer, intent(in), optional
Input: the maximum output record length. If the number of columns of the matrix is too large to
be accommodated in rec len characters, the matrix will be printed in parts, containing the largest
possible number of matrix columns, and each part separated by a blank line. rec len must be
large enough to hold at least one column of the matrix using the format specifier in format, any
row labels specified by int row labels or row labels, and any indentation specified by indent.
Constraints: 0 < rec len ≤ 132.
Default: rec len = 80.

title — character(len=*), intent(in), optional
Input: a title to be printed above the matrix. If title = ' ', no title (and no blank line) will be
printed. If title contains more than rec len characters, the contents of title will be wrapped
onto more than one line, with the break after rec len characters. Any trailing blank characters in
title are ignored.
Default: title = ' '.

row labels(n) — character(len=*), intent(in), optional
Input: the labels for the rows of the matrix. Labels are right-justified when output, in a field which
is as wide as necessary to hold the longest row label.
Default: see int row labels.

int row labels — logical, intent(in), optional
Input: if row labels is not present, then int row labels indicates the type of labelling to be
applied to the rows of the matrix, as follows:

if int row labels = .true., integer labels (the row numbers);
if int row labels = .false., no labels.

Note: if row labels is present, int row labels will be ignored.
Default: int row labels = .false..

col labels(n) — character(len=*), intent(in), optional
Input: the labels for the columns of the matrix. Labels are right-justified when output. Any label
that is too long for the column width, which is determined by format, is truncated.
Default: see int col labels.

int col labels — logical, intent(in), optional
Input: if col labels is not present, then int col labels indicates the type of labelling to be
applied to the columns of the matrix, as follows:

if int col labels = .true., integer labels (the column numbers);
if int col labels = .false., no labels.

Note: if col labels is present, int col labels will be ignored.
Default: int col labels = .false..

[NP3506/4] Module 1.3: nag write mat 1.3.11

nag write tri mat Utilities

indent — integer, intent(in), optional
Input: the number of columns by which the matrix (and any title and labels) should be indented.
Constraints: 0 ≤ indent < rec len.
Default: indent = 0.

unit — integer, intent(in), optional
Input: unit specifies the Fortran unit number which identifies the file to be written to.
Constraints: unit ≥ 0.
Default: unit = the default output unit number for the implementation.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

305 Invalid absence of an optional argument.

Failures (error%level = 2):

error%code Description

201 Inadequate width for printing a column of the matrix.

The quantity rec len − indent − wL (where wL is the width needed for the row
labels) is not large enough to hold at least one column of the matrix.

Warnings (error%level = 1):

error%code Description

101 Optional argument present but not used.

One or both of the following may have occurred:

both row labels and int row labels are present, int row labels will be
ignored;
both col labels and int col labels are present, int col labels will be
ignored.

102 The matrix contains no elements.

For a matrix stored in a two-dimensional array, the size along one of the dimensions
of a is zero. For a packed matrix stored in a one-dimensional array, the size of a is
zero.

103 Long column label.

At least one of the elements of col labels, after deleting the trailing spaces, is
longer than the width of the field allowed to print a column. Any such element will
be truncated.

1.3.12 Module 1.3: nag write mat [NP3506/4]

Utilities nag write tri mat

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.

This example could be modified to cater for different combinations of the optional arguments and different
types of data.

[NP3506/4] Module 1.3: nag write mat 1.3.13

nag write tri mat Utilities

1.3.14 Module 1.3: nag write mat [NP3506/4]

Utilities nag write bnd mat

Procedure: nag write bnd mat

1 Description

nag write bnd mat writes a real or complex square band matrix A stored in a packed two-dimensional
array (see the Module Introduction) to a formatted file.

Several optional arguments enable you to control the format in which the matrix is output, but the
defaults may well be suitable.

2 Usage

USE nag write mat

CALL nag write bnd mat(ku, a [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

n — the order of the band matrix A

kl ≥ 0 — the number of sub-diagonals in the band matrix A

3.1 Mandatory Arguments

ku — integer, intent(in)
Input: the number ku of super-diagonals in the band matrix A.
Constraints: ku ≥ 0.

a(kl + ku + 1, n) — real(kind=wp) / complex(kind=wp), intent(in)
Input: the general band matrix A to be output; aij must be stored in a(ku + i − j + 1, j) for
max(j − ku, 1) ≤ i ≤ min(j + kl, n).
Note: the diagonal elements of the original matrix are stored in row number ku + 1 of a.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

format — character(len=*), intent(in), optional
Input: specifies the format to be used for printing elements of the matrix A. It must be a valid
Fortran format code or one of the special values given below. For complex matrices see also the
argument cmplx form.

