
NAG Library Routine Document

H02DAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

H02DAF solves general nonlinear programming problems with integer constraints on some of the
variables.

2 Specification

SUBROUTINE H02DAF (N, NCLIN, NCNLN, A, LDA, D, AX, BL, BU, VARCON, X,
CONFUN, C, CJAC, OBJFUN, OBJGRD, MAXIT, ACC, OBJMIP,
IOPTS, OPTS, IUSER, RUSER, IFAIL)

&
&

INTEGER N, NCLIN, NCNLN, LDA, VARCON(N+NCLIN+NCNLN), MAXIT,
IOPTS(*), IUSER(*), IFAIL

&

REAL (KIND=nag_wp) A(LDA,*), D(NCLIN), AX(NCLIN), BL(N), BU(N), X(N),
C(NCNLN), CJAC(NCNLN,N), OBJGRD(N), ACC, OBJMIP,
OPTS(*), RUSER(*)

&
&

EXTERNAL CONFUN, OBJFUN

Before calling H02DAF, H02ZKF must be called with OPTSTR set to ‘Initialize = h02daf’.
Optional parameters may also be specified by calling H02ZKF before the call to H02DAF.

3 Description

H02DAF solves mixed integer nonlinear programming problems using a modified sequential quadratic
programming method. The problem is assumed to be stated in the following general form:

minimize
x2 Rnc ;Znif g

f xð Þ
subject to cj xð Þ ¼ 0; j ¼ 1; 2; . . . ;me

cj xð Þ � 0; j ¼ me þ 1;me þ 2; . . . ;m
l � xi � u; i ¼ 1; 2; . . . ; n

with nc continuous variables and ni binary and integer variables in a total of n variables; me equality
constraints in a total of m constraint functions.

Partial derivatives of f xð Þ and c xð Þ are not required for the ni integer variables. Gradients with respect
to integer variables are approximated by difference formulae.

No assumptions are made regarding f xð Þ except that it is twice continuously differentiable with respect
to continuous elements of x. It is not assumed that integer variables are relaxable. In other words,
problem functions are evaluated only at integer points.

The method seeks to minimize the exact penalty function:

P� xð Þ ¼ f xð Þ þ � g xð Þk k1
where � is adapted by the algorithm and g xð Þ is given by:

g xð Þ ¼ cj xð Þ; j ¼ 1; 2; . . . ;me

¼ min cj xð Þ; 0� �
; j ¼ me þ 1;me þ 2; . . . ;m:

Successive quadratic approximations are applied under the assumption that integer variables have a
smooth influence on the model functions, that is function values do not change drastically when
incrementing or decrementing an integer value. In practice this requires integer variables to be ordinal
not categorical. The algorithm is stabilised by a trust region method including Yuan's second order
corrections, see Yuan and Sun (2006). The Hessian of the Lagrangian function is approximated by
BFGS (see Section 11.4 in E04UCF/E04UCA) updates subject to the continuous and integer variables.

H – Operations Research H02DAF

Mark 26 H02DAF.1



The mixed-integer quadratic programming subproblems of the SQP-trust region method are solved by a
branch and cut method with continuous subproblem solutions obtained by the primal-dual method of
Goldfarb and Idnani, see Powell (1983). Different strategies are available for selecting a branching
variable:

Maximal fractional branching. Select an integer variable from the relaxed subproblem solution
with largest distance from next integer value

Minimal fractional branching. Select an integer variable from the relaxed subproblem solution
with smallest distance from next integer value

and a node from where branching, that is the generation of two new subproblems, begins:

Best of two. The optimal objective function values of the two child nodes are compared and the
node with a lower value is chosen

Best of all. Select an integer variable from the relaxed subproblem solution with the smallest
distance from the next integer value

Depth first. Select a child node whenever possible.

This implementation is based on the algorithm MISQP as described in Exler et al. (2013).

Linear constraints may optionally be supplied by a matrix A and vector d rather than the constraint
functions c xð Þ such that

Ax ¼ d or Ax � d:

Partial derivatives with respect to x of these constraint functions are not requested by H02DAF.

