NAG Library Routine Document F08MEF (DBDSQR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.
Warning. The specification of the argument WORK changed at Mark 20: the length of WORK needs to be increased.

1 Purpose

F08MEF (DBDSQR) computes the singular value decomposition of a real upper or lower bidiagonal matrix, or of a real general matrix which has been reduced to bidiagonal form.

2 Specification

```
SUBROUTINE FO8MEF (UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU, C,
    LDC, WORK, INFO)
INTEGER N, NCVT, NRU, NCC, LDVT, LDU, LDC, INFO
REAL (KIND=nag_wp) D(*), E(*), VT(LDVVT,*), U(LDDU,*), C(LDC,*), WORK(*)
CHARACTER(1) UPLO
```

The routine may be called by its LAPACK name dbdsqr.

3 Description

F08MEF (DBDSQR) computes the singular values and, optionally, the left or right singular vectors of a real upper or lower bidiagonal matrix B. In other words, it can compute the singular value decomposition (SVD) of B as

$$
B=U \Sigma V^{\mathrm{T}}
$$

Here Σ is a diagonal matrix with real diagonal elements σ_{i} (the singular values of B), such that

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0
$$

U is an orthogonal matrix whose columns are the left singular vectors $u_{i} ; V$ is an orthogonal matrix whose rows are the right singular vectors v_{i}. Thus

$$
B u_{i}=\sigma_{i} v_{i} \quad \text { and } \quad B^{\mathrm{T}} v_{i}=\sigma_{i} u_{i}, \quad i=1,2, \ldots, n .
$$

To compute U and/or V^{T}, the arrays U and/or VT must be initialized to the unit matrix before F08MEF (DBDSQR) is called.
The routine may also be used to compute the SVD of a real general matrix A which has been reduced to bidiagonal form by an orthogonal transformation: $A=Q B P^{\mathrm{T}}$. If A is m by n with $m \geq n$, then Q is m by n and P^{T} is n by n; if A is n by p with $n<p$, then Q is n by n and P^{T} is n by p. In this case, the matrices Q and/or P^{T} must be formed explicitly by F08KFF (DORGBR) and passed to F08MEF (DBDSQR) in the arrays U and/or VT respectively.

F08MEF (DBDSQR) also has the capability of forming $U^{\mathrm{T}} C$, where C is an arbitrary real matrix; this is needed when using the SVD to solve linear least squares problems.
F08MEF (DBDSQR) uses two different algorithms. If any singular vectors are required (i.e., if NCVT >0 or NRU >0 or NCC >0), the bidiagonal $Q R$ algorithm is used, switching between zeroshift and implicitly shifted forms to preserve the accuracy of small singular values, and switching between $Q R$ and $Q L$ variants in order to handle graded matrices effectively (see Demmel and Kahan (1990)). If only singular values are required (i.e., if $\mathrm{NCVT}=\mathrm{NRU}=\mathrm{NCC}=0$), they are computed by the differential qd algorithm (see Fernando and Parlett (1994)), which is faster and can achieve even greater accuracy.

The singular vectors are normalized so that $\left\|u_{i}\right\|=\left\|v_{i}\right\|=1$, but are determined only to within a factor ± 1.

4 References

Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci. Statist. Comput. 11 873-912
Fernando K V and Parlett B N (1994) Accurate singular values and differential qd algorithms Numer. Math. 67 191-229

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Arguments

1: UPLO - CHARACTER(1)
Input
On entry: indicates whether B is an upper or lower bidiagonal matrix.
$\mathrm{UPLO}=$ ' U '
B is an upper bidiagonal matrix.
$\mathrm{UPLO}={ }^{\prime} \mathrm{L}^{\prime}$
B is a lower bidiagonal matrix.
Constraint: UPLO = 'U' or 'L'.

2: N - INTEGER
Input
On entry: n, the order of the matrix B.
Constraint: $\mathrm{N} \geq 0$.
3: NCVT - INTEGER Input
On entry: ncvt, the number of columns of the matrix V^{T} of right singular vectors. Set NCVT $=0$ if no right singular vectors are required.
Constraint: NCVT ≥ 0.
4: NRU - INTEGER
Input
On entry: nru, the number of rows of the matrix U of left singular vectors. Set NRU $=0$ if no left singular vectors are required.
Constraint: $\mathrm{NRU} \geq 0$.
5: NCC - INTEGER
Input
On entry: ncc, the number of columns of the matrix C. Set NCC $=0$ if no matrix C is supplied. Constraint: $\mathrm{NCC} \geq 0$.

6: $\quad \mathrm{D}(*)$ - REAL (KIND=nag_wp) array
Input/Output
Note: the dimension of the array D must be at least $\max (1, \mathrm{~N})$.
On entry: the diagonal elements of the bidiagonal matrix B.
On exit: the singular values in decreasing order of magnitude, unless INFO >0 (in which case see Section 6).