A Fortran format code may be any format code allowed on the system, whether it is standard
Fortran or not. It may or may not be enclosed in brackets. Examples of valid values for format
are '(F11.4)', '1PE13.5', 'G14.5'.

In addition, there are special values which force this procedure to choose its own format.

[NP3506/4] Module 1.3: nag write mat 1.3.15

nag write bnd mat Utilities

If format = ' ', this procedure will choose a format code such that numbers will be printed
with either an 'F8.4', an 'F11.4' or a '1PE13.4' format. The 'F8.4' code is chosen if the
sizes of all the matrix elements to be printed lie between 0.001 and 1.0. The 'F11.4' code is
chosen if the sizes of all the matrix elements to be printed lie between 0.001 and 9999.9999.
Otherwise the '1PE13.4' code is chosen.
If format = '*', this procedure will choose a format code such that numbers will be printed
to as many significant digits as are necessary to distinguish between neighbouring machine
numbers. Thus any two numbers that are stored with different internal representations should
look different on output. Whether they do in fact look different will depend on the run-time
library of the Fortran 90 compiler in use.

Constraints: format must be supplied if cmplx form is present. The character length of format
must be ≤ 80.
Default: format = ' '.

cmplx form — character(len=1), intent(in), optional
Input: this argument is only applicable to complex matrices, and indicates how the value of format
is to be used to print complex matrix elements.

If cmplx form = 'B' or 'b' (Bracketed), format is assumed to contain a single real edit-
descriptor, which is used to print the real and imaginary parts of each complex number
separated by a comma, and surrounded by brackets. Complex numbers printed in this format
can be read using list-directed input. With cmplx form = 'b' and format = '(F8.3)', a
complex number might be printed as (12.345, −11.323).
If cmplx form = 'D' or 'd' (Direct), format is used unaltered to print a complex number.
This cmplx form option allows the user flexibility to specify exactly how the number is printed.
With cmplx form = 'd' and format = '(S, F6.3, SP, F6.3, ’i’)', a complex number
might be printed as 0.123+3.214i.
If cmplx form = 'A' or 'a' (Above), format is assumed to contain a single real edit-descriptor
which is to be used to print the real and imaginary parts of each complex number one above the
other. Each row of the matrix is separated from the next by a blank line, and any row labels
are attached only to the real parts. This option means that about twice as many columns can
be fitted into rec len characters than if any other cmplx form option is used. A typical value
of format for this cmplx form option might be format = 'E13.4', '*' or ' '.

Constraints: cmplx form must only be used for complex matrices and must be one of 'A', 'a',
'B', 'b', 'D' or 'd'.
Default: cmplx form = 'B'.

rec len — integer, intent(in), optional
Input: the maximum output record length. If the number of columns of the matrix is too large to
be accommodated in rec len characters, the matrix will be printed in parts, containing the largest
possible number of matrix columns, and each part separated by a blank line. rec len must be
large enough to hold at least one column of the matrix using the format specifier in format, any
row labels specified by int row labels or row labels, and any indentation specified by indent.
Constraints: 0 < rec len ≤ 132.
Default: rec len = 80.

title — character(len=*), intent(in), optional
Input: a title to be printed above the matrix. If title = ' ', no title (and no blank line) will be
printed. If title contains more than rec len characters, the contents of title will be wrapped
onto more than one line, with the break after rec len characters. Any trailing blank characters in
title are ignored.
Default: title = ' '.

1.3.16 Module 1.3: nag write mat [NP3506/4]

Utilities nag write bnd mat

row labels(n) — character(len=*), intent(in), optional
Input: the labels for the rows of the matrix. Labels are right-justified when output, in a field which
is as wide as necessary to hold the longest row label.
Default: see int row labels.

int row labels — logical, intent(in), optional
Input: if row labels is not present, then int row labels indicates the type of labelling to be
applied to the rows of the matrix, as follows:

if int row labels = .true., integer labels (the row numbers);
if int row labels = .false., no labels.

