
NAG Library

How to Use the NAG Library and its Documentation

Contents

1 Library Identification . 3

2 How to Find a NAG Library Routine . 3

3 How to Use the NAG Library . 4

3.1 Structure of the Library. 4

3.1.1 Experimental Routines . 4
3.1.2 Long Names for Library Routines . 5

3.2 General Advice . 5

3.3 Programming Advice . 5

3.3.1 Alternative Routine Names . 6
3.3.2 The NAG Fortran Environment . 6
3.3.3 Direct and Reverse Communication Routines . 7

3.4 Error Handling and the Argument ifail . 7

3.4.1 Errors, Failure and Warning Conditions . 7
3.4.2 The ifail Argument . 7
3.4.3 Hard Fail Option. 8
3.4.4 Soft Fail Option . 8
3.4.5 Structure of the NAG Error Messages . 9
3.4.6 Legacy Error Handling . 9

3.5 Input/output in the Library . 9

3.6 Auxiliary Routines as External Procedure Arguments . 9

3.7 Dynamic Memory Allocation . 10

3.8 License Management . 10

3.9 Unexpected Errors . 10

3.10 Calling the Library from Other Languages. 10

3.11 Arithmetic Considerations and Reproducibility of Results . 10

3.11.1 Bit-wise Reproducibility (BWR) . 12
3.11.1.1 Vendor Math Libraries and Conditional Bitwise Reproducibility (CBWR) 13

3.12Multithreading. 13

3.12.1 Thread Safety . 13
3.12.1.1 Routines with Routine Arguments . 13
3.12.1.2 Input/Output . 14
3.12.1.3 Implementation Issues . 15

3.12.2 Parallelism. 15
3.12.2.1 Introduction . 15
3.12.2.2 How is Parallelism Used in the NAG Library? . 16

3.12.3Multithreaded Routines . 17

4 How to Use NAG Documentation . 18

4.1 Using the Manual. 18

4.2 Structure of the Documentation . 18

Introduction How to Use the NAG Library and its Documentation

Mark 26.1 essint.1

4.3 Specification of Arguments . 19

4.3.1 Classification of Arguments (Intents) . 19
4.3.2 Constraints and suggested values . 20
4.3.3 Array Arguments. 20

4.4 Implementation-dependent Information . 21

4.5 Example Programs and Results . 21

4.6 Online Documentation . 22

4.6.1 HTML Format. 22
4.6.1.1 Viewing HTML5 Files . 22
4.6.1.2 Firefox (and other Mozilla based browsers) . 22
4.6.1.3 Other Browsers . 22
4.6.1.4 Navigating HTML5 Files . 23
4.6.1.5 Printing HTML5 Files . 23
4.6.1.6 Windows HTML Help . 23

4.6.2 PDF Format . 23
4.6.2.1 Viewing and Printing PDF Files . 23
4.6.2.2 Navigating the PDF Files . 23

5 Background to the Problems. 24

6 NAG Library Standards . 24

7 References . 24

How to Use the NAG Library and its Documentation NAG Library Manual

essint.2 Mark 26.1

1 Library Identification

Periodically a new Mark of the NAG Library is released: new routines are added, corrections and/or
improvements are made to existing routines; and, occasionally, routines are withdrawn if they have been
superseded by improved routines. A point release such as 26.1, only differs from a new Mark (e.g., 27)
in that no routines are withdrawn.

You must know which implementation, which precision and which mark and revision of the Library
you are using or intend to use. To find out these Library details, you can run a program which calls the
NAG Library routine a00aaf.

The program could be:

Use nag_library, Only: a00aaf
Call aa0000aaaaff
End

Alternatively, the example program for a00aaf can be run using the nag_example scripts supplied with
your implementation (see the Users' Note for details).

An example of the output is:

*** Start of NAG Library implementation details ***
Implementation title: Linux, 64-bit, NAG Fortran (32-bit integers)

Precision: FORTRAN double precision
Product Code: FLL6A2619L
Mark: 26.1 (self-contained)

*** End of NAG Library implementation details ***

2 How to Find a NAG Library Routine

All users both familiar or unfamiliar with this Library who are thinking of using a routine from it, are
asked to please follow these instructions:

(a) read How to Use the NAG Library and its Documentation as it provides valuable background
information;

(b) select an appropriate chapter or routine by using the online Keyword and GAMS Search;

(c) read the relevant Chapter Introduction;

(d) choose a routine, and read the routine document. If the routine does not after all meet your needs,
return to step (b);

(e) read the Users' Note for your implementation (this contains instructions on how to compile and
run a program);

(f) consult local documentation, which should be provided by your local support staff, about access to
the Library on your computing system;

(g) obtain a copy of the example program (see Section 4.5) for the particular routine of interest and
experiment with it.

You should now be in a position to include a call to the routine in a program, and to attempt to compile
and run it. You may of course need to refer back to the relevant documentation in the case of
difficulties, for advice on assessment of results, and so on.

As you become familiar with the Library, some of steps (a) to (g) can be omitted, but it is useful to
keep up to date with the following documents as they are subject to change:

How to Use the NAG Library and its Documentation;

the Chapter Introduction;

the routine document;

the Users' Note for your implementation.

Introduction How to Use the NAG Library and its Documentation

Mark 26.1 essint.3

3 How to Use the NAG Library

3.1 Structure of the Library

The NAG Library is a comprehensive collection of routines for the solution of numerical and statistical
problems.

The Library is divided into chapters, each devoted to a branch of numerical analysis or statistics. Each
chapter has a three-character name and a title, e.g.,

Chapter D01 – Quadrature

Exceptionally, Chapters H and S have one-character names. The chapters and their names are based on
the ACM modified SHARE classification index (see ACM (1960–1976)).

All documented routines in the Library have six-character names, beginning with the characters of the
chapter name, e.g.,

c06pcf

Note that the second and third characters are digits, not letters; e.g., 0 is the digit zero, not the letter O.
The last letter of each routine name almost always appears as ‘f’ in the documentation. Chapters D03
and E04 have some routines whose last letter is ‘a’ rather than ‘f’. An ‘a’ version is always paired with
an ‘f’ routine, the ‘a’ version being safe to use in a multithreaded environment, but otherwise having
identical functionality to the ‘f’ version.

Chapter F06 (Linear Algebra Support Routines) contains all the Basic Linear Algebra Subprograms,
BLAS (Dongarra et al. (1988) and Dongarra et al. (1990)), with NAG-style names as well as the actual
BLAS names, e.g., f06paf (dgemv). The name in brackets is the equivalent double precision BLAS
name. Chapter F16 contains some of the routines specified in the BLAS Technical Form (The BLAS
Technical Forum Standard (2001) and Blackford et al. (2002)) and also some additional routines for
integer valued vectors that are not in the standard. Some of the routines in Chapter F16 have both
NAG-style names and BLAS names. Chapter F07 (Linear Equations (LAPACK)) and Chapter F08
(Least Squares and Eigenvalue Problems (LAPACK)) contain routines derived from the LAPACK
project (Anderson et al. (1999)); also, Chapter F01 (Matrix Operations, Including Inversion) contains
storage conversion routines derived from the LAPACK project. Like the BLAS, these routines have
NAG-style names as well as LAPACK names, e.g., f07adf (dgetrf). Details regarding these alternate
names can be found in the relevant Chapter Introductions.