4 References

Exler O, Lehmann T and Schittkowski K (2013) A comparative study of SQP-type algorithms for
nonlinear and nonconvex mixed-integer optimization Mathematical Programming Computation 4 383–
412

Mann A (1986) GAMS/MINOS: Three examples Department of Operations Research Technical Report
Stanford University

Powell M J D (1983) On the quadratic programming algorithm of Goldfarb and Idnani Report DAMTP
1983/Na 19 University of Cambridge, Cambridge

Yuan Y-x and Sun W (2006) Optimization Theory and Methods Springer–Verlag

5 Arguments

1: N – INTEGER Input

On entry: n, the total number of variables, nc þ ni.

Constraint: N > 0.

2: NCLIN – INTEGER Input

On entry: nl, the number of general linear constraints defined by A and d.

Constraint: NCLIN � 0.

3: NCNLN – INTEGER Input

On entry: nN , the number of constraints supplied by c xð Þ.
Constraint: NCNLN � 0.

H02DAF NAG Library Manual

H02DAF.2 Mark 26



4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N if NCLIN > 0.

On entry: the ith row of A must contain the coefficients of the ith general linear constraint, for
i ¼ 1; 2; . . . ; nl. Any equality constraints must be specified first.

If NCLIN ¼ 0, the array A is not referenced.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which
H02DAF is called.

Constraint: LDA � max 1;NCLINð Þ.

6: DðNCLINÞ – REAL (KIND=nag_wp) array Input

On entry: di, the constant for the ith linear constraint.

If NCLIN ¼ 0, the array D is not referenced.

7: AXðNCLINÞ – REAL (KIND=nag_wp) array Output

On exit: the final values of the linear constraints Ax.

If NCLIN ¼ 0, AX is not referenced.

8: BLðNÞ – REAL (KIND=nag_wp) array Input
9: BUðNÞ – REAL (KIND=nag_wp) array Input

On entry: BL must contain the lower bounds, li, and BU the upper bounds, ui, for the variables;
bounds on integer variables are rounded, bounds on binary variables need not be supplied.

Constraint: BLðiÞ � BUðiÞ, for i ¼ 1; 2; . . . ;N.

10: VARCONðNþ NCLINþ NCNLNÞ – INTEGER array Input

On entry: VARCON indicates the nature of each variable and constraint in the problem. The first
n elements of the array must describe the nature of the variables, the next nL elements the nature
of the general linear constraints (if any) and the next nN elements the general constraints (if any).

VARCONðjÞ ¼ 0
A continuous variable.

VARCONðjÞ ¼ 1
A binary variable.

VARCONðjÞ ¼ 2
An integer variable.

VARCONðjÞ ¼ 3
An equality constraint.

VARCONðjÞ ¼ 4
An inequality constraint.

Constraints:

VARCONðjÞ ¼ 0, 1 or 2, for j ¼ 1; 2; . . . ;N;
VARCONðjÞ ¼ 3 or 4, for j ¼ Nþ 1; . . . ;Nþ NCLINþ NCNLN;
At least one variable must be either binary or integer;
Any equality constraints must precede any inequality constraints.

H – Operations Research H02DAF

Mark 26 H02DAF.3



11: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: an initial estimate of the solution, which need not be feasible. Values corresponding to
integer variables are rounded; if an initial value less than half is supplied for a binary variable the
value zero is used, otherwise the value one is used.

On exit: the final estimate of the solution.

12: CONFUN – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

CONFUN must calculate the constraint functions supplied by c xð Þ and their Jacobian at x. If all
constraints are supplied by A and d (i.e., NCNLN ¼ 0), CONFUN will never be called by
H02DAF and CONFUN may be the dummy routine H02DDM. (H02DDM is included in the
NAG Library.) If NCNLN > 0, the first call to CONFUN will occur after the first call to
OBJFUN.

The specification of CONFUN is:

SUBROUTINE CONFUN (MODE, NCNLN, N, VARCON, X, C, CJAC, NSTATE,
IUSER, RUSER)

&

INTEGER MODE, NCNLN, N, VARCON(*), NSTATE, IUSER(*)
REAL (KIND=nag_wp) X(N), C(NCNLN), CJAC(NCNLN,N), RUSER(*)

1: MODE – INTEGER Input/Output

On entry: indicates which values must be assigned during each call of OBJFUN. Only
the following values need be assigned:

MODE ¼ 0
Elements of C containing continuous variables.

MODE ¼ 1
Elements of CJAC containing continuous variables.