Note: if row labels is present, int row labels will be ignored.
Default: int row labels = .false..

col labels(n) — character(len=*), intent(in), optional
Input: the labels for the columns of the matrix. Labels are right-justified when output. Any label
that is too long for the column width, which is determined by format, is truncated.
Default: see int col labels.

int col labels — logical, intent(in), optional
Input: if col labels is not present, then int col labels indicates the type of labelling to be
applied to the columns of the matrix, as follows:

if int col labels = .true., integer labels (the column numbers);
if int col labels = .false., no labels.

Note: if col labels is present, int col labels will be ignored.
Default: int col labels = .false..

indent — integer, intent(in), optional
Input: the number of columns by which the matrix (and any title and labels) should be indented.
Constraints: 0 ≤ indent < rec len.
Default: indent = 0.

unit — integer, intent(in), optional
Input: unit specifies the Fortran unit number which identifies the file to be written to.
Constraints: unit ≥ 0.
Default: unit = the default output unit number for the implementation.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

305 Invalid absence of an optional argument.

[NP3506/4] Module 1.3: nag write mat 1.3.17

nag write bnd mat Utilities

Failures (error%level = 2):

error%code Description

201 Inadequate width for printing a column of the matrix.

The quantity rec len − indent − wL (where wL is the width needed for the row
labels) is not large enough to hold at least one column of the matrix.

Warnings (error%level = 1):

error%code Description

101 Optional argument present but not used.

One or both of the following may have occurred:

both row labels and int row labels are present, int row labels will be
ignored;
both col labels and int col labels are present, int col labels will be
ignored.

102 The matrix contains no elements.

The order of the matrix A (the second dimension of a) is zero.

103 Long column label.

At least one of the elements of col labels, after deleting the trailing spaces, is
longer than the width of the field allowed to print a column. Any such element will
be truncated.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 4 of this module document.

This example could be modified to cater for different combinations of the optional arguments and different
types of data.

1.3.18 Module 1.3: nag write mat [NP3506/4]

Utilities Example 1

Example 1: Writing a Real General Matrix

This example program calls nag write gen mat to write a real matrix using the default values for the
optional arguments. It then rewrites the same matrix after supplying some of the optional arguments to
produce title, integer labels and different format.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_write_mat_ex01

! Example Program Text for nag_write_mat

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_out

USE nag_write_mat, ONLY : nag_write_gen_mat

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND, REAL

! .. Parameters ..

INTEGER, PARAMETER :: m = 4, n = 3

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, j

CHARACTER (80) :: title

! .. Local Arrays ..

REAL (wp) :: a(m,n)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_write_mat_ex01’

! Generate an array of data

DO j = 1, n

DO i = 1, m

a(i,j) = REAL(10*i+j,kind=wp)

END DO

END DO

! Write rectangular matrix with no optional parameters set

WRITE (nag_std_out,*)

CALL nag_write_gen_mat(a)

! Write the same matrix with title, format and integer labels

title = ’Output of the same matrix with title and integer &

&labels using F8.1 format’

WRITE (nag_std_out,*)

CALL nag_write_gen_mat(a,format=’F8.1’,title=title, &

int_row_labels=.TRUE.,int_col_labels=.TRUE.)

END PROGRAM nag_write_mat_ex01

[NP3506/4] Module 1.3: nag write mat 1.3.19

Example 1 Utilities

2 Program Data

None.

3 Program Results

Example Program Results for nag_write_mat_ex01

11.0000 12.0000 13.0000

21.0000 22.0000 23.0000

31.0000 32.0000 33.0000

41.0000 42.0000 43.0000

Output of the same matrix with title and integer labels using F8.1 format

1 2 3

1 11.0 12.0 13.0

2 21.0 22.0 23.0

3 31.0 32.0 33.0

4 41.0 42.0 43.0

1.3.20 Module 1.3: nag write mat [NP3506/4]

Utilities Example 2

Example 2: Writing a Real Triangular Matrix

This example program calls nag write tri mat to write a real upper triangle matrix supplied in
conventional storage using the default setting for the optional arguments. It then writes a real lower
triangle matrix supplied in packed storage using the supplied title and unit diagonal elements.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_write_mat_ex02

! Example Program Text for nag_write_mat

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_out

USE nag_write_mat, ONLY : nag_write_tri_mat

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND, REAL

! .. Parameters ..

INTEGER, PARAMETER :: m = 5, n = 4

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, j

CHARACTER (160) :: title

CHARACTER (1) :: uplo

! .. Local Arrays ..