In order to take full advantage of machine-specific versions of BLAS and LAPACK routines provided
by some computer hardware vendors, you are encouraged to use the BLAS and LAPACK names (e.g.,
DGEMV and DGETRF) rather than the corresponding NAG-style names (e.g., f06paf (dgemv) and
f07adf (dgetrf)) wherever possible in your programs.

3.1.1 Experimental Routines

Some routines in the Library may be classified as experimental. These routines will be flagged by a note
at the top of the documentation.

Routines may be classified as experimental if:

(a) The interface and / or functionality of the routine may change between Marks of the Library. The
routine will have been designed in such a way as to minimize the number of such changes.

(b) The complexity of the routine, or suite of routines it is part of, are such that comprehensive testing
is not practical. Routines classified as experimental have gone through the same testing and review
processes as a normal Library routine, however it is recommended that additional care is taken
when using the routine.

A routine classified as experimental may be reclassified as no longer being experimental, at which point
the interface will become fixed as per a normal Library routine.

How to Use the NAG Library and its Documentation NAG Library Manual

essint.4 Mark 26.1

3.1.2 Long Names for Library Routines

Each documented routine has, in addition to its short six-character name, a long name beginning with
the root nagf_ and consisting of an underscore separated list of words. The long-name naming scheme
has been chosen so that the long names group like routines together and group routines within a suite
together.

The long name for each routine in a chapter is listed in the respective Chapter Contents page. The
second word in the long name is fixed for each chapter, e.g., routines in Chapter D01 (Quadrature) all
have long names that begin nagf_quad_.

Each chapter has a unique second word in its set of long names with the exception of Chapters F07 and
F08 which share the same second word (lapack).

Note that the long names of BLAS and LAPACK routines, such as nagf_blas_dgemm, will not take
advantage of machine-specific versions of BLAS and LAPACK. As mentioned in Section 3.1 you are
recommended to use the plain BLAS or LAPACK name (in this case DGEMM) for performance
reasons.

For those chapters that have both ‘a’ and ‘f’ versions of a routine, the long name for the f version is the
same as that of the a version, but with an additional last word (old – signifying that the f version
predates the a version).

It should be noted that the long names are implemented by the use of aliasing in the NAG Library
interface block modules, and so long names are only accessible when calling the NAG Library from a
Fortran program that Uses nag_library.mod.

Please refer to Section 3.3.1 for advice on supplying alternative routine names and, possibly, simplified
routine interfaces.

3.2 General Advice

A NAG Library routine cannot be guaranteed to return meaningful results irrespective of the data
supplied to it. Care and thought must be exercised in:

(a) formulating the problem;

(b) programming the use of Library routines;

(c) assessing the significance of the results.

The Foreword to the Manual provides some further discussion of points (a) and (c); the remainder of
this document is concerned with (b) and (c).

3.3 Programming Advice

The Library and its documentation are designed with the assumption that you will write a calling
program in Fortran (although it may be called from other languages – see Section 3.10).

When programming a call to a routine, read the routine document carefully, especially the description
of the arguments. This states clearly which arguments must have values assigned to them on entry to
the routine, and which return useful values on exit. See Section 4.3 for further guidance.

The most common types of programming error in using the Library are:

incorrect arguments in a call to a Library routine;

calling the Library from a single precision program.

The Use of the nag_library MODULE will help detect or prevent some of these errors. For example,
when using this, incorrect parameter types will be caught at compile time and using KIND=nag_wp in
the type of real and complex variables will maintain consistency with the Library.

Therefore, if a call to a Library routine results in an unexpected error message from the system (or
possibly from within the Library), check the following:

Introduction How to Use the NAG Library and its Documentation

Mark 26.1 essint.5

Have some actual array arguments been passed as different dummy arguments (i.e., an
array appears more than once in the argument list with different INTENTs)?

Have all array arguments been dimensioned correctly?

Avoid the use of NAG-type names for your own program units or COMMON blocks: in general, do not
use names which contain a three-character NAG chapter name embedded in them; they may clash with
the names of an auxiliary routine or COMMON block used by the NAG Library.

3.3.1 Alternative Routine Names

If the Library is called from a Fortran program then it is possible to use alternative names for user-
callable routines. This can be done via the ‘Use nag_library’ statement at the start of the (sub)program
in which the Library routine is called. For example, you wish to use the name ‘BesselJ0’ instead of the
Library name s17aef. In this case the line

Use nag_library, Only: s17aef

would be replaced by

Use nag_library, Only: BesselJ0 => s17aef

The (sub)program would then use the name ‘BesselJ0’ in place of s17aef and call it with the identical
interface.

If Library routines are called from other environments then many such environments offer ways of
‘aliasing’ a routine name by a preferred alternative name.

For many of the Library routines with more complex interfaces it is likely that only a subset of the
functionality is required and that some parameter values will always remain unchanged or will not be
referenced. In such cases it may be preferable to write your own wrapper to the Library routine with a
much simpler interface and with a preferred alternative name. For example, if you wish to integrate a
system of stiff ordinary differential equations without root finding or intermediate output, you could
create the simple interface wrapper to the more complicated d02ejf interface.

Subroutine BDFsolve(xend,y)
Use nag_library, Only: nag_wp, d02ejf, d02ejw, d02ejx, d02ejy
Real(kind=nag_wp) :: xend, y(:)
Real(kind=nag_wp) :: tol, xstart
Integer :: ifail, iw, n
Character :: relabs
Real(kind=nag_wp), Allocatable :: w(:)

n = Size(y)
tol = 1.0e-3_nag_wp
relabs = ’M’
iw = (12+n)*n + 50
Allocate(w(iw))
ifail = 0
xstart = 0.0_nag_wp
Call d02ejf(xstart,xend,n,y,fcn,d02ejy,tol,relabs,d02ejx, &

d02ejw,w,iw,ifail)
Return
End Subroutine BDFsolve

The above example of a user-defined wrapper would be compiled and linked with a main program that
would include the simple call:

Call BDFsolve(xend,y)

3.3.2 The NAG Fortran Environment

The environment for the NAG Library is defined by the nag_library MODULE. Certain routines
require you to Use this to access named constants (e.g., nag_wp). It is recommended that you also Use
the MODULE to enable checking of INTERFACEs in the Library.

The exact location of nag_library.mod is installation dependent; please see the Users' Note for your
implementation.

