NAG Library Routine Document F08BCF (DTPMQRT)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F08BCF (DTPMQRT) multiplies an arbitrary real matrix C by the real orthogonal matrix Q from a $Q R$ factorization computed by F08BBF (DTPQRT).

2 Specification

```
SUBROUTINE FO8BCF (SIDE, TRANS, M, N, K, L, NB, V, LDV, T, LDT, C1,
    LDC1, C2, LDC2, WORK, INFO)
INTEGER M, N, K, L, NB, LDV, LDT, LDC1, LDC2, INFO
REAL (KIND=nag_wp) V(LDV,*), T(LDT,*), C1(LDC1,*), C2(LDC2,*), WORK(*)
CHARACTER(1) SIDE, TRANS
```

The routine may be called by its LAPACK name dtpmqrt.

3 Description

F08BCF (DTPMQRT) is intended to be used after a call to F08BBF (DTPQRT) which performs a $Q R$ factorization of a triangular-pentagonal matrix containing an upper triangular matrix A over a pentagonal matrix B. The orthogonal matrix Q is represented as a product of elementary reflectors.

This routine may be used to form the matrix products

$$
Q C, Q^{\mathrm{T}} C, C Q \text { or } C Q^{\mathrm{T}}
$$

where the real rectangular m_{c} by n_{c} matrix C is split into component matrices C_{1} and C_{2}.
If Q is being applied from the left $\left(Q C\right.$ or $\left.Q^{\mathrm{T}} C\right)$ then

$$
C=\binom{C_{1}}{C_{2}}
$$

where C_{1} is k by n_{c}, C_{2} is m_{v} by $n_{c}, m_{c}=k+m_{v}$ is fixed and m_{v} is the number of rows of the matrix V containing the elementary reflectors (i.e., M as passed to F08BBF (DTPQRT)); the number of columns of V is n_{v} (i.e., N as passed to F08BBF (DTPQRT)).
If Q is being applied from the right $\left(C Q\right.$ or $\left.C Q^{\mathrm{T}}\right)$ then

$$
C=\left(\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right)
$$

where C_{1} is m_{c} by k, and C_{2} is m_{c} by m_{v} and $n_{c}=k+m_{v}$ is fixed.
The matrices C_{1} and C_{2} are overwriten by the result of the matrix product.
A common application of this routine is in updating the solution of a linear least squares problem as illustrated in Section 10 in F08BBF (DTPQRT).

4 References

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University Press, Baltimore

5 Arguments

1: SIDE - CHARACTER(1)
Input
On entry: indicates how Q or Q^{T} is to be applied to C.
SIDE $=$ 'L'
Q or Q^{T} is applied to C from the left.
SIDE $=$ 'R'
Q or Q^{T} is applied to C from the right.
Constraint: SIDE $=$ 'L' or 'R'.
2: TRANS - CHARACTER(1)
Input
On entry: indicates whether Q or Q^{T} is to be applied to C.
TRANS $=$ ' N '
Q is applied to C.
TRANS $=$ ' T^{\prime}
Q^{T} is applied to C.
Constraint: TRANS $=$ ' N ' or ' T '.

3: M - INTEGER
Input
On entry: the number of rows of the matrix C_{2}, that is,
if SIDE $=$ 'L'
then m_{v}, the number of rows of the matrix V;
if $\operatorname{SIDE}=$ ' R '
then m_{c}, the number of rows of the matrix C.
Constraint: $\mathrm{M} \geq 0$.
4: N - INTEGER
Input
On entry: the number of columns of the matrix C_{2}, that is,
if $\operatorname{SIDE}=$ 'L'
then n_{c}, the number of columns of the matrix C;
if $\operatorname{SIDE}=$ ' R^{\prime}
then n_{v}, the number of columns of the matrix V.
Constraint: $\mathrm{N} \geq 0$.
5: K - INTEGER
Input
On entry: k, the number of elementary reflectors whose product defines the matrix Q.
Constraint: $\mathrm{K} \geq 0$.
6: L - INTEGER
Input
On entry: l, the number of rows of the upper trapezoidal part of the pentagonal composite matrix V, passed (as B) in a previous call to F08BBF (DTPQRT). This must be the same value used in the previous call to F08BBF (DTPQRT) (see L in F08BBF (DTPQRT)).

Constraint: $0 \leq \mathrm{L} \leq \mathrm{K}$.

7: NB - INTEGER
Input
On entry: $n b$, the blocking factor used in a previous call to F08BBF (DTPQRT) to compute the $Q R$ factorization of a triangular-pentagonal matrix containing composite matrices A and B.