On exit: may be set to a negative value if you wish to terminate the solution to the
current problem, and in this case H02DAF will terminate with IFAIL set to MODE.

2: NCNLN – INTEGER Input

On entry: the dimension of the array C and the first dimension of the array CJAC as
declared in the (sub)program from which H02DAF is called. The number of constraints
supplied by c xð Þ, nN .

3: N – INTEGER Input

On entry: the second dimension of the array CJAC as declared in the (sub)program
from which H02DAF is called. n, the total number of variables, nc þ ni.

4: VARCONð�Þ – INTEGER array Input

On entry: the array VARCON as supplied to H02DAF.

5: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the vector of variables at which the objective function and/or all continuous
elements of its gradient are to be evaluated.

6: CðNCNLNÞ – REAL (KIND=nag_wp) array Output

On exit: must contain NCNLN constraint values, with the value of the jth constraint
cj xð Þ in CðjÞ.

H02DAF NAG Library Manual

H02DAF.4 Mark 26



7: CJACðNCNLN;NÞ – REAL (KIND=nag_wp) array Input/Output

Note: the derivative of the ith constraint with respect to the jth variable,
@ci
@xj

, is stored

in CJACði; jÞ.
On entry: continuous elements of CJAC are set to the value of NaN.

On exit: the ith row of CJAC must contain elements of
@ci
@xj

for each continuous variable

xj.

8: NSTATE – INTEGER Input

On entry: if NSTATE ¼ 1, H02DAF is calling CONFUN for the first time. This
argument setting allows you to save computation time if certain data must be read or
calculated only once.

9: IUSERð�Þ – INTEGER array User Workspace
10: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

CONFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which H02DAF is called. Arguments denoted as Input must not be changed
by this procedure.

13: CðNCNLNÞ – REAL (KIND=nag_wp) array Output

On exit: if NCNLN > 0, CðjÞ contains the value of the jth constraint function cj xð Þ at the final
iterate, for j ¼ 1; 2; . . . ;NCNLN.

If NCNLN ¼ 0, the array C is not referenced.

14: CJACðNCNLN;NÞ – REAL (KIND=nag_wp) array Output

Note: the derivative of the ith constraint with respect to the jth variable,
@ci
@xj

, is stored in

CJACði; jÞ.
On exit: if NCNLN > 0, CJAC contains the Jacobian matrix of the constraint functions at the
final iterate, i.e., CJACði; jÞ contains the partial derivative of the ith constraint function with
respect to the jth variable, for i ¼ 1; 2; . . . ;NCNLN and j ¼ 1; 2; . . . ;N. (See the discussion of
argument CJAC under CONFUN.)

If NCNLN ¼ 0, the array CJAC is not referenced.

15: OBJFUN – SUBROUTINE, supplied by the user. External Procedure

OBJFUN must calculate the objective function f xð Þ and its gradient for a specified n-element
vector x.

The specification of OBJFUN is:

SUBROUTINE OBJFUN (MODE, N, VARCON, X, OBJMIP, OBJGRD, NSTATE,
IUSER, RUSER)

&

INTEGER MODE, N, VARCON(*), NSTATE, IUSER(*)
REAL (KIND=nag_wp) X(N), OBJMIP, OBJGRD(N), RUSER(*)

1: MODE – INTEGER Input/Output

On entry: indicates which values must be assigned during each call of OBJFUN. Only
the following values need be assigned:

MODE ¼ 0
The objective function value, OBJMIP.

H – Operations Research H02DAF

Mark 26 H02DAF.5



MODE ¼ 1
The continuous elements of OBJGRD.

On exit: may be set to a negative value if you wish to terminate the solution to the
current problem, and in this case H02DAF will terminate with IFAIL set to MODE.

2: N – INTEGER Input

On entry: n, the total number of variables, nc þ ni.

3: VARCONð�Þ – INTEGER array Input

On entry: the array VARCON as supplied to H02DAF.

4: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the vector of variables at which the objective function and/or all continuous
elements of its gradient are to be evaluated.

5: OBJMIP – REAL (KIND=nag_wp) Output

On exit: must be set to the objective function value, f , if MODE ¼ 0; otherwise
OBJMIP is not referenced.

6: OBJGRDðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: continuous elements of OBJGRD are set to the value of NaN.

