Example description
    Program f07apfe

!     F07APF Example Program Text

!     Mark 26.2 Release. NAG Copyright 2017.

!     .. Use Statements ..
      Use nag_library, Only: nag_wp, x04dbf, zgesvx
!     .. Implicit None Statement ..
      Implicit None
!     .. Parameters ..
      Integer, Parameter               :: nin = 5, nout = 6
!     .. Local Scalars ..
      Real (Kind=nag_wp)               :: rcond
      Integer                          :: i, ifail, info, lda, ldaf, ldb, ldx, &
                                          n, nrhs
      Character (1)                    :: equed
!     .. Local Arrays ..
      Complex (Kind=nag_wp), Allocatable :: a(:,:), af(:,:), b(:,:), work(:),  &
                                          x(:,:)
      Real (Kind=nag_wp), Allocatable  :: berr(:), c(:), ferr(:), r(:),        &
                                          rwork(:)
      Integer, Allocatable             :: ipiv(:)
      Character (1)                    :: clabs(1), rlabs(1)
!     .. Executable Statements ..
      Write (nout,*) 'F07APF Example Program Results'
      Write (nout,*)
      Flush (nout)
!     Skip heading in data file
      Read (nin,*)
      Read (nin,*) n, nrhs
      lda = n
      ldaf = n
      ldb = n
      ldx = n
      Allocate (a(lda,n),af(ldaf,n),b(ldb,nrhs),work(2*n),x(ldx,nrhs),         &
        berr(nrhs),c(n),ferr(nrhs),r(n),rwork(2*n),ipiv(n))

!     Read A and B from data file

      Read (nin,*)(a(i,1:n),i=1,n)
      Read (nin,*)(b(i,1:nrhs),i=1,n)

!     Solve the equations AX = B for X

!     The NAG name equivalent of zgesvx is f07apf
      Call zgesvx('Equilibrate','No transpose',n,nrhs,a,lda,af,ldaf,ipiv,      &
        equed,r,c,b,ldb,x,ldx,rcond,ferr,berr,work,rwork,info)

      If ((info==0) .Or. (info==n+1)) Then

!       Print solution, error bounds, condition number, the form
!       of equilibration and the pivot growth factor

!       ifail: behaviour on error exit
!              =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
        ifail = 0
        Call x04dbf('General',' ',n,nrhs,x,ldx,'Bracketed','F7.4',             &
          'Solution(s)','Integer',rlabs,'Integer',clabs,80,0,ifail)

        Write (nout,*)
        Write (nout,*) 'Backward errors (machine-dependent)'
        Write (nout,99999) berr(1:nrhs)
        Write (nout,*)
        Write (nout,*) 'Estimated forward error bounds (machine-dependent)'
        Write (nout,99999) ferr(1:nrhs)
        Write (nout,*)
        If (equed=='N') Then
          Write (nout,*) 'A has not been equilibrated'
        Else If (equed=='R') Then
          Write (nout,*) 'A has been row scaled as diag(R)*A'
        Else If (equed=='C') Then
          Write (nout,*) 'A has been column scaled as A*diag(C)'
        Else If (equed=='B') Then
          Write (nout,*)                                                       &
            'A has been row and column scaled as diag(R)*A*diag(C)'
        End If
        Write (nout,*)
        Write (nout,*) 'Reciprocal condition number estimate of scaled matrix'
        Write (nout,99999) rcond
        Write (nout,*)
        Write (nout,*) 'Estimate of reciprocal pivot growth factor'
        Write (nout,99999) rwork(1)

        If (info==n+1) Then
          Write (nout,*)
          Write (nout,*) 'The matrix A is singular to working precision'
        End If
      Else
        Write (nout,99998) 'The (', info, ',', info, ')',                      &
          ' element of the factor U is zero'
      End If

99999 Format ((3X,1P,7E11.1))
99998 Format (1X,A,I3,A,I3,A,A)
    End Program f07apfe