
NAG Library Routine Document

H03ADF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

H03ADF finds the shortest path through a directed or undirected acyclic network using Dijkstra's
algorithm.

2 Specification

SUBROUTINE H03ADF (N, NS, NE, DIRECT, NNZ, D, IROW, ICOL, SPLEN, PATH,
IWORK, WORK, IFAIL)

&

INTEGER N, NS, NE, NNZ, IROW(NNZ), ICOL(NNZ), PATH(N),
IWORK(3*N+1), IFAIL

&

REAL (KIND=nag_wp) D(NNZ), SPLEN, WORK(2*N)
LOGICAL DIRECT

3 Description

H03ADF attempts to find the shortest path through a directed or undirected acyclic network, which
consists of a set of points called vertices and a set of curves called arcs that connect certain pairs of
distinct vertices. An acyclic network is one in which there are no paths connecting a vertex to itself. An
arc whose origin vertex is i and whose destination vertex is j can be written as i ! j. In an undirected
network the arcs i ! j and j ! i are equivalent (i.e., i $ j), whereas in a directed network they are
different. Note that the shortest path may not be unique and in some cases may not even exist (e.g., if
the network is disconnected).

The network is assumed to consist of n vertices which are labelled by the integers 1; 2; . . . ; n. The
lengths of the arcs between the vertices are defined by the n by n distance matrix D, in which the
element dij gives the length of the arc i ! j; dij ¼ 0 if there is no arc connecting vertices i and j (as is
the case for an acyclic network when i ¼ j). Thus the matrix D is usually sparse. For example, if
n ¼ 4 and the network is directed, then

D ¼
0 d12 d13 d14
d21 0 d23 d24
d31 d32 0 d34
d41 d42 d43 0

0
B@

1
CA:

If the network is undirected, D is symmetric since dij ¼ dji (i.e., the length of the arc i ! j � the
length of the arc j ! i).

The method used by H03ADF is described in detail in Section 9.

4 References

Dijkstra E W (1959) A note on two problems in connection with graphs Numer. Math. 1 269–271

5 Arguments

1: N – INTEGER Input

On entry: n, the number of vertices.

Constraint: N � 2.

H – Operations Research H03ADF

Mark 26 H03ADF.1



2: NS – INTEGER Input
3: NE – INTEGER Input

On entry: ns and ne, the labels of the first and last vertices, respectively, between which the
shortest path is sought.

Constraints:

1 � NS � N;
1 � NE � N;
NS 6¼ NE.

4: DIRECT – LOGICAL Input

On entry: indicates whether the network is directed or undirected.

DIRECT ¼ :TRUE:
The network is directed.

DIRECT ¼ :FALSE:
The network is undirected.

5: NNZ – INTEGER Input

On entry: the number of nonzero elements in the distance matrix D.

Constraints:

if DIRECT ¼ :TRUE:, 1 � NNZ � N� N� 1ð Þ;
if DIRECT ¼ :FALSE:, 1 � NNZ � N� N� 1ð Þ=2.

6: DðNNZÞ – REAL (KIND=nag_wp) array Input

On entry: the nonzero elements of the distance matrix D, ordered by increasing row index and
increasing column index within each row. More precisely, DðkÞ must contain the value of the
nonzero element with indices (IROWðkÞ; ICOLðkÞ); this is the length of the arc from the vertex
with label IROWðkÞ to the vertex with label ICOLðkÞ. Elements with the same row and column
indices are not allowed. If DIRECT ¼ :FALSE:, then only those nonzero elements in the strict
upper triangle of D need be supplied since dij ¼ dji. (F11ZAF may be used to sort the elements
of an arbitrarily ordered matrix into the required form. This is illustrated in Section 10.)

Constraint: DðkÞ > 0:0, for k ¼ 1; 2; . . . ;NNZ.

7: IROWðNNZÞ – INTEGER array Input
8: ICOLðNNZÞ – INTEGER array Input

On entry: IROWðkÞ and ICOLðkÞ must contain the row and column indices, respectively, for the
nonzero element stored in DðkÞ.
Constraints:

IROW and ICOL must satisfy the following constraints (which may be imposed by a call to
F11ZAF):

IROWðk� 1Þ < IROWðkÞ;
IROWðk � 1Þ ¼ IROWðkÞ and ICOLðk � 1Þ < ICOLðkÞ, for k ¼ 2; 3; . . . ;NNZ.