How to Use the NAG Library and its Documentation NAG Library Manual

essint.6 Mark 26.1

3.3.3 Direct and Reverse Communication Routines

Routines in the Library that require a user-supplied function may be classified as either direct
communication or reverse communication.

Direct communication routines require a user-supplied subroutine to be provided as an actual argument
to the NAG Library routine. You must write this subroutine using a very rigid interface as specified in
the relevant routine document. For the majority of applications this is the simplest and most convenient
usage. Sometimes however this approach can be restrictive:

(i) when the required format of the subroutine does not allow useful information to be passed
conveniently to and from your calling program;

(ii) when the direct communication routine is being called from another computer language which does
not fully support procedure arguments in a way that is compatible with the Library.

These restrictions can be removed by using a reverse communication routine. Instead of obtaining the
solution in one call, reverse communication routines perform one step of the solution process before
returning to the calling program with an appropriate flag (irevcm) set. The value of irevcm determines
whether the process has finished or whether fresh information is required. In the latter case the required
information must be calculated before re-entering the reverse communication routine. Thus you have
the responsibility for providing an iterative loop. Although reverse communication routines will
typically be more complicated to use than direct communication equivalents they do provide greater
flexibility for the evaluation of the function.

3.4 Error Handling and the Argument ifail

3.4.1 Errors, Failure and Warning Conditions

The error, failure or warning conditions considered here are those that can be detected by explicit
coding in a Library routine. Such conditions must be anticipated by the author of the routine. They
should not be confused with run-time errors detected by the compilation system, e.g., detection of
overflow or failure to assign an initial value to a variable.

In the rest of this document we use the word ‘error’ to cover all types of error, failure or warning
conditions detected by the routine. They fall roughly into three classes.

(i) On entry to the routine the value of an argument is out of range. This means that it is not useful, or
perhaps even meaningful, to begin computation.

(ii) During computation the routine decides that it cannot yield the desired results, and indicates a
failure condition. For example, a matrix inversion routine will indicate a failure condition if it
considers that the matrix is singular and so cannot be inverted.

(iii) Although the routine completes the computation and returns results, it cannot guarantee that the
results are completely reliable; it therefore returns a warning. For example, an optimization routine
may return a warning if it cannot guarantee that it has found a local minimum.

All three classes of errors are handled in the same way by the Library.

Each error which can be detected by a Library routine is associated with a number. Some numbers such
as those associated with a failure in dynamic memory allocation (see Section 3.7) or detecting a valid
licence (Section 3.8) are the same for all Library routines and may not be listed in individual routine
documents. Recently added routines have standardized on using the same number for unexpected error
exits (Section 3.9). All other numbers, with explanations of the errors, are listed in Section 6 (Error
Indicators and Warnings) in the routine document. Unless the document specifically states to the
contrary, you should not assume that the routine necessarily tests for the occurrence of the errors in
their order of error number, i.e., the detection of an error does not imply that other errors have or have
not been detected.

3.4.2 The ifail Argument

Most of the NAG Library routines which can be called directly by you have an argument called ifail.
This argument is concerned with the NAG Library error trapping mechanism (and, for some routines,
with controlling the output of error messages and advisory messages).

Introduction How to Use the NAG Library and its Documentation

Mark 26.1 essint.7

ifail has two purposes:

(i) to allow you to specify what action the Library routine should take if an error is detected;

(ii) to inform you of the outcome of the call of the routine.

For purpose (i), you must assign a value to ifail before the call to the Library routine. Since ifail is
reset by the routine for purpose (ii), the argument must be the name of a variable, not a literal or
constant.

The value assigned to ifail before entry should be either 0 (hard fail option), or 1 or �1 (soft fail
option). If after completing its computation the routine has not detected an error, ifail is reset to 0 to
indicate a successful call. Control returns to the calling program in the normal way. If the routine does
detect an error, its action depends on whether the hard or soft fail option was chosen. If ifail is set to
any value other than �1, 0 or 1 before calling the Library routine, a default of ifail ¼ 1 is assumed.

3.4.3 Hard Fail Option

If you set ifail to 0 before calling the Library routine, execution of the program will terminate if the
routine detects an error. Before the program is stopped, this error message is output:

** ABNORMAL EXIT from NAG Library routine XXXXXX: ifail = n
** NAG hard failure - execution terminated

where XXXXXX is the routine name, and n is the number associated with the detected error. An
explanation of error number n is given in Section 6 of the routine document XXXXXX.

In addition, most routines output explanatory error messages immediately before the standard
termination message shown above.

The hard fail option should be selected if you are in any doubt about continuing the execution of the
program after an unsuccessful call to a NAG Library routine. For environments where it might be
inappropriate to halt program execution when an error is detected it is recommended that the hard fail
option is not used.

3.4.4 Soft Fail Option

To select this option, you must set ifail to 1 or �1 before calling the Library routine. Note that ifail ¼ 1
is assumed when ifail is set to an invalid value before calling the Library routine.

If the routine detects an error, ifail is reset to the associated error number; further computation within
the routine is suspended and control returns to the calling program.

If you set ifail to 1, then no error message is output (silent exit). If the output of error messages is
undesirable, then silent exit is recommended.

If you set ifail to �1 (noisy exit), then before control is returned to the calling program, the following
error message is output:

** ABNORMAL EXIT from NAG Library routine XXXXXX: ifail = n
** NAG soft failure - control returned

In addition, most routines output explanatory error messages immediately before the above standard
message.

It is most important to test the value of ifail on exit if the soft fail option is selected. A nonzero exit
value of ifail implies that the call was not successful so it is imperative that your program be coded to
take appropriate action. That action may simply be to print ifail with an explanatory caption and then
terminate the program. Many of the example programs in Section 9 of the routine documents have
ifail-exit tests of this form. In the more ambitious case, where you wish your program to continue, it is
essential that the program can branch to a point at which it is sensible to resume computation.

The soft fail option puts the onus on you to handle any errors detected by the Library routine. With the
proviso that you are able to implement it properly, it is clearly more flexible than the hard fail option
since it allows computation to continue in the case of errors. In particular there are at least two cases
where its flexibility is useful:

How to Use the NAG Library and its Documentation NAG Library Manual

essint.8 Mark 26.1

(i) where additional information about the error or the progress of computation is returned via some of
the other arguments;

(ii) in some routines, ‘partial’ success can be achieved, e.g., a probable solution found but not all
conditions fully satisfied, so the routine returns a warning. On the basis of the advice in Section 6
and elsewhere in the routine document, you may decide that this partially successful call is
adequate for certain purposes.

3.4.5 Structure of the NAG Error Messages

The notation valueh i appearing in the documented error message is a place holder that will be populated
by the value of a variable, argument name or some other piece of information when that error message
is displayed.