Constraints:

$$
\mathrm{NB} \geq 1
$$

$$
\text { if } \mathrm{K}>0, \mathrm{NB} \leq \mathrm{K}
$$

8: $\quad \mathrm{V}(\mathrm{LDV}, *)-$ REAL (KIND=nag_wp) array
Input
Note: the second dimension of the array LDV must be at least $\max (1, K)$.
On entry: the m_{v} by n_{v} matrix V; this should remain unchanged from the array B returned by a previous call to F08BBF (DTPQRT).

9: LDV - INTEGER Input
On entry: the first dimension of the array V as declared in the (sub)program from which F08BCF (DTPMQRT) is called.

Constraints:

> if $\operatorname{SIDE}=$ 'L', $\operatorname{LDV} \geq \max (1, M)$
> if $\operatorname{SIDE}=$ 'R', LDV $\geq \max (1, N)$

10: $\quad \mathrm{T}(\mathrm{LDT}, *)-$ REAL (KIND=nag_wp) array
Input
Note: the second dimension of the array T must be at least $\max (1, \mathrm{~K})$.
On entry: this must remain unchanged from a previous call to F08BBF (DTPQRT) (see T in F08BBF (DTPQRT)).

11: LDT - INTEGER
Input
On entry: the first dimension of the array T as declared in the (sub)program from which F08BCF (DTPMQRT) is called.
Constraint: LDT \geq NB.
12:
$\mathrm{C} 1(\mathrm{LDC} 1, *)$ - REAL (KIND=nag_wp) array
Input/Output
Note: the second dimension of the array C1 must be at least $\max (1, \mathrm{~N})$ if $\operatorname{SIDE}=$ ' L ' and at least $\max (1, \mathrm{~K})$ if $\operatorname{SIDE}=$ 'R'.
On entry: C_{1}, the first part of the composite matrix C :
if SIDE $=$ 'L'
then C 1 contains the first k rows of C;
if $\operatorname{SIDE}=$ ' R '
then C 1 contains the first k columns of C.
On exit: C 1 is overwritten by the corresponding block of $Q C$ or $Q^{\mathrm{T}} C$ or $C Q$ or $C Q^{\mathrm{T}}$.
13: LDC1 - INTEGER
Input
On entry: the first dimension of the array C 1 as declared in the (sub)program from which F08BCF (DTPMQRT) is called.
Constraints:

$$
\begin{aligned}
& \text { if } \operatorname{SIDE}=' L \text { ', LDC1 } \geq \max (1, \mathrm{~K}) \text {; } \\
& \text { if } \operatorname{SIDE}=\text { 'R', LDC1 } \geq \max (1, M)
\end{aligned}
$$

14: $\mathrm{C} 2(\mathrm{LDC} 2, *)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input/Output
Note: the second dimension of the array C 2 must be at least $\max (1, \mathrm{~N})$.
On entry: C_{2}, the second part of the composite matrix C.
if $\operatorname{SIDE}=$ ' L '
then C 2 contains the remaining m_{v} rows of C;
if $\operatorname{SIDE}=$ ' R '
then C 2 contains the remaining m_{v} columns of C;
On exit: C 2 is overwritten by the corresponding block of $Q C$ or $Q^{\mathrm{T}} C$ or $C Q$ or $C Q^{\mathrm{T}}$.
15: LDC2 - INTEGER
Input
On entry: the first dimension of the array C 2 as declared in the (sub)program from which F08BCF (DTPMQRT) is called.
Constraint: $\operatorname{LDC} 2 \geq \max (1, \mathrm{M})$.
16: $\operatorname{WORK}(*)-$ REAL (KIND=nag_wp) array Workspace

Note: the dimension of the array WORK must be at least $\mathrm{N} \times \mathrm{NB}$ if SIDE $=$ ' L ' and at least $M \times N B$ if SIDE $=$ 'R'.

17: INFO - INTEGER
Output
On exit: INFO $=0$ unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

$\mathrm{INFO}<0$
If INFO $=-i$, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

7 Accuracy

The computed result differs from the exact result by a matrix E such that

$$
\|E\|_{2}=O(\epsilon)\|C\|_{2}
$$

where ϵ is the machine precision.

8 Parallelism and Performance

F08BCF (DTPMQRT) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately $2 n k(2 m-k)$ if $\operatorname{SIDE}=$ ' L ' and $2 m k(2 n-k)$ if SIDE $=$ ' R '.
The complex analogue of this routine is F08BQF (ZTPMQRT).

10 Example

See Section 10 in F08BBF (DTPQRT).