On exit: must contain the gradient vector of the objective function if MODE ¼ 1, with
OBJGRDðjÞ containing the partial derivative of f with respect to continuous variable
xj; otherwise OBJGRD is not referenced.

7: NSTATE – INTEGER Input

On entry: if NSTATE ¼ 1, H02DAF is calling OBJFUN for the first time. This
argument setting allows you to save computation time if certain data must be read or
calculated only once.

8: IUSERð�Þ – INTEGER array User Workspace
9: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

OBJFUN is called with the arguments IUSER and RUSER as supplied to H02DAF. You
should use the arrays IUSER and RUSER to supply information to OBJFUN.

OBJFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which H02DAF is called. Arguments denoted as Input must not be changed by
this procedure.

16: OBJGRDðNÞ – REAL (KIND=nag_wp) array Output

On exit: the objective function gradient at the solution.

17: MAXIT – INTEGER Input

On entry: the maximum number of iterations within which to find a solution. If MAXIT is less
than or equal to zero, the suggested value below is used.

Suggested value: MAXIT ¼ 500.

18: ACC – REAL (KIND=nag_wp) Input

On entry: the requested accuracy for determining feasible points during iterations and for halting
the method when the predicted improvement in objective function is less than ACC. If ACC is

H02DAF NAG Library Manual

H02DAF.6 Mark 26



less than or equal to � (� being the machine precision as given by X02AJF), the below suggested
value is used.

Suggested value: ACC ¼ 0:0001.

19: OBJMIP – REAL (KIND=nag_wp) Output

On exit: with IFAIL ¼ 0, OBJMIP contains the value of the objective function for the MINLP
solution.

20: IOPTSð�Þ – INTEGER array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument IOPTS
in the previous call to H02ZKF.

21: OPTSð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument OPTS
in the previous call to H02ZKF.

On entry: the real option array as returned by H02ZKF.

22: IUSERð�Þ – INTEGER array User Workspace
23: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by H02DAF, but are passed directly to CONFUN and OBJFUN
and should be used to pass information to these routines.

24: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N > 0.

IFAIL ¼ 2

On entry, NCLIN ¼ valueh i.
Constraint: NCLIN � 0.

H – Operations Research H02DAF

Mark 26 H02DAF.7



IFAIL ¼ 3

On entry, NCNLN ¼ valueh i.
Constraint: NCNLN � 0.

IFAIL ¼ 4

On entry, LDA ¼ valueh i and NCLIN ¼ valueh i.
Constraint: LDA � NCLIN.

IFAIL ¼ 5

On entry, BLð valueh iÞ > BUð valueh iÞ.
Constraint: BLðiÞ � BUðiÞ, for i ¼ 1; 2; . . . ;N.

IFAIL ¼ 6

On entry, VARCONð valueh iÞ ¼ valueh i.
Constraint: VARCONðiÞ ¼ 0, 1 or 2, for i ¼ 1; 2; . . . ;N.

IFAIL ¼ 7

On entry, VARCONð valueh iÞ ¼ valueh i.
Constraint: VARCONðiÞ ¼ 3 or 4, for i ¼ Nþ 1; . . . ;Nþ NCLINþ NCNLN.

IFAIL ¼ 8

The supplied OBJFUN returned a NaN value.

IFAIL ¼ 9

The supplied CONFUN returned a NaN value.

IFAIL ¼ 10

On entry, the optional parameter arrays IOPTS and OPTS have either not been initialized or been
corrupted.

IFAIL ¼ 11

On entry, there are no binary or integer variables.

IFAIL ¼ 12

On entry, linear equality constraints do not precede linear inequality constraints.

IFAIL ¼ 13

On entry, nonlinear equality constraints do not precede nonlinear inequality constraints.

IFAIL ¼ 81

One or more objective gradients appear to be incorrect.

IFAIL ¼ 91

One or more constraint gradients appear to be incorrect.

IFAIL ¼ 1001

On entry, MAXIT ¼ valueh i. Exceeded the maximum number of iterations.

H02DAF NAG Library Manual

H02DAF.8 Mark 26



IFAIL ¼ 1002

More than the maximum number of feasible steps without improvement in the objective function.
If the maximum number of feasible steps is small, say less than 5, try increasing it. Optional
parameter Feasible Steps ¼ valueh i.

