NAG Library Routine Document
f01fpf (complex_tri_matrix_sqrt)
1
Purpose
f01fpf computes the principal matrix square root, , of a complex upper triangular by matrix .
2
Specification
Fortran Interface
Integer, Intent (In) | :: | n, lda | Integer, Intent (Inout) | :: | ifail | Complex (Kind=nag_wp), Intent (Inout) | :: | a(lda,*) |
|
C Header Interface
#include <nagmk26.h>
void |
f01fpf_ (const Integer *n, Complex a[], const Integer *lda, Integer *ifail) |
|
3
Description
A square root of a matrix is a solution to the equation . A nonsingular matrix has multiple square roots. For a matrix with no eigenvalues on the closed negative real line, the principal square root, denoted by , is the unique square root whose eigenvalues lie in the open right half-plane.
f01fpf computes , where is an upper triangular matrix. is also upper triangular.
The algorithm used by
f01fpf is described in
Björck and Hammarling (1983). In addition a blocking scheme described in
Deadman et al. (2013) is used.
4
References
Björck Å and Hammarling S (1983) A Schur method for the square root of a matrix Linear Algebra Appl. 52/53 127–140
Deadman E, Higham N J and Ralha R (2013) Blocked Schur Algorithms for Computing the Matrix Square Root Applied Parallel and Scientific Computing: 11th International Conference, (PARA 2012, Helsinki, Finland) P. Manninen and P. Öster, Eds Lecture Notes in Computer Science 7782 171–181 Springer–Verlag
Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA
5
Arguments
- 1: – IntegerInput
-
On entry: , the order of the matrix .
Constraint:
.
- 2: – Complex (Kind=nag_wp) arrayInput/Output
-
Note: the second dimension of the array
a
must be at least
.
On entry: the by upper triangular matrix .
On exit: contains, if , the by principal matrix square root, . Alternatively, if , contains an by non-principal square root of .
- 3: – IntegerInput
-
On entry: the first dimension of the array
a as declared in the (sub)program from which
f01fpf is called.
Constraint:
.
- 4: – IntegerInput/Output
-
On entry:
ifail must be set to
,
. If you are unfamiliar with this argument you should refer to
Section 3.4 in How to Use the NAG Library and its Documentation for details.
For environments where it might be inappropriate to halt program execution when an error is detected, the value
is recommended. If the output of error messages is undesirable, then the value
is recommended. Otherwise, if you are not familiar with this argument, the recommended value is
.
When the value is used it is essential to test the value of ifail on exit.
On exit:
unless the routine detects an error or a warning has been flagged (see
Section 6).
6
Error Indicators and Warnings
If on entry
or
, explanatory error messages are output on the current error message unit (as defined by
x04aaf).
Errors or warnings detected by the routine:
-
has negative or semisimple, vanishing eigenvalues. The principal square root is not defined in this case; a non-principal square root is returned.
-
has a defective vanishing eigenvalue. The square root cannot be found in this case.
-
An internal error occurred. It is likely that the routine was called incorrectly.
-
On entry, .
Constraint: .
-
On entry, and .
Constraint: .
An unexpected error has been triggered by this routine. Please
contact
NAG.
See
Section 3.9 in How to Use the NAG Library and its Documentation for further information.
Your licence key may have expired or may not have been installed correctly.
See
Section 3.8 in How to Use the NAG Library and its Documentation for further information.
Dynamic memory allocation failed.
See
Section 3.7 in How to Use the NAG Library and its Documentation for further information.
7
Accuracy
The computed square root satisfies , where , where is machine precision. The order of the change in is to be interpreted elementwise.
8
Parallelism and Performance
f01fpf is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
f01fpf makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the
X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the
Users' Note for your implementation for any additional implementation-specific information.
The cost of the algorithm is
complex floating-point operations; see Algorithm 6.3 in
Higham (2008).
of complex allocatable memory is required by the routine.
If
is a full matrix, then
f01fnf should be used to compute the principal square root.
If condition number and residual bound estimates are required, then
f01kdf should be used. For further discussion of the condition of the matrix square root see Section 6.1 of
Higham (2008).
10
Example
This example finds the principal matrix square root of the matrix
10.1
Program Text
Program Text (f01fpfe.f90)
10.2
Program Data
Program Data (f01fpfe.d)
10.3
Program Results
Program Results (f01fpfe.r)