REAL (wp) :: a(n,n), p((m*(m+1))/2)

CHARACTER (6) :: row_labels(m)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_write_mat_ex02’

! Generate an array of data

DO i = 1, n

DO j = i, n

a(i,j) = REAL(10*i+j,kind=wp)

END DO

END DO

! Write real upper triangular matrix stored in convential storage

! using default optional arguments

uplo = ’U’

WRITE (nag_std_out,*)

CALL nag_write_tri_mat(uplo,a)

! Generate arrays of data and row labels

DO i = 1, (m*(m+1))/2

p(i) = REAL(10*i,kind=wp)

END DO

DO i = 1, m

WRITE (row_labels(i),’(a,i3)’) ’row’, i

END DO

[NP3506/4] Module 1.3: nag write mat 1.3.21

Example 2 Utilities

! Write real lower triangular matrix stored in packed storage

! using title, unit diagonal elements, character row labels

! and integer column labels

uplo = ’l’

title = ’Output real lower triangular matrix in packed storage &

&with unit diagonal elements, title, character row &

&labels and integer column labels’

WRITE (nag_std_out,*)

CALL nag_write_tri_mat(uplo,p,diag=’u’,title=title, &

row_labels=row_labels,int_col_labels=.TRUE.)

END PROGRAM nag_write_mat_ex02

2 Program Data

None.

3 Program Results

Example Program Results for nag_write_mat_ex02

11.0000 12.0000 13.0000 14.0000

22.0000 23.0000 24.0000

33.0000 34.0000

44.0000

Output real lower triangular matrix in packed storage with unit diagonal

elements, title, character row labels and integer column labels

1 2 3 4 5

row 1 1.0000

row 2 20.0000 1.0000

row 3 30.0000 70.0000 1.0000

row 4 40.0000 80.0000 110.0000 1.0000

row 5 50.0000 90.0000 120.0000 140.0000 1.0000

1.3.22 Module 1.3: nag write mat [NP3506/4]

Utilities Example 3

Example 3: Writing a Complex General Matrix

This example program calls nag write gen mat to write a complex matrix in three different styles as
follows:

using the default setting for all the optional arguments;
using integer labels, the supplied title and setting cmplx form = 'a';
using the supplied title and format, and setting cmplx form = 'd'.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_write_mat_ex03

! Example Program Text for nag_write_mat

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_out

USE nag_write_mat, ONLY : nag_write_gen_mat

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC CMPLX, KIND

! .. Parameters ..

INTEGER, PARAMETER :: m = 4, n = 3

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, j, k, l

CHARACTER (30) :: format

CHARACTER (80) :: title

! .. Local Arrays ..

COMPLEX (wp) :: a(m,n)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_write_mat_ex03’

! Generate an array of data

l = -1

DO j = 1, n

l = -l*j

DO i = 1, m

k = (-1)**(i+j)

a(i,j) = CMPLX(l,k*(i+j),kind=wp)

END DO

END DO

! Write a complex matrix using defaults

WRITE (nag_std_out,*)

CALL nag_write_gen_mat(a)

! Write a complex matrix with title, integer labels and

! cmplx_form=’a’

title = &

’Output the same matrix with title, integer labels and cmplx_form="a"’

WRITE (nag_std_out,*)

[NP3506/4] Module 1.3: nag write mat 1.3.23

Example 3 Utilities

CALL nag_write_gen_mat(a,title=title,int_row_labels=.TRUE., &

int_col_labels=.TRUE.,cmplx_form=’a’)

! Write a complex matrix with title, integer labels and

! cmplx_form=’d’

title = ’Output the same matrix with title and cmplx_form="d"’

format = ’(s,f7.2,sp,f5.2,"i")’

WRITE (nag_std_out,*)

CALL nag_write_gen_mat(a,title=title,format=format,cmplx_form=’d’)

END PROGRAM nag_write_mat_ex03

2 Program Data

None.