3.4.6 Legacy Error Handling

A few routines (introduced mainly at Marks 7 and 8) use ifail in a nonstandard way to control the
output of error messages, and also of advisory messages (see Chapter X04). In those routines ifail is
regarded as an integer of the form 100cþ 10bþ a, where a and b are either 0 or 1 and have the
following significance:

a ¼ 0: hard failure a ¼ 1: soft failure
b ¼ 0: silent exit b ¼ 1: noisy exit

Details are given in the documents of the relevant routines; for those routines this alternative use of
ifail remains valid.

3.5 Input/output in the Library

Most NAG Library routines perform no output to an external file, except possibly to output an error
message. All error messages are written to a logical error message unit. This unit number (which is set
by default to 6 in most implementations) can be changed by calling the Library routine x04aaf.

Some NAG Library routines may optionally output their final results, or intermediate results to monitor
the course of computation. In general, output other than error messages is written to a logical advisory
message unit. This unit number (which is also set by default to 6 in most implementations) can be
changed by calling the Library routine x04abf. Although it is logically distinct from the error message
unit, in practice the two unit numbers may be the same. Suites of routines with an option setting facility
usually allow this unit number to be specified directly as an option.

All output from the Library is appropriately formatted.

There are only a few Library routines which perform input from an external file. These examples occur
in Chapters E04, E05 and H. The unit number of the external file is an argument to the routine, and all
input is formatted.

You must ensure that the relevant Fortran unit numbers are associated with the desired external files,
either by an OPEN statement in your calling program, or by operating system commands.

3.6 Auxiliary Routines as External Procedure Arguments

In addition to those Library routines which are documented and are intended to be called by you
directly, the Library also contains many auxiliary routines.

In general, you need not be concerned with them at all, although you may be made aware of their
existence if, for example, you examine a memory map of an executable program which calls NAG
routines. The only exception is that when calling some NAG Library routines you may be required or
allowed to supply the name of an auxiliary routine from the NAG Library as an external procedure
argument. The routine documents give the necessary details. In such cases, you only need to supply the
name of the routine; you never need to know details of its argument list.

NAG auxiliary routines have names which are similar to the name of the documented routine(s) to
which they are related, but with last letter ‘Z’, ‘Y’, and so on, e.g.,

Introduction How to Use the NAG Library and its Documentation

Mark 26.1 essint.9

g13afz is an auxiliary routine called by g13aff.

A few chapters contain auxiliary routines whose names are obtained by adding 50 to the second and
third characters of the chapter name. For instance, Chapter E04 has an auxiliary routine with the name
e54nfu which is normally used as the actual argument for the qphess argument of e04nfa; the
corresponding name to be used with e04nff is e04nfu.

3.7 Dynamic Memory Allocation

Some NAG Library routines perform dynamic memory allocation to simplify their interfaces. Where
possible, the amount of memory allocated by a routine will be given in the routine document (usually as
a function of routine arguments). All memory allocated by NAG routines is deallocated before exit.

In the case where a routine detects a failure to dynamically allocate sufficient memory, the routine will
set an error condition, by setting ifail ¼ �999, and exit with an appropriate error message.

3.8 License Management

If your implementation is license managed then your local site will have details on how the license
management is implemented; please contact your site installer for details. To determine whether a valid
license is available on your machine run the example program for a00acf.

Should a valid license not be found when calling license managed routines from the Library then the
routine will set an error condition, by setting ifail ¼ �399, and exit with an appropriate error message.
On Unix based systems, the appropriate environment variables should then be checked (e.g.,
NAG_KUSARI_FILE) to make sure this points to the licence file containing a valid licence, and the
licence file should be checked for any obvious errors (e.g., the licence refers to a different
implementation). If everything appears to be correct then please contact NAG (see Support from NAG
for details).

3.9 Unexpected Errors

Internal calls to Library routines are checked for error exits even when these exits are not to be
expected. Should an unexpected error exit occur the routine will set an error condition by setting ifail
and exit with an appropriate error message. Historically, the number returned in ifail was particular to
that routine and differing numbers could be used for this purpose. However, recently added routines
have standardized by setting ifail ¼ �99 for unexpected error detection.

3.10 Calling the Library from Other Languages

In general the NAG Library can be called from other computer languages (such as C and Visual Basic)
provided that appropriate mappings exist between their data types).

NAG has produced C Header Files which comprise of a set of header files, indicating the match
between C and Fortran data types for various compilers, documentation and examples. The
documentation, examples and C Header Files are available from the NAG Web sites (see Support
from NAG).

The Dynamic Link Library (DLL) implementation can be called in a straightforward manner from a
number of languages and environments, e.g., Visual Basic, Visual Basic for Applications (Excel),
Fortran, C and C++. Guidance on this is provided in the Users' Note for the NAG Library DLLs.
Further details can be found on the NAG Web sites.

3.11 Arithmetic Considerations and Reproducibility of Results

The results obtained when calling a NAG Library routine depend not only on the algorithm used to
solve the problem, but also on the compiler used to build the library, compiler run-time libraries and
also the arithmetic properties of the machine on which the code is run.

Historically, different kinds of computer hardware tended to have different kinds of arithmetic. Some
machines would store floating-point numbers using a base 16 significand and exponent system, others
would use base 2, and some even used base 8 or 10. Such differences caused major headaches for

How to Use the NAG Library and its Documentation NAG Library Manual

essint.10 Mark 26.1

software library providers because code that worked well on one arithmetic system might not behave in
exactly the same way on another. This meant that great care had to be taken to make the library code
portable.

In addition, it was not unheard of for machine arithmetic to have flaws or errors where basic operations
such as multiplication or division could sometimes give incorrect results, especially on numbers that
were in some way ‘extreme’, such as being very large or small.

After the first of the IEEE standards for floating-point arithmetic (ANSI/IEEE (1985)) was introduced in
the 1980s, the situation improved greatly. Nowadays most significant hardware, and certainly most
hardware that NAG libraries run on, will use IEEE-style base 2 arithmetic. This makes production of
portable code easier, but there are still problems, partly due to the latitude allowed by the IEEE
standards. For example, hardware which uses extra-precise 80-bit internal registers for arithmetic, as
originally introduced in the Intel 8087 coprocessor in the 1980s, behaves slightly differently from
hardware that uses 64-bit registers, particularly if a compiler generates optimized code which holds
arithmetic subexpressions in the extra-precise registers.

Since, for performance reasons, computer arithmetic is generally finite precision (as is certainly the case
for IEEE standard arithmetic) most of the numerical methods implemented by NAG Library routines
can only return an approximation to the true solution, simply due to the accumulation of rounding
errors.

It should therefore be clear that running a program which calls a NAG Library routine with the same
data on two different machines can give different results, due to compiler, hardware and run-time
library considerations. Usually these differences are small – it may be that a result computed on one
machine differs only in the last few significant bits from the same result computed on another machine
– for example, when solving a well-conditioned set of linear equations on two different machines.
Occasionally small differences may be magnified, for example if a conditional test depends on an
imprecise result. A routine that searches for a mininum of an optimization problem may converge to a
different local minimum, but in general, so long as the routine's documentation doesn't claim that the
same local minimum will always be obtained, this should be acceptable. Even if an algorithm
converges to the same local minimum, arithmetic differences may mean that a different number of
iterations is taken to get there.

