D06 — Mesh Generation DO06BAF

NAG Library Routine Document
D06BAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

DO6BAF generates a boundary mesh on a closed connected subdomain £2 of R,

2 Specification

SUBROUTINE DO6BAF (NLINES, COORCH, LINED, FBND, CRUS, SDCRUS, RATE, &
NCOMP, NLCOMP, LCOMP, NVMAX, NEDMX, NVB, COOR, NEDGE, &
EDGE, ITRACE, RUSER, IUSER, RWORK, LRWORK, IWORK, &
LIWORK, IFAIL)

INTEGER NLINES, LINED(4,NLINES), SDCRUS, NCOMP, &
NLCOMP (NCOMP), LCOMP(NLINES), NVMAX, NEDMX, NVB, &
NEDGE, EDGE (3,NEDMX), ITRACE, IUSER(*), LRWORK, I3
IWORK (LIWORK), LIWORK, IFAIL

REAL (KIND=nag_wp) COORCH(2,NLINES), FBND, CRUS(2,SDCRUS), &
RATE (NLINES), COOR(2,NVMAX), RUSER(*), &
RWORK (LRWORK)

EXTERNAL FBND

3 Description

Given a closed connected subdomain 2 of R?, whose boundary 942 is divided by characteristic points
into m distinct line segments, DO6BAF generates a boundary mesh on 9f2. Each line segment may be a
straight line, a curve defined by the equation f(z,y) = 0, or a polygonal curve defined by a set of given
boundary mesh points.

This routine is primarily designed for use with either DO6AAF (a simple incremental method) or
DO06ABF (Delaunay—Voronoi method) or DO6ACF (Advancing Front method) to triangulate the interior
of the domain (2. For more details about the boundary and interior mesh generation, consult the D06
Chapter Introduction as well as George and Borouchaki (1998).

This routine is derived from material in the MODULEF package from INRIA (Institut National de
Recherche en Informatique et Automatique).

4 References

George P L and Borouchaki H (1998) Delaunay Triangulation and Meshing: Application to Finite
Elements Editions HERMES, Paris

S Arguments

1: NLINES — INTEGER Input

On entry: m, the number of lines that define the boundary of the closed connected subdomain
(this equals the number of characteristic points which separate the entire boundary {2 into lines).

Constraint: NLINES > 1.

2: COORCH(2,NLINES) — REAL (KIND=nag_wp) array Input

On entry: COORCH(1,7) contains the x coordinate of the ith characteristic point, for
i=1,2,...,NLINES; while COORCH(2,7) contains the corresponding y coordinate.

Mark 26 DO6BAF.1

DO06BAF NAG Library Manual

3: LINED(4,NLINES) — INTEGER array Input

On entry: the description of the lines that define the boundary domain. The line 4, for
1=1,2,...,m, is defined as follows:

LINED(1,4)
The number of points on the line, including two end points.

LINED(2,1)
The first end point of the line. If LINED(2,7) = j, then the coordinates of the first end
point are those stored in COORCH(:, 5).

LINED(3, 4)
The second end point of the line. If LINED(3,¢) = k, then the coordinates of the second
end point are those stored in COORCH(:, k).

LINED(4, 1)
This defines the type of line segment connecting the end points. Additional information is
conveyed by the numerical value of LINED(4,:) as follows:

(i) LINED(4,1%) > 0, the line is described in FBND with LINED(4,) as the index. In this
case, the line must be described in the trigonometric (anticlockwise) direction;

(i) LINED(4,¢) = 0, the line is a straight line;

(iii) if LINED(4,4) < 0, say (—p), then the line is a polygonal arc joining the end points
and interior points specified in CRUS. In this case the line contains the points whose
coordinates are stored in
COORCH(:, j),

CRUS(;,p+1),...,CRUS(:;,p+1r—3),
COORCH(:, k) ,
where z € {1,2}, r = LINED(1,i), j = LINED(2,7) and k = LINED(3, 7).

Constraints:

2 < LINED(1,4);

1 < LINED(2,i) < NLINES;

1 < LINED(3,i) < NLINES;

LINED(2, i) # LINED(3, 4), for i =1,2,...,NLINES.

For each line described by FBND (lines with LINED(4,) > 0, for ¢ = 1,2,...,NLINES) the two
end points (LINED(2,7) and LINED(3,4)) lie on the curve defined by index LINED(4,i) in
FBND, i.e.,

FBND(LINED(4,), COORCH(1, LINED(2, 1)), COORCH(2, LINED(2, i)), RUSER, IUSER) = 0;

FBND(LINED(4, i), COORCH(1, LINED(3, 7)), COORCH(2, LINED(3, 7)), RUSER, IUSER) = 0,
for i=1,2,...,NLINES.