3 Program Results

Example Program Results for nag_write_mat_ex03

(1.0000, 2.0000) (-2.0000, -3.0000) (6.0000, 4.0000)

(1.0000, -3.0000) (-2.0000, 4.0000) (6.0000, -5.0000)

(1.0000, 4.0000) (-2.0000, -5.0000) (6.0000, 6.0000)

(1.0000, -5.0000) (-2.0000, 6.0000) (6.0000, -7.0000)

Output the same matrix with title, integer labels and cmplx_form="a"

1 2 3

1 1.0000 -2.0000 6.0000

2.0000 -3.0000 4.0000

2 1.0000 -2.0000 6.0000

-3.0000 4.0000 -5.0000

3 1.0000 -2.0000 6.0000

4.0000 -5.0000 6.0000

4 1.0000 -2.0000 6.0000

-5.0000 6.0000 -7.0000

Output the same matrix with title and cmplx_form="d"

1.00+2.00i -2.00-3.00i 6.00+4.00i

1.00-3.00i -2.00+4.00i 6.00-5.00i

1.00+4.00i -2.00-5.00i 6.00+6.00i

1.00-5.00i -2.00+6.00i 6.00-7.00i

1.3.24 Module 1.3: nag write mat [NP3506/4]

Utilities Example 4

Example 4: Writing a Real Band Matrix

This example program calls nag write bnd mat to write a real band matrix using the default values for
the optional arguments. It then rewrites sections of the same matrix after supplying some of the optional
arguments.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_write_mat_ex04

! Example Program Text for nag_write_mat

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_out

USE nag_write_mat, ONLY : nag_write_bnd_mat

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND, REAL

! .. Parameters ..

INTEGER, PARAMETER :: kl = 1, ku = 2, n = 5

INTEGER, PARAMETER :: wp = KIND(1.0D0)

INTEGER, PARAMETER :: diag_index = ku + 1

! .. Local Scalars ..

INTEGER :: i, j

CHARACTER (80) :: title

! .. Local Arrays ..

REAL (wp) :: a(kl+ku+1,n)

CHARACTER (6) :: col_labels(n)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_write_mat_ex04’

! Generate an array of data

DO i = 1, kl + ku + 1

DO j = 1, n

a(i,j) = REAL(10*i+j,kind=wp)

END DO

END DO

! Write the complex 5 by 5 banded matrix stored in a

WRITE (nag_std_out,*)

CALL nag_write_bnd_mat(ku,a)

! Write the upper part of the 4 by 4 section of the banded matrix

! stored in a, using a title

title = ’Output the upper part of a section of the band matrix’

WRITE (nag_std_out,*)

CALL nag_write_bnd_mat(ku,a(1:diag_index,1:4),title=title)

! Generate column labels

DO i = 1, n

WRITE (col_labels(i),’(a,i3)’) ’col’, i

[NP3506/4] Module 1.3: nag write mat 1.3.25

Example 4 Utilities

END DO

! Write one sub-diagonal and one super diagonal of the banded

! matrix stored in a, using a title, character column labels

! and integer row labels

title = &

’Output the band matrix with one sub-diagonal and one super-diagonal’

WRITE (nag_std_out,*)

CALL nag_write_bnd_mat(1,a(diag_index-1:diag_index+1,:),title=title, &

col_labels=col_labels,int_row_labels=.TRUE.)

END PROGRAM nag_write_mat_ex04

2 Program Data

None.

3 Program Results

Example Program Results for nag_write_mat_ex04

31.0000 22.0000 13.0000

41.0000 32.0000 23.0000 14.0000

42.0000 33.0000 24.0000 15.0000

43.0000 34.0000 25.0000

44.0000 35.0000

Output the upper part of a section of the band matrix

31.0000 22.0000 13.0000

32.0000 23.0000 14.0000

33.0000 24.0000

34.0000

Output the band matrix with one sub-diagonal and one super-diagonal

col 1 col 2 col 3 col 4 col 5

1 31.0000 22.0000

2 41.0000 32.0000 23.0000

3 42.0000 33.0000 24.0000

4 43.0000 34.0000 25.0000

5 44.0000 35.0000

1.3.26 Module 1.3: nag write mat [NP3506/4]

Utilities Additional Examples

Additional Examples

Not all example programs supplied with NAG fl90 appear in full in this module document. The following
additional examples, associated with this module, are available.

nag write mat ex05

Writing a real general matrix with specified row labels.

nag write mat ex06

Writing the lower triangular part, without diagonal elements, of a complex general matrix.

nag write mat ex07

Writing an integer general matrix with specified row and column labels.

nag write mat ex08

Writing the upper triangular part of a complex triangular matrix stored with packed storage.

nag write mat ex09

Writing a real lower triangular matrix stored with packed storage.

nag write mat ex10

Writing a complex band matrix.

[NP3506/4] Module 1.3: nag write mat 1.3.27