7: $\mathrm{E}(*)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input/Output
Note: the dimension of the array E must be at least $\max (1, \mathrm{~N}-1)$.
On entry: the off-diagonal elements of the bidiagonal matrix B.
On exit: E is overwritten, but if INFO >0 see Section 6.
8: $\quad \mathrm{VT}(\mathrm{LDVT}, *)-$ REAL (KIND=$=$ nag_wp) array
Input/Output
Note: the second dimension of the array VT must be at least $\max (1$, NCVT $)$.
On entry: if NCVT >0, VT must contain an n by ncvt matrix. If the right singular vectors of B are required, $n c v t=n$ and VT must contain the unit matrix; if the right singular vectors of A are required, VT must contain the orthogonal matrix P^{T} returned by F08KFF (DORGBR) with $\mathrm{VECT}=$ ' P '.

On exit: the n by ncvt matrix V^{T} or $V^{\mathrm{T}} P^{\mathrm{T}}$ of right singular vectors, stored by rows.
If $\mathrm{NCVT}=0, \mathrm{VT}$ is not referenced.
9: LDVT - INTEGER
Input
On entry: the first dimension of the array VT as declared in the (sub)program from which F08MEF (DBDSQR) is called.
Constraints:
if NCVT >0, LDVT $\geq \max (1, \mathrm{~N})$;
otherwise LDVT ≥ 1.
10: $\mathrm{U}(\mathrm{LDU}, *)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input/Output
Note: the second dimension of the array U must be at least $\max (1, \mathrm{~N})$.
On entry: if NRU >0, U must contain an $n r u$ by n matrix. If the left singular vectors of B are required, $n r u=n$ and U must contain the unit matrix; if the left singular vectors of A are required, U must contain the orthogonal matrix Q returned by F08KFF (DORGBR) with $\mathrm{VECT}=$ 'Q'.

On exit: the $n r u$ by n matrix U or $Q U$ of left singular vectors, stored as columns of the matrix. If $N R U=0, U$ is not referenced.

11: LDU - INTEGER
Input
On entry: the first dimension of the array U as declared in the (sub)program from which F08MEF (DBDSQR) is called.
Constraint: LDU $\geq \max (1, \mathrm{NRU})$.
12: $\mathrm{C}(\mathrm{LDC}, *)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) array
Input/Output
Note: the second dimension of the array C must be at least $\max (1, \mathrm{NCC})$.
On entry: the n by ncc matrix C if NCC >0.
On exit: C is overwritten by the matrix $U^{\mathrm{T}} C$. If $\mathrm{NCC}=0, \mathrm{C}$ is not referenced.
13: LDC - INTEGER
Input
On entry: the first dimension of the array C as declared in the (sub)program from which F08MEF (DBDSQR) is called.

Constraints:

if $\operatorname{NCC}>0, \operatorname{LDC} \geq \max (1, \mathrm{~N})$;
otherwise $\mathrm{LDC} \geq 1$.

14: $\operatorname{WORK}(*)-$ REAL (KIND=nag_wp) array
Workspace
Note: the dimension of the array WORK must be at least $\max (1,2 \times \mathrm{N})$ if NCVT $=0$ and $\mathrm{NRU}=0$ and $\mathrm{NCC}=0$, and at least $\max (1,4 \times \mathrm{N})$ otherwise.

15: INFO - INTEGER
Output
On exit: INFO $=0$ unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO <0
If INFO $=-i$, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

INFO >0

The algorithm failed to converge and INFO specifies how many off-diagonals did not converge. In this case, D and E contain on exit the diagonal and off-diagonal elements, respectively, of a bidiagonal matrix orthogonally equivalent to B.

7 Accuracy

Each singular value and singular vector is computed to high relative accuracy. However, the reduction to bidiagonal form (prior to calling the routine) may exclude the possibility of obtaining high relative accuracy in the small singular values of the original matrix if its singular values vary widely in magnitude.
If σ_{i} is an exact singular value of B and $\tilde{\sigma}_{i}$ is the corresponding computed value, then

$$
\left|\tilde{\sigma}_{i}-\sigma_{i}\right| \leq p(m, n) \epsilon \sigma_{i}
$$

where $p(m, n)$ is a modestly increasing function of m and n, and ϵ is the machine precision. If only singular values are computed, they are computed more accurately (i.e., the function $p(m, n)$ is smaller), than when some singular vectors are also computed.
If u_{i} is the corresponding exact left singular vector of B, and \tilde{u}_{i} is the corresponding computed left singular vector, then the angle $\theta\left(\tilde{u}_{i}, u_{i}\right)$ between them is bounded as follows:

$$
\theta\left(\tilde{u}_{i}, u_{i}\right) \leq \frac{p(m, n) \epsilon}{r e l g a p_{i}}
$$

where $\operatorname{relgap}_{i}$ is the relative gap between σ_{i} and the other singular values, defined by

$$
\operatorname{relgap}_{i}=\min _{i \neq j} \frac{\left|\sigma_{i}-\sigma_{j}\right|}{\left(\sigma_{i}+\sigma_{j}\right)}
$$

A similar error bound holds for the right singular vectors.