For all lines described as polygonal arcs (lines with LINED(4, i) < 0, for 4 =1,2,...,NLINES)
the sets of intermediate points (i.e.,|[~LINED(4,7) : —LINED(4,4) + LINED(1,4) — 3] for all 4
such that LINED(4,¢) < 0) are not overlapping. This can be expressed as:

—LINED(4,i) + LINED(1,i) —3= Y {LINED(1,i) -2}
{i,LINED(4,i) <0}

or
—LINED(4, i) + LINED(1,4) — 2 = —LINED(4, j),
for a j such that j =1,2,... ,NLINES, j # ¢ and LINED(4, j) < 0.

4: FBND — REAL (KIND=nag wp) FUNCTION, supplied by the user. External Procedure

FBND must be supplied to calculate the value of the function which describes the curve
{(z,y) € R* such that f(z,y) = 0} on segments of the boundary for which LINED(4,4) > 0. If

DO6BAF.2 Mark 26

D06 — Mesh Generation DO06BAF

there are no boundaries for which LINED(4,4) > 0 FBND will never be referenced by DO6BAF
and FBND may be the dummy function DO6BAD. (DO6BAD is included in the NAG Library.)

The specification of FBND is:

FUNCTION FBND (I, X, Y, RUSER, IUSER)
REAL (KIND=nag_wp) FBND

INTEGER I, IUSER(*)

REAL (KIND=nag_wp) X, Y, RUSER(¥*)

1: I — INTEGER Input
On entry: LINED(4,17), the reference index of the line (portion of the contour) 4
described.

2: X — REAL (KIND=nag_wp) Input

3: Y — REAL (KIND=nag_wp) Input

On entry: the values of x and y at which f(x,y) is to be evaluated.

4: RUSER(*) — REAL (KIND=nag_wp) array User Workspace
5: IUSER(%) — INTEGER array User Workspace

FBND is called with the arguments RUSER and IUSER as supplied to DO6BAF. You
should use the arrays RUSER and IUSER to supply information to FBND.

FBND must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which DO6BAF is called. Arguments denoted as /nput must not be changed by this
procedure.

5: CRUS(2,SDCRUS) — REAL (KIND=nag_wp) array Input

On entry: the coordinates of the intermediate points for polygonal arc lines. For a line ¢ defined
as a polygonal arc (i.e., LINED(4,i) <0), if p= —LINED(4,4), then CRUS(1,%), for
k=p,...,p+LINED(1,i) — 3, must contain the x coordinate of the consecutive intermediate
points for this line. Similarly CRUS(2, k), for k= p,...,p+ LINED(1,7) — 3, must contain the
corresponding y coordinate.

6: SDCRUS — INTEGER Input

On entry: the second dimension of the array CRUS as declared in the (sub)program from which
DO6BAF is called.

Constraint: SDCRUS > > {LINED(1,4) — 2}.
{#,LINED(4,) <0}
7: RATE(NLINES) — REAL (KIND=nag_wp) array Input

On entry: RATE(i) is the geometric progression ratio between the points to be generated on the
line 4, for i =1,2,...,m and LINED(4,4) > 0.

If LINED(4,4) < 0, RATE(%) is not referenced.
Constraint: if LINED(4,4) > 0, RATE(¢) > 0.0, for ¢ =1,2,...,NLINES.

8: NCOMP — INTEGER Input
On entry: n, the number of separately connected components of the boundary.

Constraint: NCOMP > 1.

Mark 26 DO6BAF.3

DO06BAF NAG Library Manual

10:

11:

12:

13:

14:

15:

16:

17:

NLCOMP(NCOMP) — INTEGER array Input

On entry: INLCOMP (k)| is the number of line segments in component k of the contour. The line
i of component k runs in the direction LINED(2,¢) to LINED(3,¢) if NLCOMP(k) > 0, and in
the opposite direction otherwise; for k=1,2,...,n.

Constraints:
1 < [NLCOMP(k)| < NLINES, for k= 1,2,...,NCOMP;
> INLCOMP(k)| = NLINES.
k=1
LCOMP(NLINES) — INTEGER array Input

On entry: LCOMP must contain the list of line numbers for the each component of the boundary.
Specifically, the line numbers for the kth component of the boundary, for £ =1,2,..., NCOMP,

k
must be in elements /1 —1 to [2—1 of LCOMP, where l2:Z|NLCOMP(z')| and
=1

1 =12+ 1 — [NLCOMP(k)|.
Constraint: LCOMP must hold a valid permutation of the integers [1, NLINES].