IFAIL ¼ 1003

Penalty parameter tends to infinity in an underlying mixed-integer quadratic program; the
problem may be infeasible. If � is relatively low value, try a higher one, for example 1020.
Optional parameter Penalty ¼ valueh i.

IFAIL ¼ 1004

Termination at an infeasible iterate; if the problem is feasible, try a different starting value.

IFAIL ¼ 1005

Termination with zero integer trust region for integer variables; try a different starting value.
Optional parameter Integer Trust Radius ¼ valueh i.

IFAIL ¼ 1008

The optimization failed due to numerical difficulties. Set optional parameter Print Level ¼ 3 for
more information.

IFAIL < 0

The optimization halted because you set MODE negative in OBJFUN or MODE negative in
CONFUN, to valueh i.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

H02DAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

H – Operations Research H02DAF

Mark 26 H02DAF.9



9 Further Comments

None.

10 Example

Select a portfolio of at most p assets from n available with expected return �, is fully invested and that
minimizes

xT�x
subject to rTx ¼ �

Xn
i¼1

xi ¼ 1

xi � yiXn
i¼1

yi � p

xi � 0
yi ¼ 0 or 1

where

x is a vector of proportions of selected assets

y is an indicator variable that describes if an asset is in or out

r is a vector of mean returns

� is the covariance matrix of returns.

This example is taken from Mann (1986) with

r ¼ 8 9 12 7
� �

� ¼
4 3 �1 0
3 6 1 0
�1 1 10 0
0 0 0 0

0
B@

1
CA

p ¼ 3
� ¼ 10:

Linear constraints are supplied through both A and d, and CONFUN.

10.1 Program Text

! H02DAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module h02dafe_mod

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: confun, objfun

Contains
Subroutine objfun(mode,n,varcon,x,objmip,objgrd,nstate,iuser,ruser)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: objmip
Integer, Intent (Inout) :: mode
Integer, Intent (In) :: n, nstate

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: objgrd(n), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)

H02DAF NAG Library Manual

H02DAF.10 Mark 26



Integer, Intent (In) :: varcon(*)
! .. Executable Statements ..

Continue

If (mode==0) Then
! Objective value

objmip = x(1)*(4.0_nag_wp*x(1)+3.0_nag_wp*x(2)-x(3)) + &
x(2)*(3.0_nag_wp*x(1)+6.0_nag_wp*x(2)+x(3)) + &
x(3)*(x(2)-x(1)+10.0_nag_wp*x(3))

Else
! Objective gradients for continuous variables

objgrd(1) = 8.0_nag_wp*x(1) + 6.0_nag_wp*x(2) - 2.0_nag_wp*x(3)
objgrd(2) = 6.0_nag_wp*x(1) + 12.0_nag_wp*x(2) + 2.0_nag_wp*x(3)
objgrd(3) = 2.0_nag_wp*(x(2)-x(1)) + 20.0_nag_wp*x(3)
objgrd(4) = 0.0_nag_wp

End If
Return

End Subroutine objfun

Subroutine confun(mode,ncnln,n,varcon,x,c,cjac,nstate,iuser,ruser)

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: eight = 8.0_nag_wp
Real (Kind=nag_wp), Parameter :: nine = 9.0_nag_wp
Real (Kind=nag_wp), Parameter :: seven = 7.0_nag_wp
Real (Kind=nag_wp), Parameter :: twelve = 12.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp

! .. Scalar Arguments ..
Integer, Intent (Inout) :: mode
Integer, Intent (In) :: n, ncnln, nstate

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: c(ncnln)
Real (Kind=nag_wp), Intent (Inout) :: cjac(ncnln,n), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: varcon(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: rho
Integer :: p

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Continue

If (mode==0) Then
! Constraints

p = iuser(1)
rho = ruser(1)

! Mean return rho:
c(1) = eight*x(1) + nine*x(2) + twelve*x(3) + seven*x(4) - rho

! Maximum of p assets in portfolio:
c(2) = real(p,kind=nag_wp) - x(5) - x(6) - x(7) - x(8)

Else
! Jacobian

cjac(1,1:4) = (/eight,nine,twelve,seven/)
! c(2) does not include continuous variables which requires
! that their derivatives are zero

cjac(2,1:4) = zero
End If

Return
End Subroutine confun

End Module h02dafe_mod

Program h02dafe

! .. Use Statements ..
Use nag_library, Only: h02daf, h02zkf, h02zlf, nag_wp, x04caf
Use h02dafe_mod, Only: confun, objfun

! .. Implicit None Statement ..