Modern hardware and optimizing compilers have introduced further scope for arithmetic quirks. An
example is in the use of Streaming SIMD Extension (SSE) instructions. These low-level machine
instructions allow hardware to operate on more than one number in parallel, if your compiler is smart
enough to generate and use them correctly, or if you hand-code your own assembly language routines.

SSE instructions enable low-level parallelism of floating-point arithmetic operations. For example, a
128-bit SSE register can hold two 64-bit double precision (or four 32-bit single precision) numbers at
the same time, and operate on them all simultaneously. This can lead to big time savings when working
on large amounts of data.

But this may come at a price. Efficient use of SSE instructions can sometimes depend on exactly how
the memory used to store data is aligned. Some SSE instructions for moving data to and from memory
need memory to be aligned on a 16-byte boundary. If it happens that the memory (for example, a
pointer to an array of numbers) that a NAG routine uses is not aligned nicely, then it may not be
possible to use those SSE instructions. An optimizing compiler might well generate two instruction
streams, one for when it detects that memory is aligned and one for when it is not.

An example should serve to make things clearer. Suppose we wish to compute the inner product of two
vectors, x and y, each of length n. The inner product (or dot product) of two vectors is computed by
multiplying together corresponding elements of the two vectors, and summing the individual products to
get the result. A routine compiled by a good optimizing compiler would load numbers two or four at a
time, multiply them together two or four at a time, and accumulate the results into the final result.

But if the memory is not nicely aligned – and it may well not be – the compiler needs to generate a
different code path to deal with the situation. Here the result will take longer to get because the
products must be computed and accumulated one at a time. At run-time, the code checks whether it can
take the fast path or not, and works appropriately.

The problem is that by altering the order of the accumulations, we are quite possibly changing the final
result, simply due to rounding differences when working with finite precision computer arithmetic.

Introduction How to Use the NAG Library and its Documentation

Mark 26.1 essint.11

Instead of getting the inner product

s ¼ x1 � y1 þ x2 � y2 þ x3 � y3 þ � � � þ xn � yn

we may get

s ¼ x1 � y1 þ x3 � y3ð Þ þ x2 � y2 þ x4 � y4ð Þ þ � � � :
It is likely that the result will be just as accurate either way – neither result will be precise due to finite
arithmetic – but they may differ by a tiny amount. And if that tiny difference leads to a different
decision being made by the code that called the inner product routine, the difference may be magnified.

Furthermore, it is possible that the same program running with bitwise identical data on the same
machine may give different results when run twice in a row simply because, when the program is
loaded, by chance some piece of memory may or may not be aligned on a particular boundary. Such
non-deterministic results can be frustrating if you depend on always getting identical results for the
same data.

On even newer hardware, AVX instructions use 256-bit and 512-bit registers, and can therefore operate
on more numbers at a time. For AVX instructions, memory may need to be 32-byte aligned.

Some memory used by NAG Library routines is allocated inside the NAG Library. In order to minimize
differences due to effects like that described above, we can try to make sure the memory is always
aligned nicely – for example, by use of more controllable memory allocation routines where available –
but that is not always possible since it partly depends on the support of the compiler.

Of course, no Library routine has control over memory you have allocated before being passed to the
routine. If you do observe non-deterministic results which you suspect are due to memory
considerations, and you are unable to accept this variation, then you are advised to make sure that
any memory you allocate is aligned nicely; unfortunately, precisely how you do this is dependent on
your system, but you may be able to get advice through NAG's usual support channels (see Support
from NAG).

Parallelism, coming from a multithreaded implementation of the NAG Library and/or a multithreaded
vendor library is another potential source of non-determinism in numerical results. Some routines may
give different results when run on different numbers of cores, or even different results when a
calculation is repeated on the same number of cores. Where reproducibility of results is vital, a purely
serial NAG Library, without parallelism in either NAG routines or calls to parallel vendor library
routines will generally be available in an appropriate implementation, and may be the best choice. You
are advised to contact NAG (see Support from NAG) for advice.

3.11.1 Bit-wise Reproducibility (BWR)

Mathematical operations on fixed-length floating point numbers (e.g., 32-bit floats or 64-bit doubles) are
not associative. This means that a computer may produce different results for aþ bþ cð Þ and
aþ bð Þ þ c. For example, an IEEE 754 32-bit floating point number has a mantissa of 23 bits. Therefore
in this number format 224 þ 1 ¼ 224, which means that for instance 224 þ 1

� �� 224 ¼ 0 while

224 þ 1� 224
� � ¼ 1. BWR is a term which refers to the case in which a given computer program (e.g., a

set of source codes) produces bit-for-bit the exact same answer in different computing environments
such as

1. Different operating systems (e.g., answers produced on Windows vs answers produced on Linux).

2. Different CPU architectures (e.g., Intel vs AMD or Intel Sandy Bridge vs Intel Ivy Bridge etc.).

3. Different compiler versions.

4. Different numbers of threads.

Users often desire BWR however it is extremely difficult to achieve. Typically you should ensure that:

(a) Instructions are always executed in exactly the same order.

(b) No advanced CPU features are used which may not be available on other processors (e.g., SSE3,
SSE4, AVX).

(c) A fixed number of threads is always used.

How to Use the NAG Library and its Documentation NAG Library Manual

essint.12 Mark 26.1

Often condition (a) is equivalent to compiling with no (or very limited) compiler optimizations, since
newer versions of compilers typically improve their code optimization algorithms, which means one
version of a compiler may optimize a set of operations one way while the next version may optimize it
a different way. Condition (b) typically means that only basic SSE instructions are allowed, such as are
supported across the widest range of processors and the enhanced SIMD instructions present in newer
processors are not exploited.

The result is that to achieve BWR across a wide range of computing environments one often has to
sacrifice a lot of performance.

3.11.1.1 Vendor Math Libraries and Conditional Bitwise Reproducibility (CBWR)

An implementation of the NAG Library that is not self-contained will make calls to an appropriate
vendor library containing, in particular, high performance linear algebra routines. The NAG Library has
no direct control over BWR with respect to results obtained from calls to the vendor library. However,
for at least one such vendor library, CBWR has been introduced such that if an environment variable is
set and a set of conditions adhered to in the code calling the vendor library then BWR can be forced.
Where CBWR is available for a vendor library used by an implementation of the NAG Library, details
will be given in the Users' Note for that implementation.

It should be noted that many NAG routines do not adhere to the conditions set out by vendor library
CBWR and so it may not be possible to ensure BWR for all NAG Library routines across different CPU
architectures for implementations that are not self-contained.