NVMAX - INTEGER Input
On entry: the maximum number of the boundary mesh vertices to be generated.

Constraint: NVMAX > NLINES.

NEDMX — INTEGER Input
On entry: the maximum number of boundary edges in the boundary mesh to be generated.

Constraint: NEDMX > 1.

NVB — INTEGER Output

On exit: the total number of boundary mesh vertices generated.

COOR(2,NVMAX) — REAL (KIND=nag_wp) array Output
On exit: COOR(1, i) will contain the x coordinate of the ith boundary mesh vertex generated, for
i=1,2,...,NVB; while COOR(2,4) will contain the corresponding y coordinate.

NEDGE - INTEGER Output

On exit: the total number of boundary edges in the boundary mesh.

EDGE(3,NEDMX) — INTEGER array Output

On exit: the specification of the boundary edges. EDGE(1, j) and EDGE(2,) will contain the
vertex numbers of the two end points of the jth boundary edge. EDGE(3,j) is a reference
number for the jth boundary edge and

EDGE(3, j) = LINED(4, i), where ¢ and j are such that the jth edges is part of the ith line
of the boundary and LINED(4,4) > 0;

EDGE(3,j) = 100 + [LINED(4,14)|, where 7 and j are such that the jth edges is part of the
ith line of the boundary and LINED(4,:) < 0.
ITRACE — INTEGER Input
On entry: the level of trace information required from DO6BAF.

ITRACE =0 or ITRACE < —1
No output is generated.

DO6BAF.4 Mark 26

D06 — Mesh Generation DO06BAF

18:
19:

20:
21:

22:
23:

24:

ITRACE =1
Output from the boundary mesh generator is printed on the current advisory message unit
(see X04ABF). This output contains the input information of each line and each connected
component of the boundary.

ITRACE = -1
An analysis of the output boundary mesh is printed on the current advisory message unit.
This analysis includes the orientation (clockwise or anticlockwise) of each connected
component of the boundary. This information could be of interest to you, especially if an
interior meshing is carried out using the output of this routine, calling either DO6AAF,
DO6ABF or DO6ACEF.

ITRACE > 1
The output is similar to that produced when ITRACE = 1, but the coordinates of the
generated vertices on the boundary are also output.

You are advised to set ITRACE = 0, unless you are experienced with finite element mesh
generation.

RUSER(*) — REAL (KIND=nag_wp) array User Workspace
IUSER(*) — INTEGER array User Workspace

RUSER and IUSER are not used by DO6BAF, but are passed directly to FBND and should be
used to pass information to this routine.

RWORK(LRWORK) — REAL (KIND=nag_wp) array Workspace
LRWORK — INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
DO6BAF is called.

Constraint:
LRWORK > 2 x (NLINES + SDCRUS) + 2 x max ;—; 2, »{LINED(1,4)} x NLINES.

IWORK(LIWORK) — INTEGER array Workspace
LIWORK - INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
DO6BAF is called.

Constraint:
LIWORK >

S>> {LINED(1,i) — 2} + 8 x NLINES + NVMAX + 3 x NEDMX + 2 x SDCRUS.
{i,LINED(4,i)<0}

IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, —1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value —1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value —1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL = 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

Mark 26 DO6BAF.5

DO06BAF NAG Library Manual

6 Error Indicators and Warnings

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL =1
On entry, NLINES < 1;
or NVMAX < NLINES;
or NEDMX < 1;
or NCOMP < 1;
or LRWORK < 2 x (NLINES + SDCRUS) + 2 x max -, »{LINED(1,4)} x NLINES;
or LIWORK < > {LINED(1,7) — 2} 4+ 8 x NLINES + NVMAX + 3 x

{i,LINED(4,i)<0}
NEDMX + 2 x SDCRUS;

or SDCRUS < > {LINED(1,17) — 2};
{i,LINED(4,) <0}

or RATE(i) < 0.0 for some i = 1,2,...,NLINES with LINED(4,3) > 0;
or LINED(1,4) < 2 for some i = 1,2,...,NLINES;
or LINED(2,i) < 1 or LINED(2,4) > NLINES for some ¢ = 1,2,... ,NLINES;
or LINED(3,¢) < 1 or LINED(3,4) > NLINES for some i = 1,2,...,NLINES;
or LINED(2,i) = LINED(3,4) for some i = 1,2,...,NLINES;
or NLCOMP(k) = 0, or [NLCOMP(k)| > NLINES for a k=1,2,...,NCOMP;
n
or > INLCOMP(k)| # NLINES;
k=1
or LCOMP does not represent a valid permutation of the integers in [1, NLINES];
or one of the end points for a line 7 described by the user-supplied function (lines with

LINED(4,7) > 0, for ¢=1,2,...,NLINES) does not belong to the corresponding
curve in FBND;
or the intermediate points for the lines described as polygonal arcs (lines with
LINED(4,7) < 0, for i=1,2,...,NLINES) are overlapping.
IFAIL =2
An error has occurred during the generation of the boundary mesh. It appears that NEDMX is not
large enough, so you are advised to increase the value of NEDMX.
IFAIL =3
An error has occurred during the generation of the boundary mesh. It appears that NVMAX is
not large enough, so you are advised to increase the value of NVMAX.