H – Operations Research H02DAF

Mark 26 H02DAF.11



Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: bigish = 1.0E3_nag_wp
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: acc, accqp, objmip
Integer :: ifail, ivalue, lda, liopts, lopts, &

maxit, n, nclin, ncnln, optype
Character (40) :: cvalue

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), ax(:), bl(:), bu(:), c(:), &

cjac(:,:), d(:), objgrd(:), x(:)
Real (Kind=nag_wp) :: opts(100), ruser(1)
Integer :: iopts(200), iuser(1)
Integer, Allocatable :: varcon(:)

! .. Intrinsic Procedures ..
Intrinsic :: size

! .. Executable Statements ..
Write (nout,*) ’H02DAF Example Program Results’
Write (nout,*)

n = 8
nclin = 5
ncnln = 2

lda = nclin
Allocate (a(lda,n),d(nclin),ax(nclin),bl(n),bu(n),varcon(n+nclin+ncnln), &

x(n),c(ncnln),cjac(ncnln,n),objgrd(n))

! Set variable types: continuous then binary
varcon(1:4) = 0
varcon(5:8) = 1

! Set continuous variable bounds
bl(1:4) = zero
bu(1:4) = bigish

! Bounds for binary variables need not be provided
bl(5:8) = zero
bu(5:8) = one

! Set linear constraint, equality first
varcon(n+1) = 3
varcon(n+2:n+nclin) = 4

! Set Ax=d then Ax>=d
a(1:nclin,1:n) = zero
a(1,1:4) = one
a(2,(/1,5/)) = (/-one,one/)
a(3,(/2,6/)) = (/-one,one/)
a(4,(/3,7/)) = (/-one,one/)
a(5,(/4,8/)) = (/-one,one/)
d(1) = one
d(2:5) = zero

! Set constraints supplied by CONFUN, equality first
varcon(n+nclin+1) = 3
varcon(n+nclin+2) = 4

liopts = size(iopts)
lopts = size(opts)

! Initialize communication arrays
ifail = 0
Call h02zkf(’Initialize = H02DAF’,iopts,liopts,opts,lopts,ifail)

! Optimization parameters
maxit = 500
acc = 1.0E-6_nag_wp

H02DAF NAG Library Manual

H02DAF.12 Mark 26



! Initial estimate (binary variables need not be given)
x(1:4) = one
x(5:8) = zero

! Portfolio parameters p and rho
iuser(1) = 3
ruser(1) = 10.0_nag_wp

ifail = 0
Call h02daf(n,nclin,ncnln,a,lda,d,ax,bl,bu,varcon,x,confun,c,cjac, &

objfun,objgrd,maxit,acc,objmip,iopts,opts,iuser,ruser,ifail)

! Results
If (ifail==0) Then

Call x04caf(’G’,’N’,n,1,x,n,’Final estimate:’,ifail)

! Query the accuracy of the mixed integer QP solver
ifail = -1
Call h02zlf(’QP Accuracy’,ivalue,accqp,cvalue,optype,iopts,opts,ifail)
If (ifail==0) Then

Write (nout,’(/1x,a,1x,g12.4)’) &
’Requested accuracy of QP subproblems’, accqp

End If
Write (nout,’(1x,a,1x,g12.4)’) ’Optimised value:’, objmip

Else
Write (nout,’(/1x,a,i4/)’) ’h02daf returns ifail = ’, ifail

End If
End Program h02dafe

10.2 Program Data

None.

10.3 Program Results

H02DAF Example Program Results

Final estimate:
1

1 0.3750
2 0.0000
3 0.5250
4 0.1000
5 1.0000
6 0.0000
7 1.0000
8 1.0000

Requested accuracy of QP subproblems 0.1000E-09
Optimised value: 2.925

11 Optional Parameters

This section can be skipped if you wish to use the default values for all optional parameters, otherwise,
the following is a list of the optional parameters available and a full description of each optional
parameter is provided in Section 11.1.