3.12 Multithreading

3.12.1Thread Safety

In multithreaded applications, each thread in a team processes instructions independently while sharing
the same memory address space. For these applications to operate correctly any routines called from
them must be thread safe. That is, any global variables they contain are guaranteed not to be accessed
simultaneously by different threads, as this can compromise results. This can be ensured through
appropriate synchronization, such as that found in OpenMP.

When a routine is described as thread safe we are considering its behaviour when it is called by
multiple threads. It is worth noting that a thread unsafe routine can still, itself, be multithreaded. A team
of threads can be created inside the routine to share the workload as described in Section 3.12.2.

Most routines in the NAG Fortran Library are thread safe, however there are some routines that are not
thread safe as they use unsynchronised global variables (such as module variables, common blocks or
variables with the SAVE attribute). These routines should not be called by multiple threads in a user
program. Please consult Section 8 of each routine document for further information. A table available in
the HTML documentation lists which routines are threadunsafe.

In the NAG Fortran Library there are some pairs of routines which share the same five character root
name, for example, the routines e04ucf/e04uca. Each routine in the pair has exactly the same
functionality, except that one of them has additional parameters in order to make it thread safe. The
thread safe routine has a different last character in the name in place of the usual character (typically ‘a’
instead of ‘f’). Such pairs are documented in a single routine document and are listed in the individual
Chapter Contents.

3.12.1.1 Routines with Routine Arguments

Some Library routines require you to supply a routine and to pass the name of the routine as an actual
argument in the call to the Library routine. For many of these Library routines, the supplied routine
interface includes array arguments (called iuser and ruser) specifically for you to pass information to
the supplied routine without the need for global variables.

In the Fortran Library if the interfaces of a pair of thread safe (ending ‘a’) and non-thread safe (ending
‘f’) routines contain a user-supplied routine argument then the ‘a’ routine will contain the additional
array arguments iuser and ruser (possibly plus others for internal use). In some cases the ‘a’ routine
may need to be initialized by a separate initialization routine; this requirement will be clearly
documented.

Introduction How to Use the NAG Library and its Documentation

Mark 26.1 essint.13

From Mark 26.1 routines with routine arguments will also contain the argument cpuser which is of Type
(c_ptr) (from the iso_c_binding module). This allows more complicated data structures to be passed
easily to the user-supplied routine in cases where iuser and ruser would be inconvenient. The
following code fragment shows how this can be used.

Module mymodule
Use iso_c_binding, Only: c_f_pointer, c_ptr
Private
Public :: myfun

Type, Public :: mydata
Integer :: nx
Real (Kind=nag_wp), Allocatable :: x(:)

End Type mydata
Contains

Subroutine myfun(...,iuser,ruser,cpuser)
Type (c_ptr), Intent (In) :: cpuser
Type (mydata), Pointer :: md
Call c_f_pointer(cpuser,md)

... Use md%x and md%nx ...
End Subroutine myfun

End Module mymodule
...
Program myprog

Use mymodule, Only: myfun,mydata
Use iso_c_binding, Only: c_loc, c_ptr
Type (c_ptr) :: cpuser
Type (mydata), Target :: md

...
md%nx = 1000
Allocate (md%x(md%nx))
cpuser = c_loc(md)

...
call nagroutine(...,myfun,cpuser,iuser,ruser,ifail)

...
End Program

This mechanism is used, for example, in Section 10 in e04stf.

If you need to provide your supplied routine with more information than can be given via the interface
argument list, then you are advised to check, in the relevant Chapter Introduction, whether the Library
routine you intend to call has an equivalent reverse communication interface. These have been designed
specifically for problems where user-supplied routine interfaces are not flexible enough for a given
problem, and their use should eliminate the need to provide data through global variables. Where
reverse communication interfaces are not available, it is usual to use global variables containing the
required data that is accessible from both the supplied routine and from the calling program. It is thread
safe to do this only if any global data referenced is made threadprivate by OpenMP or is updated using
appropriate synchronisation, thus avoiding the possibility of simultaneous modification by different
threads.

Thread safety of user-supplied routines is also an issue with a number of routines in multi-threaded
implementations of the NAG Library, which may internally parallelize around the calls to the user-
supplied routines. This issue affects not just global variables but also how the iuser and ruser arrays
may be used. In these cases, synchronisation may be needed to ensure thread safety. Chapter X06
provides routines which can be used in your supplied routine to determine whether it is being called
from within an OpenMP parallel region. If you are in doubt over the thread safety of your program you
are advised to contact NAG for assistance.

3.12.1.2 Input/Output

The Library contains routines for setting the current error and advisory message unit numbers (x04aaf
and x04abf). These routines use the SAVE statement to retain the values of the current unit numbers
between calls. It is therefore not advisable for different threads of a multithreaded program to set the
message unit numbers to different values. A consequence of this is that error or advisory messages
output simultaneously may become garbled, and in any event there is no indication of which thread
produces which message. You are therefore advised always to select the ‘soft failure’ mechanism
without any error message (ifail ¼ þ1, see Section 3.4) on entry to each NAG Library routine called

How to Use the NAG Library and its Documentation NAG Library Manual

essint.14 Mark 26.1

from a multithreaded application; it is then essential that the value of ifail be tested on return to the
application.

3.12.1.3 Implementation Issues

In very rare cases we are unable to guarantee the thread safety of a particular specific implementation.
Note also that in some implementations, the Library is linked with one or more vendor libraries to
provide, for example, efficient BLAS functions. NAG cannot guarantee that any such vendor library is
thread safe. Please consult the Users' Note for your implementation for any additional implementation-
specific information.

3.12.2 Parallelism

3.12.2.1 Introduction

The time taken to execute a routine from the NAG Library has traditionally depended, to a large degree,
on the serial performance capabilities of the processor being used. In an effort to go beyond the
performance limitations of a single core processor, multithreaded implementations of the NAG Library
are available. These implementations divide the computational workload of some routines between
multiple cores and executes these tasks in parallel. Traditionally, such systems consisted of a small
number of processors each with a single core. Improvements in the performance capabilities of these
processors happened in line with increases in clock frequencies. However, this increase reached a limit
which meant that processor designers had to find another way in which to improve performance; this
led to the development of multicore processors, which are now ubiquitous. Instead of consisting of a
single compute core, multicore processors consist of two or more, which typically comprise at least a
Central Processing Unit and a small cache. Thus making effective use of parallelism, wherever possible,
has become imperative in order to maximize the performance potential of modern hardware resources,
and the multithreaded implementations.

The effectiveness of parallelism can be measured by how much faster a parallel program is compared to
an equivalent serial program. This is called the parallel speedup. If a serial program has been
parallelized then the speedup of the parallel implementation of the program is defined by dividing the
time taken by the original serial program on a given problem by the time taken by the parallel program
using n cores to compute the same problem. Ideal speedup is obtained when this value is n (i.e., when
the parallel program takes 1

nth the time of the original serial program). If speedup of the parallel
program is close to ideal for increasing values of n then we say the program has good scalability.