IFAIL =4

An error has occurred during the generation of the boundary mesh. Check the definition of each
line (the argument LINED) and each connected component of the boundary (the arguments
NLCOMP, and LCOMP, as well as the coordinates of the characteristic points. Setting
ITRACE > 0 may provide more details.

IFAIL = —99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL = —399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

DO6BAF.6 Mark 26

D06 — Mesh Generation DO06BAF

IFAIL = —999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

DO6BAF is not threaded in any implementation.

9 Further Comments

The boundary mesh generation technique in this routine has a ‘tree’ structure. The boundary should be
partitioned into geometrically simple segments (straight lines or curves) delimited by characteristic
points. Then, the lines should be assembled into connected components of the boundary domain.

Using this strategy, the inputs to that routine can be built up, following the requirements stated in
Section 5:

the characteristic and the user-supplied intermediate points:
NLINES, SDCRUS, COORCH and CRUS;

the characteristic lines:
LINED, FBND, RATE;

finally the assembly of lines into the connected components of the boundary:
NCOMP, and
NLCOMP, LCOMP.

The example below details the use of this strategy.

10 Example

The NAG logo is taken as an example of a geometry with holes. The boundary has been partitioned in
40 lines characteristic points; including 4 for the exterior boundary and 36 for the logo itself. All line
geometry specifications have been considered, see the description of LINED, including 4 lines defined
as polygonal arc, 4 defined by FBND and all the others are straight lines.

10.1 Program Text

! DO6BAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.
Module dO6bafe_mod

! DO6BAF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp
! .. Implicit None Statement ..
Implicit None
! .. Accessibility Statements ..

Private
Public :: fbnd
! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = ©
Contains

Function fbnd(i,x,y,ruser,iuser)

Mark 26 DO6BAF.7

DO06BAF NAG Library Manual

! .. Function Return Value
Real (Kind=nag_wp) :: fbnd
! .. Scalar Arguments
Real (Kind=nag_wp), Intent (In) :: X, y
Integer, Intent (In) e i
! .. Array Arguments
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Integer, Intent (Inout) :: luser (¥*)
! .. Local Scalars
Real (Kind=nag_wp) :: radius2, x0, xa, xb, yO
! .. Executable Statements
xa = ruser(1l)
xb = ruser(2)
x0 = ruser (3)
y0 = ruser(4)

fbnd = 0.0_nag_wp

Select Case (i)
Case (1)

! line 1,2,3, and 4: ellipse centred in (X0,Y0) with
! XA and XB as coefficients

fbnd = ((x-x0)/xa)**2 + ((y-y0)/xb)**2 - 1.0_nag_wp
Case (2)

! line 7, lower arc on letter n, is a circle centred in (XO0,YO0)
! with radius SQRT(RADIUS2)

x0 = 0.5_nag_wp

yO0 = 6.25_nag_wp

radius2 = 20.3125_nag_wp

fbnd = (x-x0)**2 + (y-y0)**2 - radius2
Case (3)

! line 11, upper arc on letter n, is a circle centred in (X0,YO)
! with radius SQRT (RADIUS2)

x0 = 1.0_nag_wp

yO = 4.0_nag_wp

radius2 = 9.0_nag_wp + (11.0_nag_wp-y0)**2

fbnd = (x-x0)**2 + (y-y0)**2 - radius2
Case (4)

! line 15, upper arc on letter a, is a circle centred in (X0,YO)
! with radius SQRT(RADIUS2) touching point (5,11).

x0 = 8.5_nag_wp
yO = 2.75_nag_wp
radius2 = (x0-5.0_nag_wp)**2 + (11.0_nag_wp-y0)**2
fbnd = (x-x0)**2 + (y-y0)**2 - radius2
Case (5)

! line 25, lower arc on hat of ’'a’, is a circle centred in (X0,YO0)
! with radius SQRT(RADIUS2) touching point (11,10).

x0 = 8.5_nag_wp
yO = 4.0_nag_wp
radius2 = 2.5_nag_wp**2 + (10.0_nag_wp-y0)**2
fbnd = (x-x0)**2 + (y-y0)**2 - radius2
Case (6)