Branch Bound Steps

Branching Rule

Check Gradients

Continuous Trust Radius

Descent

Descent Factor

H – Operations Research H02DAF

Mark 26 H02DAF.13



Feasible Steps

Improved Bounds

Integer Trust Radius

Maximum Restarts

Minor Print Level

Modify Hessian

Node Selection

Non Monotone

Objective Scale Bound

Penalty

Penalty Factor

Print Level

QP Accuracy

Scale Continuous Variables

Scale Objective Function

Warm Starts

11.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

the keywords;

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively.

All options accept the value DEFAULT in order to return single options to their default states.

Keywords and character values are case insensitive, however they must be separated by at least one
space.

H02ZKF can be called to supply options, one call being necessary for each optional parameter. For
example,

Call H02ZKF(’Check Gradients = Yes’, iopts, liopts, opts, lopts, ifail)

H02ZKF should be consulted for a full description of the method of supplying optional parameters.

For H02DAF the maximum length of the argument CVALUE used by H02ZLF is 12.

Branch Bound Steps i Default ¼ 500

Maximum number of branch-and-bound steps for solving the mixed integer quadratic problems.

Constraint: Branch Bound Steps > 1.

Branching Rule a Default ¼ Maximum

Branching rule for branch and bound search.

Branching Rule ¼ Maximum
Maximum fractional branching.

Branching Rule ¼ Minimum
Minimum fractional branching.

H02DAF NAG Library Manual

H02DAF.14 Mark 26



Check Gradients a Default ¼ No

Perform an internal check of supplied objective and constraint gradients. It is advisable to set
Check Gradients ¼ Yes during code development to avoid difficulties associated with incorrect user-
supplied gradients.

Continuous Trust Radius r Default ¼ 10:0

Initial continuous trust region radius, �c
0; the initial trial step d 2 Rnc for the SQP approximation must

satisfy dk k1 � �c
0.

Constraint: Continuous Trust Radius > 0:0.

Descent r Default ¼ 0:05

Initial descent parameter, �, larger values of � allow penalty optional parameter � to increase faster
which can lead to faster convergence.

Constraint: 0:0 < Descent < 1:0.

Descent Factor r Default ¼ 0:1

Factor for decreasing the internal descent parameter, �, between iterations.

Constraint: 0:0 < Descent Factor < 1:0.

Feasible Steps i Default ¼ 10

Maximum number of feasible steps without improvements, where feasibility is measured by
g xð Þk k1 � ffiffiffiffiffiffiffiffiffiffi

ACC
p

.

Constraint: Feasible Steps > 1.

Improved Bounds a Default ¼ No

Calculate improved bounds in case of ‘Best of all’ node selection strategy.

Integer Trust Radius r Default ¼ 10:0

Initial integer trust region radius, �i
0; the initial trial step e 2 Rni for the SQP approximation must

satisfy ek k1 � �i
0.

Constraint: Integer Trust Radius � 1:0.

Maximum Restarts i Default ¼ 2

Maximum number of restarts that allow the mixed integer SQP algorithm to return to a better solution.
Setting a value higher than the default might lead to better results at the expense of function
evaluations.

Constraint: 0 < Maximum Restarts � 15.

Minor Print Level i Default ¼ 0

Print level of the subproblem solver. Active only if Print Level 6¼ 0.

Constraint: 0 < Minor Print Level < 4.

Modify Hessian a Default ¼ Yes

Modify the Hessian approximation in an attempt to get more accurate search directions. Calculation
time is increased when the number of integer variables is large.

H – Operations Research H02DAF

Mark 26 H02DAF.15



Node Selection a Default ¼ Depth First

Node selection strategy for branch and bound.

Node Selection ¼ Best of all
Large tree search; this method is the slowest as it solves all subproblem QPs independently.

Node Selection ¼ Best of two
Uses warm starts and less memory.

Node Selection ¼ Depth first
Uses more warm starts. If warm starts are applied, they can speed up the solution of mixed
integer subproblems significantly when solving almost identical QPs.

Non Monotone i Default ¼ 10

Maximum number of successive iterations considered for the non-monotone trust region algorithm,
allowing the penalty function to increase.

Constraint: 0 < Non Monotone < 100.