The scalability of a parallel program may be less than the ideal value because of two factors:

(a) the overheads introduced as part of the parallel implementation, and

(b) inherently serial parts of the program.

Overheads include communication and synchronisation as well as any extra setup required to allow
parallelism. Such overheads depend on the efficiency of the compiler and operating system libraries and
the underlying hardware. The impact on performance of inherently serial fractions of a program is
explained theoretically (i.e., assuming an idealised system in which overheads are zero) by Amdahl's
law. Amdahl's law places an upper bound on the speedup of a parallel program with a given inherently
serial fraction. If r is the parallelizable fraction of a program and s ¼ 1� r is the inherently serial
fraction then the speedup using n sub-tasks, Sn, satisfies the following:

Sn � 1

sþ r
n

� �

Thus, for example, this says that a program with a serial fraction of one quarter can only ever achieve a
speedup of 4 since as n ! 1, Sn � 4.

Parallelism may be utilised on two classes of systems: shared memory and distributed memory
machines, which require different programming techniques. Distributed memory machines are
composed of processors located in multiple components which each have their own memory space
and are connected by a network. Communication and synchronisation between these components is
explicit. Shared memory machines have multiple processors (or a single multicore processor) which can
all access the same memory space, and this shared memory is used for communication and

Introduction How to Use the NAG Library and its Documentation

Mark 26.1 essint.15

synchronisation. The NAG Library makes use of shared memory parallelism using OpenMP as
described in Section 3.12.2.2.

Parallel programs which use OpenMP create (or "fork") a number of threads from a single process
when required at run-time. (Programs which make use of shared memory parallelism are also called
multithreaded programs.) The threads form a team comprising of a single master thread and a number
of slave threads. These threads are capable of executing program instructions independently of one
another in parallel. Once the parallel work has been completed the slave threads return control to the
master thread and become inactive (or "join") until the next parallel region of work. The threads share
the same memory address space, i.e., that of the parent process, and this shared memory is used for
communication and synchronisation. OpenMP provides some mechanisms for access control so that, as
well as allowing all threads to access shared variables, it is possible for each thread to have private
copies of other variables that only it can access. Threads in a team can create their own parallel regions
within the current parallel region. At this next level of parallelism, the thread creating the new team
becomes the master thread of that team. We call this nested parallelism.

Something to be aware of for multithreaded programs, compared to serial ones, is that identical results
cannot be guaranteed, nor should be expected. Identical results are often impossible in a parallel
program since using different numbers of threads may cause floating-point arithmetic to be evaluated in
a different (but equally valid) order, thus changing the accumulation of rounding errors. For a more in-
depth discussion of reproducibility of results see Section 3.11.

3.12.2.2 How is Parallelism Used in the NAG Library?

The multithreaded implementations differ from the serial implementations of the NAG Library in that it
makes use of multithreading through use of OpenMP, which is a portable specification for shared
memory programming that is available in many different compilers on a wide range of different
hardware platforms (see OpenMP).

Note that not all routines are parallelized; you should check Section 8 of the routine documents to find
details about parallelism and performance of routines of interest.

There are two situations in which a call to a routine in the NAG Library makes use of multithreading:

1. The routine being called is a NAG-specific routine that has been threaded using OpenMP, or that
internally calls another NAG-specific routine that is threaded. This applies to multithreaded
implementations of the NAG Library only.

2. The routine being called calls through to BLAS or LAPACK routines. The vendor library
recommended for use with your implementation of the NAG Library (whether the NAG Library is
threaded or not) may be threaded. Please consult the Users' Note for further information.

A complete list of all the routines in the NAG Library, and their threaded status is given in
Section 3.12.3.

It is useful to understand how OpenMP is used within the Library in order to avoid the potential pitfalls
which lead to making inefficient use of the Library.

A call to a threaded NAG-specific routine may, depending on input and at one or more points during
execution, use OpenMP to create a team of threads for a parallel region of work. The team of threads
will fork at the start of the parallel region before joining at the end of the parallel region. Both the fork
and the join will happen internally within the routine call. However, there are situations in which the
teams of threads may be made available to OpenMP directives in your code via user-supplied
subprograms, we refer to directives not contained within a parallel region as orphaned directives. (See
Section 8 of the routine documents for further information.) Furthermore, OpenMP constructs within
NAG routines are executed by teams of threads created within the NAG code, that is, there are no
orphaned directives in the Library itself. Throughout this documentation we assume the use of the
recommended compiler as given in the Users' Note, and in particular the use of a single OpenMP run-
time library. Thus all OpenMP environment variables will apply to your own code and to NAG
routines. However, they may not be respected by vendor libraries that have a mechanism for overriding
them. NAG provides routines in Chapter X06 to control threads for your whole program, including any
specific to a vendor library being called by NAG. You should take care when calling these NAG
routines from within your own parallel regions, since if nested parallelism is enabled (it is disabled by

How to Use the NAG Library and its Documentation NAG Library Manual

essint.16 Mark 26.1

default) the NAG routine will fork-and-join a team of threads for each calling thread, which may lead
to contention on system resources and very poor performance. Poor performance due to contention can
also occur if the number of threads requested exceeds the number of physical cores in your machine, or
if some hardware resources are busy executing other processes (which may belong to other users in a
shared system). For these reasons you should be aware of the number of physical cores available to
your program on your machine, and use this information in selecting a number of threads which
minimizes contention on resources. Please read the Users' Note for advice about setting the number of
threads to use, or contact NAG (see Support from NAG) for advice.

If you are calling multithreaded NAG routines from within another threading mechanism you need to be
aware of whether or not this threading mechanism is compatible with the OpenMP compiler runtime
used to build the multithreaded implementation of the NAG Library on your platform(s) of choice. The
Users' Note document for each of the implementations in question will include some guidance on this,
and you should contact NAG for further advice if required.

Parallelism is used in many places throughout the NAG Library since, although many routines have not
been the focus of parallel development by NAG, they may benefit by calling routines that have, and/or
by calling parallel vendor routines (e.g., BLAS, LAPACK). Thus, the performance improvement due to
multithreading, if any, will vary depending upon which routine is called, problem sizes and other
parameters, system design and operating system configuration. If you frequently call a routine with
similar data sizes and other parameters, it may be worthwhile to experiment with different numbers of
threads to determine the choice that gives optimal performance. Please contact NAG for further advice
if required.

As a general guide, many key routines in the following areas are known to benefit from shared memory
parallelism:

Dense and Sparse Linear Algebra

FFTs

Random Number Generators

Quadrature

Partial Differential Equations

Interpolation

Curve and Surface Fitting

Correlation and Regression Analysis

Multivariate Methods

Time Series Analysis

Financial Option Pricing

Global Optimization

Wavelets

3.12.3Multithreaded Routines

Many routines are threaded using OpenMP in multithreaded implementations of the NAG Library.
These implementations are denoted by having a product code of the form 'FS_______', rather than
'FL_______' for serial NAG Library implementations. Please consult Section 8 of each routine
document for further information. A table available in the HTML documentation lists which routines
have been threaded by NAG. The list also includes routines which internally call BLAS or LAPACK
routines, which may be threaded within the vendor library used by both serial and multithreaded NAG
Library implementations. You are advised to consult the documentation for the vendor library for
further information. Please consult the Users' Note for your implementation for any additional
implementation-specific information.