! lines 20, 21 and 22, belly of letter a, is an ellipse centered
! in (X0, YO) with semi-axes 3.5 and 2.75.

x0 = 8.5_nag_wp

yO = 5.75_nag_wp

fbnd = ((x-x0)/3.5_nag_wp)**2 + ((y-y0)/2.75_nag_wp)**2 - 1.0_nag_wp
Case (7)

DO6BAF.8 Mark 26

D06 — Mesh Generation DO06BAF

! lines 43, 44 and 45, outer curve on bottom of ‘g’, is an ellipse
! centered in (X0, YO0) with semi-axes 3.5 and 2.5.

x0 = 17.5_nag_wp

yO = 2.5_nag_wp

fbnd = ((x-x0)/3.5_nag_wp)**2 + ((y-y0)/2.5_nag_wp)**2 - 1.0_nag_wp
Case (8)

! lines 28, 29 and 30, inner curve on bottom of ‘g’, is an ellipse
! centered in (X0, YO) with semi-axes 2.0 and 1.5.

x0 = 17.5_nag_wp
yO = 2.5_nag_wp
fbnd = ((x-x0)/2.0_nag_wp)**2 + ((y-y0)/1.5_nag_wp)**2 - 1.0_nag_wp
Case (9)

! line 42, inner curve on lower middle of ’‘g’, is an ellipse
! centered in (X0, YO) with semi-axes 1.5 and 0.5.

x0 = 17.5_nag_wp

yO = 5.5_nag_wp

fbnd = ((x-x0)/1.5_nag _wp)**2 + ((y-y0)/0.5_nag_wp)**2 - 1.0_nag_wp
Case (10)

! line 31, outer curve on lower middle of ’‘g’, is an ellipse
! centered in (X0, YO) with semi-axes 2.0 and 1.5.

x0 = 17.5_nag_wp

yO = 5.5_nag_wp

fbnd = ((x-x0)/3.0_nag_wp)**2 + ((y-y0)/1.5_nag_wp)**2 - 1.0_nag_wp
Case (11)

! line 41, inner curve on upper middle of ’g’, is an ellipse
! centered in (X0, Y0) with semi-axes 1.0 and 1.0.

x0 = 17.0_nag_wp
yO = 5.5_nag_wp
fbnd = ((x-x0)/1.0_nag_wp)**2 + ((y-y0)/1.0_nag_wp)**2 - 1.0_nag_wp
Case (12)
! line 32, outer curve on upper middle of ’'g is an ellipse
! centered in (X0, Y0) with semi-axes 1.5 and 1.1573.

4
’

x0 = 16.0_nag_wp
yO = 5.5_nag_wp
fbnd = ((x-x0)/1.5_nag wp)**2 + ((y-y0)/1.1573_nag_wp)**2 - &
1.0_nag_wp
Case (13)

! lines 33, 33, 34, 39 and 40, upper portion of ’‘g’, is an ellipse
! centered in (X0, YO0) with semi-axes 3.0 and 2.75.
x0 = 17.0_nag_wp
yO = 9.25_nag_wp
fbnd = ((x-x0)/3.0_nag_wp)**2 + ((y-y0)/2.75_nag_wp)**2 - 1.0_nag_wp
End Select

Return

End Function fbnd
End Module dOobafe_mod
Program dOocbafe

! DOG6BAF Example Main Program

! .. Use Statements
Use nag_library, Only: dOcabf, dOc6acf, dOe6baf, flednf, nag_wp
Use dObbafe_mod, Only: fbnd, nin, nout

! .. Implicit None Statement
Implicit None

! .. Local Scalars

Mark 26 DO6BAF9

DO06BAF NAG Library Manual

Real (Kind=nag_wp) :: x0, xa, xb, xmax, xmin, yO, ymax, &
ymin
Integer :: 1, ifail, itrace, j, k, liwork, &
lrwork, maxind, maxval, ncomp, &
nedge, nedmx, nelt, nlines, npropa, &
nv, nvb, nvint, nvmax, reftk, sdcrus
Character (1) :: pmesh
! .. Local Arrays
Real (Kind=nag wp), Allocatable :: coor(:,:), coorch(:,:), crus(:,:), &
rate(:), rwork(:), weight(:)
Real (Kind=nag_wp) :: ruser(4)
Integer, Allocatable :: conn(:,:), edge(:,:), iwork(:), &
lcomp(:), lined(:,:), nlcomp(:)
Integer :: iuser (1)
! .. Intrinsic Procedures
Intrinsic :: abs

! .. Executable Statements
Write (nout,*) ’'DO6BAF Example Program Results’
Flush (nout)