Objective Scale Bound r Default ¼ 1:0

When Scale Objective Function > 0 internally scale absolute function values greater than 1:0 or
Objective Scale Bound.

Constraint: Objective Scale Bound > 0:0.

Penalty r Default ¼ 1000:0

Initial penalty optional parameter, �.

Constraint: Penalty � 0:0.

Penalty Factor r Default ¼ 10:0

Factor for increasing penalty optional parameter � when the trust regions cannot be enlarged at a trial
step.

Constraint: Penalty Factor > 1:0.

Print Level i Default ¼ 0

Specifies the desired output level of printing.

Print Level ¼ 0
No output.

Print Level ¼ 1
Final convergence analysis.

Print Level ¼ 2
One line of intermediate results per iteration.

Print Level ¼ 3
Detailed information printed per iteration.

QP Accuracy r Default ¼ 1:0E�10

Termination tolerance of the relaxed quadratic program subproblems.

Constraint: QP Accuracy > 0:0.

Scale Continuous Variables a Default ¼ Yes

Internally scale continuous variables values.

H02DAF NAG Library Manual

H02DAF.16 Mark 26



Scale Objective Function i Default ¼ 1

Internally scale objective function values.

Scale Objective Function ¼ 0
No scaling.

Scale Objective Function ¼ 1
Scale absolute values greater than Objective Scale Bound.

Warm Starts i Default ¼ 100

Maximum number of warm starts within the mixed integer QP solver, see Node Selection.

Constraint: Warm Starts � 0.

H – Operations Research H02DAF

Mark 26 H02DAF.17 (last)


	H02DAF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Exler et al. (2013)
	Mann (1986)
	Powell (1983)
	Yuan and Sun (2006)

	5 Arguments
	N
	NCLIN
	NCNLN
	A
	LDA
	D
	AX
	BL
	BU
	VARCON
	X
	CONFUN
	MODE
	NCNLN
	N
	VARCON
	X
	C
	CJAC
	NSTATE
	IUSER
	RUSER

	C
	CJAC
	OBJFUN
	MODE
	N
	VARCON
	X
	OBJMIP
	OBJGRD
	NSTATE
	IUSER
	RUSER

	OBJGRD
	MAXIT
	ACC
	OBJMIP
	IOPTS
	OPTS
	IUSER
	RUSER
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=9
	IFAIL=10
	IFAIL=11
	IFAIL=12
	IFAIL=13
	IFAIL=81
	IFAIL=91
	IFAIL=1001
	IFAIL=1002
	IFAIL=1003
	IFAIL=1004
	IFAIL=1005
	IFAIL=1008
	IFAIL<0
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	11 Optional Parameters
	11.1 Description of the Optional Parameters
	Branch Bound Steps
	Branching Rule
	Check Gradients
	Continuous Trust Radius
	Descent
	Descent Factor
	Feasible Steps
	Improved Bounds
	Integer Trust Radius
	Maximum Restarts
	Minor Print Level
	Modify Hessian
	Node Selection
	Non Monotone
	Objective Scale Bound
	Penalty
	Penalty Factor
	Print Level
	QP Accuracy
	Scale Continuous Variables
	Scale Objective Function
	Warm Starts



	NAG Fortran Library Manual, Mark 26.1
	Copyright Statement
	Foreword
	Introduction
	How to Use the NAG Library and its Documentation
	Mark 26.1 NAG Fortran Library News
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Code Contributors
	Support from NAG
	Index

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Contents
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Contents
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Contents
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Contents
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Contents
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Contents
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Contents
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Contents
	D02 Chapter Introduction
	D02M-N Sub-chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Contents
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Contents
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Contents
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Contents
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Contents
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Contents
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Contents
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Contents
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Contents
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Contents
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Contents
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Contents
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Contents
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Contents
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Contents
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Contents
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Contents
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Contents
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Contents
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Contents
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Contents
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Contents
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Contents
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Contents
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Contents
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Contents
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Contents
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Contents
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Contents
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Contents
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Contents
	G13 Chapter Introduction

	G22 - Linear Model Specification
	G22 Chapter Contents
	G22 Chapter Introduction

	H - Operations Research
	H Chapter Contents
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Contents
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Contents
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Contents
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Contents
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Contents
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Contents
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Contents
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Contents
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Contents
	X07 Chapter Introduction




