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1 Scope of the Chapter

This chapter is concerned with methods for smoothing data. Included are methods for density
estimation, smoothing time series data, and statistical applications of splines. These methods may also
be viewed as nonparametric modelling.

2 Background to the Problems

2.1 Smoothing Methods

Many of the methods used in statistics involve fitting a model, the form of which is determined by a
small number of parameters, for example, a distribution model like the gamma distribution, a linear
regression model or an autoregression model in time series. In these cases the fitting involves the
estimation of the small number of parameters from the data. In modelling data with these models there
are two important stages in addition to the estimation of the parameters; these are the identification of a
suitable model, for example, the selection of a gamma distribution rather than a Weibull distribution,
and the checking to see if the fitted model adequately fits the data. While these parametric models can
be fairly flexible, they will not adequately fit all datasets, especially if the number of parameters is to be
kept small.

Alternative models based on smoothing can be used. These models will not be written explicitly in
terms of parameters. They are sufficiently flexible for a much wider range of situations than parametric
models. The main requirement for such a model to be suitable is that the underlying models would be
expected to be smooth, so excluding those situations where, for example, a step function would be
expected.

These smoothing methods can be used in a variety of ways, for example:

1. producing smoothed plots to aid understanding;

2. identifying of a suitable parametric model from the shape of the smoothed data;

3. eliminating complex effects that are not of direct interest so that attention can be focused on the
effects of interest.

Several smoothing techniques make use of a smoothing parameter which can be either chosen by you or
estimated from the data. The smoothing parameter balances the two criterion of smoothness of the fitted
model and the closeness of the fit of the model to the data. Generally, the larger the smoothing
parameter is, the smoother the fitted model will be, but for small values of the smoothing parameter the
model will closely follow the data, and for large values the fit will be poorer.

The smoothing parameter can be either chosen using previous experience of a suitable value for such
data, or estimated from the data. The estimation can be either formal, using a criterion such as the
cross-validation, or informal by trying different values and examining the result by means of suitable
graphs.

Smoothing methods can be used in three important areas of of statistics: regression modelling,
distribution modelling and time series modelling.

2.2 Smoothing Splines and Regression Models

For a set of n observations (yi; xi), i ¼ 1; 2; . . . ; n, the spline provides a flexible smooth function for
situations in which a simple polynomial or nonlinear regression model is not suitable.

Cubic smoothing splines arise as the function, f , with continuous first derivative which minimizes

Xn
i¼1

wi yi � f xið Þð Þ2 þ �

Z 1

�1
f 00 xð Þð Þ2 dx;

where wi is the (optional) weight for the ith observation and � is the smoothing parameter. This
criterion consists of two parts: the first measures the fit of the curve and the second the smoothness of
the curve. The value of the smoothing parameter, �, weights these two aspects: larger values of � give a
smoother fitted curve but, in general, a poorer fit.
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Splines are linear smoothers since the fitted values, ŷ ¼ ŷ1; ŷ2; . . . ; ŷnð ÞT, can be written as a linear
function of the observed values y ¼ y1; y2; . . . ; ynð ÞT, that is,

ŷ ¼ Hy

for a matrix H. The degrees of freedom for the spline is trace Hð Þ giving residual degrees of freedom

trace I �Hð Þ ¼
Xn
i¼1

1� hiið Þ:

The diagonal elements of H, hii, are the leverages.

The parameter � can be estimated in a number of ways.

1. The degrees of freedom for the spline can be specified, i.e., find � such that trace Hð Þ ¼ �0 for
given �0.

2. Minimize the cross-validation (CV), i.e., find � such that the CV is minimized, where

CV ¼ 1

n

Xn
i¼1

ri
1� hii

� �2

:

3. Minimize generalized cross-validation (GCV), i.e., find � such that the GCV is minimized, where

GCV ¼ n

Xn
i¼1

r2i

Xn
i¼1

1� hiið Þ
 !2

0
BBBBB@

1
CCCCCA:

2.3 Density Estimation

The object of density estimation is to produce from a set of observations a smooth nonparametric
estimate of the unknown density function from which the observations were drawn. That is, given a
sample of n observations, x1, x2; . . . ; xn, from a distribution with unknown density function, f xð Þ, find
an estimate of the density function, f̂ xð Þ. The simplest form of density estimator is the histogram; this
may be defined by

f̂ xð Þ ¼ 1

nh
nj; aþ j� 1ð Þh < x < aþ jh; j ¼ 1; 2; . . . ; ns;

where nj is the number of observations falling in the interval aþ j� 1ð Þh to aþ jh, a is the lower
bound of the histogram and b ¼ nsh is the upper bound. The value h is known as the window width. A
simple development of this estimator would be the running histogram estimator

f̂ xð Þ ¼ 1

2nh
nx; a � x � b;

where nx is the number of observations falling in the interval x� h : xþ h½ �. This estimator can be
written as

f̂ xð Þ ¼ 1

nh

Xn
i¼1

w
x� xi

h

� �

for a function w where

w xð Þ ¼ 1
2 if � 1 < x < 1

¼ 0 otherwise:

The function w can be considered as a kernel function. To produce a smoother density estimate, the
kernel function, K tð Þ, which satisfies the following conditions can be used:Z 1

�1
K tð Þ dt ¼ 1and K tð Þ � 0:0:
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The kernel density estimator is therefore defined as

f̂ xð Þ ¼ 1

nh

Xn
i¼1

K
x� xi

h

� �
:

The choice of K �ð Þ is usually not important, but to ease the computational burden use can be made of
the Gaussian kernel defined as

K tð Þ ¼ 1ffiffiffiffiffiffi
2�

p e�t2=2:

The smoothness of the estimator, f̂ xð Þ, depends on the window width, h. In general, the larger the value
h is, the smoother the resulting density estimate is. There is, however, the problem of oversmoothing
when the value of h is too large and essential features of the distribution function are removed. For
example, if the distribution was bimodal, a large value of h may result in a unimodal estimate. The
value of h has to be chosen such that the essential shape of the distribution is retained while effects due
only to the observed sample are smoothed out. The choice of h can be aided by looking at plots of the
density estimate for different values of h, or by using cross-validation methods; see Silverman (1990).

Silverman (1990) shows how the Gaussian kernel density estimator can be computed using a fast
Fourier transform (FFT).

2.4 Smoothers for Time Series

If the data consists of a sequence of n observations recorded at equally spaced intervals, usually a time
series, several robust smoothers are available. The fitted curve is intended to be robust to any outlying
observations in the sequence, hence the techniques employed primarily make use of medians rather than
means. These ideas come from the field of exploratory data analysis (EDA); see Tukey (1977) and
Velleman and Hoaglin (1981). The smoothers are based on the use of running medians to summarise
overlapping segments; these provide a simple but flexible curve.

In EDA terminology, the fitted curve and the residuals are called the smooth and the rough respectively,
so that

Data ¼ Smoothþ Rough:

Using the notation of Tukey, one of the smoothers commonly used is 4253H,twice. This consists of a
running median of 4, then 2, then 5, then 3. This is then followed by what is known as hanning.
Hanning is a running weighted mean, the weights being 1=4, 1=2 and 1=4. The result of this smoothing
is then ‘reroughed’. This involves computing residuals from the computed fit, applying the same
smoother to the residuals and adding the result to the smooth of the first pass.

3 Recommendations on Choice and Use of Available Routines

The following routines fit smoothing splines:

G10ABF computes a cubic smoothing spline for a given value of the smoothing parameter. The
results returned include the values of leverages and the coefficients of the cubic spline. Options
allow only parts of the computation to be performed when the routine is used to estimate the
value of the smoothing parameter or as when it is part of an iterative procedure such as that used
in fitting generalized additive models; see Hastie and Tibshirani (1990).

G10ACF estimates the value of the smoothing parameter using one of three criteria and fits the
cubic smoothing spline using that value.

G10ABF and G10ACF require the xi to be strictly increasing. If two or more observations have the
same xi-value then they should be replaced by a single observation with yi equal to the (weighted)
mean of the y values and weight, wi, equal to the sum of the weights. This operation can be performed
by G10ZAF.

The following routine produces an estimate of the density function:

G10BBF computes a density estimate using a Normal kernel.
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The following routine produces a smoothed estimate for a time series:

G10CAF computes a smoothed series using running median smoothers.

The following service routine is also available:

G10ZAF orders and weights the x; yð Þ input data to produce a dataset strictly monotonic in x.

4 Functionality Index

Compute smoothed data sequence,
running median smoothers ............................................................................................... G10CAF

Fit cubic smoothing spline,
smoothing parameter estimated ........................................................................................ G10ACF
smoothing parameter given .............................................................................................. G10ABF

Kernel density estimation,
Gaussian kernel, thread safe ............................................................................................ G10BBF

Reorder data to give ordered distinct observations ............................................................... G10ZAF

5 Auxiliary Routines Associated with Library Routine Arguments

None.

6 Routines Withdrawn or Scheduled for Withdrawal

The following lists all those routines that have been withdrawn since Mark 19 of the Library or are
scheduled for withdrawal at one of the next two marks.

Withdrawn
Routine

Mark of
Withdrawal Replacement Routine(s)

G10BAF 27 G10BBF
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