! Skip heading in data file
Read (nin,*)

! Initialize boundary mesh inputs:
! the number of line and of the characteristic points of
! the boundary mesh
Read (nin,*) nlines, nvmax, nedmx
Allocate (coor(2,nvmax),coorch(2,nlines),rate(nlines),bedge(3,nedmx), &
lcomp(nlines),lined(4,nlines))
! The Lines of the boundary mesh
Read (nin,*)(lined(1:4,3j),rate(j),j=1,nlines)
sdcrus = 0

Do 1 =1, nlines

If (lined(4,1i)<0) Then

sdcrus = sdcrus + lined(1l,i) - 2
End If
End Do
liwork = 8*nlines + nvmax + 3*nedmx + 3*sdcrus

! Get max(LINED(1l,:)) for computing LRWORK
Call flednf(nlines,lined,4,maxind,maxval)
lrwork = 2*(nlinestsdcrus) + 2*maxval*nlines
Allocate (crus(2,sdcrus),iwork(liwork) ,rwork(lrwork))

! The ellipse boundary which envelops the NAG Logo
! the N, the A and the G

Read (nin,*) coorch(l,1l:nlines)
Read (nin,*) coorch(2,1:nlines)

Read (nin,*) crus(l,l:sdcrus)
Read (nin,*) crus(2,l:sdcrus)

! The number of connected components to the boundary
! and their information

Read (nin,*) ncomp
Allocate (nlcomp(ncomp))

j=1

DO6BAF.10 Mark 26

D06 — Mesh Generation DO06BAF

Do i = 1, ncomp
Read (nin,*) nlcomp (i)
k = j + abs(nlcomp(i)) - 1
Read (nin,*) lcomp(j:k)
3=k + 1

End Do

! Data passed to the user-supplied function

xmin = coorch(1,4)
xmax = coorch(1l,2)
ymin = coorch(2,1)
ymax = coorch(2,3)
xa = (xmax-xmin)/2.0_nag_wp

xb = (ymax-ymin)/2.0_nag_wp

x0 = (xmin+xmax)/2.0_nag_wp
y0 = (ymin+ymax)/2.0_nag_wp

ruser(1:4) = (/xa,xb,x0,y0/)
iuser(1l) =0
itrace = -1

Write (nout,?*)
Flush (nout)

! Call to the boundary mesh generator
ifail = 0
Call dO6baf(nlines,coorch,lined,fbnd,crus,sdcrus,rate,ncomp,nlcomp, &
lcomp,nvmax,nedmx,nvb,coor ,nedge,edge,itrace,ruser,iuser,rwork,lrwork, &
iwork,liwork,ifail)

Read (nin,*) pmesh

Select Case (pmesh)

Case ('N")
Write (nout,*) ’'Boundary mesh characteristics’
Write (nout,99999) ’'NVB =’, nvb

Write (nout,99999) ’'NEDGE =', nedge
Case ('Y")

! Output the mesh
Write (nout,99998) nvb, nedge
Do i = 1, nvb
Write (nout,99997) i, coor(1l:2,1i)
End Do
Do i = 1, nedge
Write (nout,99996) i, edge(1l:3,1i)
End Do
Flush (nout)
Case Default
Write (nout,*) ’'Problem with the printing option Y or N’
Go To 100
End Select

Deallocate (rwork,iwork)

! Initialize mesh control parameters

itrace = 0
npropa = 1
nvint = 0O

Mark 26 DO6BAF.11

DO06BAF NAG Library Manual

lrwork = 12*nvmax + 15
liwork = 6*nedge + 32*nvmax + 2*nvb + 78
Allocate (weight(nvint),rwork(lrwork),iwork(liwork),conn(3,2*nvmax+5))

! Call to the 2D Delaunay-Voronoi mesh generator

ifail = 0
Call dOcabf (nvb,nvint,nvmax,nedge,edge,nv,nelt,coor,conn,weight,npropa, &
itrace,rwork,lrwork,iwork,liwork,ifail)

Select Case (pmesh)
Case ('N')
Write (nout,*) ’‘Complete mesh (via the 2D Delaunay-Voronoi’
Write (nout,*) ’‘mesh generator) characteristics’
Write (nout,99999) ’'NV (rounded to nearest 10) =', 10*((nv+5)/10)
Write (nout,99999) ’'NELT (rounded to nearest 10) =’, 10*((nelt+5)/10)
Case ('Y")