8 Parallelism and Performance

F08MEF (DBDSQR) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

F08MEF (DBDSQR) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is roughly proportional to n^{2} if only the singular values are computed. About $6 n^{2} \times n r u$ additional operations are required to compute the left singular vectors and about $6 n^{2} \times n c v t$ to compute the right singular vectors. The operations to compute the singular values must all be performed in scalar mode; the additional operations to compute the singular vectors can be vectorized and on some machines may be performed much faster.
The complex analogue of this routine is F08MSF (ZBDSQR).

10 Example

This example computes the singular value decomposition of the upper bidiagonal matrix B, where

$$
B=\left(\begin{array}{rrrr}
3.62 & 1.26 & 0.00 & 0.00 \\
0.00 & -2.41 & -1.53 & 0.00 \\
0.00 & 0.00 & 1.92 & 1.19 \\
0.00 & 0.00 & 0.00 & -1.43
\end{array}\right)
$$

See also the example for F 08 KFF (DORGBR), which illustrates the use of the routine to compute the singular value decomposition of a general matrix.

10.1 Program Text

```
Program f08mefe
    F08MEF Example Program Text
    Mark 26 Release. NAG Copyright 2016.
    .. Use Statements ..
    Use nag_library, Only: dbdsqr, f06qhf, nag_wp, x04caf
    .. Implicit None Statement ..
    Implicit None
    .. Parameters ..
    Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
    Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
    Integer, Parameter :: nin = 5, nout = 6
    .. Local Scalars ..
    Integer :: ifail, info, ldc, ldu, ldvt, n
    Character (1) :: uplo
    .. Local Arrays ..
    Real (Kind=nag_wp), Allocatable :: c(:,:), d(:), e(:), u(:,:), vt(:,:), &
                                    work(:)
    .. Executable Statements ..
    Write (nout,*) 'FO8MEF Example Program Results'
    Skip heading in data file
    Read (nin,*)
    Read (nin,*) n
    ldc = 1
    ldu = n
    ldvt = n
    Allocate (c(ldc,1),d(n),e(n-1),u(ldu,n),vt(ldvt,n),work(4*n))
! Read B from data file
    Read (nin,*) d(1:n)
    Read (nin,*) e(1:n-1)
    Read (nin,*) uplo
    Initialize U and VT to be the unit matrix
    Call f06qhf('General',n,n,zero,one,u,ldu)
    Call f06qhf('General',n,n,zero,one,vt,ldvt)
    Calculate the SVD of B
    The NAG name equivalent of dbdsqr is f08mef
```

```
    Call dbdsqr(uplo,n,n,n,0,d,e,vt,ldvt,u,ldu,c,ldc,work,info)
    Write (nout,*)
    If (info>0) Then
    Write (nout,*) 'Failure to converge.'
Else
    Print singular values, left & right singular vectors
    Write (nout,*) 'Singular values'
    Write (nout,99999) d(1:n)
    Write (nout,*)
    Flush (nout)
    ifail: behaviour on error exit
                =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
    ifail = 0
    Call x04caf('General',' ',n,n,vt,ldvt,'Right singular vectors, by row' &
        ,ifail)
    Write (nout,*)
    Flush (nout)
    ifail = 0
    Call x04caf('General',' ',n,n,u,ldu,'Left singular vectors, by column' &
        ,ifail)
End If
99999 Format (3X,(8F8.4))
    End Program f08mefe
```


10.2 Program Data

```
FO8MEF Example Program Data
    4
    3.62 -2.41 1.92 -1.43
    1.26 -1.53 1.19 :End of matrix B
    'U' :Value of UPLO
```


10.3 Program Results

8MEF Example Program Results				
Singular values				
	4.0001	3.0006	1.9960	0.9998
Right singular vectors, by row				
1	0.8261	0.5246	0.2024	0.0369
2	0.4512	-0.4056	-0.7350	-0.3030
3	0.2823	-0.5644	0.1731	0.7561
4	0.1852	-0.4916	0.6236	-0.5789
Left singular vectors, by column				
	1	2	3	4
1	0.9129	0.3740	0.1556	0.0512
2	-0.3935	0.7005	0.5489	0.2307
3	0.1081	-0.5904	0.6173	0.5086
4	-0.0132	0.1444	-0.5417	0.8280