I n a d d i t i o n , i f DIRECT ¼ :TRUE:, 1 � IROWðkÞ � N, 1 � ICOLðkÞ � N a n d
IROWðkÞ 6¼ ICOLðkÞ;

if DIRECT ¼ :FALSE:, 1 � IROWðkÞ < ICOLðkÞ � N.

9: SPLEN – REAL (KIND=nag_wp) Output

On exit: the length of the shortest path between the specified vertices ns and ne.

H03ADF NAG Library Manual

H03ADF.2 Mark 26



10: PATHðNÞ – INTEGER array Output

On exit: contains details of the shortest path between the specified vertices ns and ne. More
precisely, NS ¼ PATHð1Þ ! PATHð2Þ ! . . . ! PATHðpÞ ¼ NE for some p � n. The remaining
n� pð Þ elements are set to zero.

11: IWORKð3� Nþ 1Þ – INTEGER array Workspace

12: WORKð2� NÞ – REAL (KIND=nag_wp) array Workspace

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 2,
or NS < 1,
or NS > N,
or NE < 1,
or NE > N,
or NS ¼ NE.

IFAIL ¼ 2

On entry, NNZ > N� N� 1ð Þ when DIRECT ¼ :TRUE:,
or NNZ > N� N� 1ð Þ=2 when DIRECT ¼ :FALSE:,
or NNZ < 1.

IFAIL ¼ 3

On e n t r y , IROWðkÞ < 1 o r IROWðkÞ > N o r ICOLðkÞ < 1 o r ICOLðkÞ > N o r
IROWðkÞ ¼ ICOLðkÞ for some k when DIRECT ¼ :TRUE:.

IFAIL ¼ 4

On entry, IROWðkÞ < 1 or IROWðkÞ � ICOLðkÞ or ICOLðkÞ > N for some k when
DIRECT ¼ :FALSE:.

IFAIL ¼ 5

DðkÞ � 0:0 for some k.

IFAIL ¼ 6

On entry, IROWðk� 1Þ > IROWðkÞ or IROWðk� 1Þ ¼ IROWðkÞ and ICOLðk� 1Þ > ICOLðkÞ
for some k.

H – Operations Research H03ADF

Mark 26 H03ADF.3



IFAIL ¼ 7

On entry, IROWðk� 1Þ ¼ IROWðkÞ and ICOLðk� 1Þ ¼ ICOLðkÞ for some k.

IFAIL ¼ 8

No connected network exists between vertices NS and NE.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The results are exact, except for the obvious rounding errors in summing the distances in the length of
the shortest path.

8 Parallelism and Performance

H03ADF is not threaded in any implementation.

9 Further Comments

H03ADF is based upon Dijkstra's algorithm (see Dijkstra (1959)), which attempts to find a path
ns ! ne between two specified vertices ns and ne of shortest length d ns; neð Þ.
The algorithm proceeds by assigning labels to each vertex, which may be temporary or permanent. A
temporary label can be changed, whereas a permanent one cannot. For example, if vertex p has a
permanent label q; rð Þ, then r is the distance d ns; rð Þ and q is the previous vertex on a shortest length
ns ! p path. If the label is temporary, then it has the same meaning but it refers only to the shortest
ns ! p path found so far. A shorter one may be found later, in which case the label may become
permanent.

The algorithm consists of the following steps.

1. Assign the permanent label �; 0ð Þ to vertex ns and temporary labels �;1ð Þ to every other vertex.
Set k ¼ ns and go to 2.

2. Consider each vertex y adjacent to vertex k with a temporary label in turn. Let the label at k be
p; qð Þ and at y r; sð Þ. If q þ dky < s, then a new temporary label k; q þ dky

� �
is assigned to vertex y;

otherwise no change is made in the label of y. When all vertices y with temporary labels adjacent
to k have been considered, go to 3.

3. From the set of temporary labels, select the one with the smallest second component and declare
that label to be permanent. The vertex it is attached to becomes the new vertex k. If k ¼ ne go to 4.
Otherwise go to 2 unless no new vertex can be found (e.g., when the set of temporary labels is
‘empty’ but k 6¼ ne, in which case no connected network exists between vertices ns and ne).