! Output the mesh

Write (nout,99998) nv, nelt

Do i =1, nv

Write (nout,99995) coor(1l:2,1)
End Do
reftk = 0

Do k = 1, nelt
Write (nout,99994) conn(1l:3,k), reftk
End Do

Flush (nout)
End Select

Deallocate (rwork,iwork)

lrwork = 12*nvmax + 30015

liwork = 8*nedge + 53*nvmax + 2*nvb + 10078
Allocate (rwork(lrwork),iwork(liwork))

! Call to the 2D Advancing front mesh generator

ifail = 0
Call dOoacf (nvb,nvint,nvmax,nedge,edge,nv,nelt,coor,conn,weight,itrace, &
rwork,lrwork,iwork,liwork,ifail)

Select Case (pmesh)
Case ('N")
Write (nout,*) ’Complete mesh (via the 2D Advancing front mesh’
Write (nout,*) ’‘generator) characteristics’
Write (nout,99999) ’'NV (rounded to nearest 10) =', 10*((nv+5)/10)
Write (nout,99999) ’'NELT (rounded to nearest 10) =’, 10*((nelt+5)/10)
Case ('Y")

! Output the mesh
Write (nout,99998) nv, nelt

Do i =1, nv

’
Write (nout,99995) coor(1l:2,1)
End Do
reftk = 0

Do k = 1, nelt
Write (nout,99994) conn(1l:3,k), reftk
End Do

End Select

DO6BAF.12 Mark 26

D06 — Mesh Generation DO06BAF

100 Continue

99999 Format (1X,A,I6)
99998 Format (1X,2I10)
99997 Format (2X,I4,2(2X,E13.6))
99996 Format (1X, 4I4)
99995 Format (2(2X,E13.6))
99994 Format (1X,4110)
End Program dO6bafe

10.2 Program Data

DO6BAF Example Program Data
45 5000 1000 :NLINES (m), NVMAX, NEDMX

15 1 2 1 0.9500 15 2 3 1 1.0500
15 3 4 1 0.9500 15 4 1 1 1.0500
4 6 5 -1 1.0000 10 10 6 0O 1.0000
10 14 10 2 1.0000 10 7 14 0 1.0000
4 8 7 0 1.0000 10 13 8 0O 1.0000
10 13 9 3 1.0000 10 12 9 0 1.0000
4 11 12 0 1.0000 15 5 11 0O 1.0000
15 26 15 4 1.0000 10 26 25 0 1.0000
4 2524 0 1.0000 4 24 23 0 1.0000
4 23 22 0 1.0000 10 21 22 6 1.0000
10 20 21 6 1.0000 10 19 20 6 1.0000
4 19 18 0 1.0000 518 17 0 1.0000
15 17 16 5 1.0000 4 16 15 0 1.0000
4 27 28 0 1.0000 7 28 30 8 1.0000
7 30 32 8 1.0000 7 32 34 8 1.0000
6 36 34 10 1.0000 6 38 36 12 1.0000
10 40 38 13 1.0000 10 42 40 13 1.0000
8 44 42 13 1.0000 4 44 45 0 1.0000
4 45 43 0 1.0000 4 43 41 0 1.0000
6 39 41 13 1.0000 10 37 39 13 1.0000
6 37 35 11 1.0000 6 35 33 9 1.0000
10 31 33 7 1.0000 10 29 31 7 1.0000
10 27 29 7 1.0000 : (LINE(:,3),RATE(]F),j=1,m)

9.5000 33.0000 9.5000 -14.0000
-4.0000 =-2.0000 2.0000 4.0000 =-2.0000 =-2.0000 =-4.0000
-2.0000 4.0000 2.0000

5.0000 6.0000 11.0000 11.0000 8.5000 5.0000 8.5000

11.5000 13.0000 14.0000 13.0000 13.0000

14.0000 15.5000 17.5000 17.5000 21.0000 19.5000 17.5000

17.5000 16.0000 14.5000 17.0000 16.0000 20.0000 14.0000

19.3142 17.0000 20.5000 18.7249 19.5000 : End of X coords
-3.0000 6.5000 16.0000 6.5000

3.0000 3.0000 3.0000 3.0000 11.0000 10.0000 11.5000

12.0000 11.0000 10.5000
11.0000 10.0000 10.0000
4.3335 3.0000 3.7500 .7500 10.5000

2.5000 2.5000 0.0000 .0000 2.5000 2.5000 5.0000

8.5000 8.5000 5.7500 3.0000
4
1
4.0000 5.5000 5.5000 6.5000 6.6573 9.2500 9.2500
1
2
3

11.0000 12.000 11.5000 11.5000 12.0000 : End of Y coords
-2.6667 -3.3333 3.3333 .6667 : (Poly (X))
3.0000 3.0000 3.0000 .0000 : (Poly (Y))
4 :NCOMP (n, number of contours)
4 :number of lines in contour 1
1 2 3 4 :lines of contour 1 (Ellipse)
10 :number of lines in contour 2
14 13 12 11 10 9 8 7 6 5 :lines of contour 2 (Letter N)
12 :number of lines in contour 3
18 19 20 21 22 23 24 25 26 15 16 17 :lines of contour 3 (Letter A)
19 :number of lines in contour 4
27 28 29 30 31 32 33 34 35 36 37 38
39 40 41 42 43 44 45 :lines of contour 4 (Letter G)
o\ :Printing option 'Y’ or ’'N’

Mark 26 DO6BAF.13

DO06BAF NAG Library Manual

10.3 Program Results

DO6BAF Example Program Results

Analysis of the boundary created:

The boundary mesh contains 332 vertices and 332 edges

There are 4 components comprising the boundary:

The 1-st component contains 4 lines in anticlockwise orientation
The 2-nd component contains 10 lines in clockwise orientation
The 3-rd component contains 12 lines in anticlockwise orientation
The 4-th component contains 19 lines in clockwise orientation
Boundary mesh characteristics

NVB = 332

NEDGE = 332

Complete mesh (via the 2D Delaunay-Voronoi
mesh generator) characteristics

NV (rounded to nearest 10) = 900

NELT (rounded to nearest 10) = 1480

Complete mesh (via the 2D Advancing front mesh
generator) characteristics

NV (rounded to nearest 10) 920

NELT (rounded to nearest 10) = 1520

Example Program
Boundary Mesh of the NAG Logo with 259 Nodes and 259 Edges

DO6BAF.14 Mark 26

DO06BAF

Final Mesh Built Using the Delaunay-V oronoi Method

D06 — Mesh Generation

A= WAVN

AN VAVAVA
ORSEEEN
LR

AN
KRR
NSRS
NSt

SR
AN

g4

A Y/
SERARH
LRt G OX | A

%
ZaN

/\

PavavAVAVAN 2 N 1"’ »

S

Y SRS NS
e SRRV <]
NPRVSASEERIAARX DOARETS
v N\ PERRTERARKS K

<

7
S
AVA
NP

Final Mesh Built Using the Advancing Front Method

W o A
VAM«»»&FEM«» e%wmhv A
“Vﬂ»(hhbghﬁﬂzkmﬂ“”

NO >
MWH wmﬁ%wﬁmw&w

AV VAV VAVAYA Y
EIERIRAGA
1><><><>4>4>4>4><>4»1 v

o

A

VAN
X

4

\ A

=L

~

>
VANVAVAVAAVAVAVAVAVANZAVAVAVANN Aﬂﬂ<><><><><><><><><><><><><>4’)V
AVAVAVAVZaVANVAVAVAVAV SPVNVAVAVAVAVAVAALY,
QIARRIRAINE AVAVSNSNAvAYAVATAN

WAVAV VI ZavavavaV
gﬂw»mwdaﬁh
4?4«'4

DO6BAF.15 (last)

Mark 26

	D06BAF
	1 Purpose
	2 Specification
	3 Description
	4 References
	George and Borouchaki (1998)

	5 Arguments
	NLINES
	COORCH
	LINED
	FBND
	I
	X
	Y
	RUSER
	IUSER

	CRUS
	SDCRUS
	RATE
	NCOMP
	NLCOMP
	LCOMP
	NVMAX
	NEDMX
	NVB
	COOR
	NEDGE
	EDGE
	ITRACE
	RUSER
	IUSER
	RWORK
	LRWORK
	IWORK
	LIWORK
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Fortran Library Manual, Mark 26.1
	Copyright Statement
	Foreword
	Introduction
	How to Use the NAG Library and its Documentation
	Mark 26.1 NAG Fortran Library News
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Code Contributors
	Support from NAG
	Index

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Contents
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Contents
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Contents
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Contents
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Contents
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Contents
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Contents
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Contents
	D02 Chapter Introduction
	D02M-N Sub-chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Contents
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Contents
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Contents
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Contents
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Contents
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Contents
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Contents
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Contents
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Contents
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Contents
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Contents
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Contents
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Contents
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Contents
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Contents
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Contents
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Contents
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Contents
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Contents
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Contents
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Contents
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Contents
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Contents
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Contents
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Contents
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Contents
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Contents
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Contents
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Contents
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Contents
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Contents
	G13 Chapter Introduction

	G22 - Linear Model Specification
	G22 Chapter Contents
	G22 Chapter Introduction

	H - Operations Research
	H Chapter Contents
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Contents
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Contents
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Contents
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Contents
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Contents
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Contents
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Contents
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Contents
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Contents
	X07 Chapter Introduction