4. To find the shortest path, let y; zð Þ denote the label of vertex ne. The column label (z) gives
d ns; neð Þ while the row label (y) then links back to the previous vertex on a shortest length
ns ! ne path. Go to vertex y. Suppose that the (permanent) label of vertex y is w; xð Þ, then the

H03ADF NAG Library Manual

H03ADF.4 Mark 26



next previous vertex is w on a shortest length ns ! y path. This process continues until vertex ns

is reached. Hence the shortest path is

ns ! . . . ! w ! y ! ne;

which has length d ns; neð Þ.

10 Example

This example finds the shortest path between vertices 1 and 11 for the undirected network

1

2

3

4

5

6

7

8

9

10

11

5

5

6

4

4

3

1

9

8

7

6

1

2

2

1

1

1
4

4

2

10.1 Program Text

Program h03adfe

! H03ADF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: f11zaf, h03adf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: dup = ’F’, zero = ’R’

! .. Local Scalars ..
Real (Kind=nag_wp) :: splen
Integer :: ifail, j, lenc, n, ne, nnz, ns
Logical :: direct

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: d(:), work(:)
Integer, Allocatable :: icol(:), irow(:), iwork(:), path(:)

! .. Executable Statements ..
Write (nout,*) ’H03ADF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, ns, ne, nnz, direct
Allocate (d(nnz),work(2*n),icol(nnz),irow(nnz),iwork(3*n+1),path(n))

Read (nin,*)(d(j),irow(j),icol(j),j=1,nnz)

! Reorder the elements of D into the form required by H03ADF.

ifail = 0
Call f11zaf(n,nnz,d,irow,icol,dup,zero,iwork,iwork(n+2),ifail)

! Find the shortest path between vertices NS and NE.

ifail = 0
Call h03adf(n,ns,ne,direct,nnz,d,irow,icol,splen,path,iwork,work,ifail)

! Print details of shortest path.

lenc = n

H – Operations Research H03ADF

Mark 26 H03ADF.5



loop: Do j = 0, n - 1

If (path(j+1)==0) Then
lenc = j
Exit loop

End If

End Do loop

Write (nout,99999) ’Shortest path = ’, (path(j),j=1,lenc)
Write (nout,99998) ’Length of shortest path = ’, splen

99999 Format (/,1X,A,10(I2,:,’ to ’))
99998 Format (/,1X,A,G16.6)

End Program h03adfe

10.2 Program Data

H03ADF Example Program Data
11 1 11 20 F :Values of N, NS, NE, NNZ and DIRECT
6.0 6 8
1.0 8 9
2.0 9 11
4.0 2 5
1.0 3 4
6.0 1 3
4.0 3 6
1.0 4 6
2.0 2 3
3.0 4 7
5.0 1 2
7.0 6 10
1.0 5 6
4.0 8 11
9.0 5 9
1.0 6 7
8.0 7 9
4.0 10 11
2.0 9 10
5.0 1 4 :End of D, IROW, ICOL

10.3 Program Results

H03ADF Example Program Results

Shortest path = 1 to 4 to 6 to 8 to 9 to 11

Length of shortest path = 15.0000

H03ADF NAG Library Manual

H03ADF.6 (last) Mark 26


	H03ADF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Dijkstra (1959)

	5 Arguments
	N
	NS
	NE
	DIRECT
	NNZ
	D
	IROW
	ICOL
	SPLEN
	PATH
	IWORK
	WORK
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	NAG Fortran Library Manual, Mark 26.1
	Copyright Statement
	Foreword
	Introduction
	How to Use the NAG Library and its Documentation
	Mark 26.1 NAG Fortran Library News
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Code Contributors
	Support from NAG
	Index

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Contents
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Contents
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Contents
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Contents
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Contents
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Contents
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Contents
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Contents
	D02 Chapter Introduction
	D02M-N Sub-chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Contents
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Contents
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Contents
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Contents
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Contents
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Contents
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Contents
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Contents
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Contents
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Contents
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Contents
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Contents
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Contents
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Contents
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Contents
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Contents
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Contents
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Contents
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Contents
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Contents
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Contents
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Contents
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Contents
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Contents
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Contents
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Contents
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Contents
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Contents
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Contents
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Contents
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Contents
	G13 Chapter Introduction

	G22 - Linear Model Specification
	G22 Chapter Contents
	G22 Chapter Introduction

	H - Operations Research
	H Chapter Contents
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Contents
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Contents
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Contents
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Contents
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Contents
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Contents
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Contents
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Contents
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Contents
	X07 Chapter Introduction