Introduction How to Use the NAG Library and its Documentation

Mark 26.1 essint.17

4 How to Use NAG Documentation

4.1 Using the Manual

The Manual is designed to serve the following functions for the NAG Library:

to give background information about different areas of numerical and statistical computation;

to advise on the choice of the most suitable NAG Library routine or routines to solve a particular
problem;

to give all the information needed to call a NAG Library routine correctly from a Fortran
program, and to assess the results.

At the beginning of the Manual are some general introductory documents which provide some
background and additional information.

The document entitled ‘Mark 26 NAG Fortran Library News’ provides details of new routines added,
details of routines scheduled for withdrawal and details of routines withdrawn at this mark. This
document also provides details of internal changes affecting the user at this Mark.

The document entitled ‘Advice on Replacement Calls for Withdrawn/Superseded Routines’ provides
advice on how to modify your program.

The online documentation includes a Keyword and GAMS Search which is available as a keyword
search box at the top of every page and, additionally, a separate page containing a form and search
guidelines.

Having found a likely chapter or routine, you should read the corresponding Chapter Introduction,
which gives background information about that area of numerical computation, and recommendations
on the choice of a routine, including indexes, tables and decision trees.

When you have chosen a routine, you must consult the routine document. Each routine document is
essentially self-contained (it may, however, contain references to related documents). It includes a
description of the method, detailed specifications of each argument, explanations of each error exit,
remarks on accuracy, and (in most cases) an example program to illustrate the use of the routine. In
some cases a plot accompanies an example program to illustrate the results from running the example
program (possibly amended from the original to output more data points).

4.2 Structure of the Documentation

The NAG Library Manual is the principal documentation for the NAG Library. It has the same chapter
structure as the Library: each chapter of routines in the Library has a corresponding chapter (of the
same name) in the Manual. The chapters occur in alphanumeric order. General introductory documents
appear at the beginning of the Manual.

Each chapter consists of the following documents:

Chapter Contents, e.g., D01 (quad) Chapter Contents;

Chapter Introduction, e.g., D01 (quad) Chapter Introduction;

Routine Documents, one for each documented routine in the chapter.

A routine document has the same name as the routine which it describes. Within each chapter, routine
documents occur in alphanumeric order of short names. For those chapters that have both ‘a’ and ‘f’
versions of a routine, the routine descriptions are combined into one routine document.

All routine documents have the same structure consisting of ten numbered sections:

1. Purpose

2. Specification

3. Description

4. References

5. Arguments (see Section 4.3)

How to Use the NAG Library and its Documentation NAG Library Manual

essint.18 Mark 26.1

6. Error Indicators and Warnings

7. Accuracy

8. Parallelism and Performance

9. Further Comments

10. Example (see Section 4.5)

In some documents (notably Chapters E04, E05 and H) there are a further three sections:

11. Algorithmic Details

12. Optional Parameters

13. Description of Monitoring Information

The sections numbered 11. and 13. above are optional; thus, the section titled Optional Parameters
may appear as (the possibly final) Section 11.

4.3 Specification of Arguments

The specification of routines in routine documents (see Section 2 in d03pdf/d03pda) includes the C
Header interface which can be used to call a NAG Library routine from C or C++; the name used for
this interface is the Fortran Interface short name appended by an underscore (e.g., d03faf_ corresponds
to d03faf). For routines with 'a' and 'f' versions, the same approach also applies to the 'a' version (e.g.,
d03pda_ corresponds to d03pda).

Section 5 of each routine document contains the specification of the arguments, in the order of their
appearance in the argument list.

4.3.1 Classification of Arguments (Intents)

Arguments are classified as follows.

Input: you must assign values to these arguments on or before entry to the routine, and these values are
unchanged on exit from the routine.

Output: you need not assign values to these arguments before entry to the routine; the routine may
assign values to them.

Input/Output: you must assign values to these arguments before entry to the routine, and the routine
may then change these values.

Workspace: array arguments which are used as workspace by the routine. You must supply arrays of the
correct type and dimension. In general, you need not be concerned with their contents.

Communication Array: arguments which are used to communicate data from one routine call to another.

External Procedure: a routine which must be supplied (e.g., to evaluate an integrand or to print
intermediate output). Usually it must be supplied as part of your calling program, in which case its
specification includes full details of its argument list and specifications of its arguments (all enclosed in
a box). Its arguments are classified in the same way as those of the Library routine, but because you
must write the procedure rather than call it, the significance of the classification is different.

Input: values may be supplied on entry, which your procedure must not change.

Output: you may or must assign values to these arguments before exit from your procedure.

Input/Output: values may be supplied on entry, and you may or must assign values to them
before exit from your procedure.

Occasionally, as mentioned in Section 3.6, the procedure can be supplied from the NAG Library, and
then you only need to know its name.

User Workspace: array arguments which are passed by the Library routine to an external procedure
argument. They are not used by the routine, but you may use them to pass information between your
calling program and the external procedure.

Introduction How to Use the NAG Library and its Documentation

Mark 26.1 essint.19

Dummy: a simple variable which is not used by the routine. A variable or constant of the correct type
must be supplied, but its value need not be set. (A dummy argument is usually an argument which was
required by an earlier version of the routine and is retained in the argument list for compatibility.)

4.3.2 Constraints and suggested values

The word ‘Constraint:’ or ‘Constraints:’ in the specification of an Input argument introduces a
statement of the range of valid values for that argument, e.g.,

Constraint: n > 0.

If the routine is called with an invalid value for the argument (e.g., n ¼ 0), the routine will usually take
an error exit, returning a nonzero value of ifail (see Section 3.4).

Constraints on arguments of type Character only list upper case alphabetic characters, e.g.,

Constraint: check ¼ n .

In practice, all routines with Character arguments will permit the use of lower case characters.

Occasionally, an enhancement of an existing routine at a given Mark may weaken some constraints on
some arguments, this will not change the behaviour of existing code that calls the routine, but will
allow new code to take advantage of enhanced functionality.

The phrase ‘Suggested value:’ introduces a suggestion for a reasonable initial setting for an Input
argument (e.g., accuracy or maximum number of iterations) in case you are unsure what value to use;
you should be prepared to use a different setting if the suggested value turns out to be unsuitable for
your problem.

4.3.3 Array Arguments

Most array arguments have dimensions which depend on the size of the problem. In Fortran
terminology they have ‘adjustable dimensions’: the dimensions occurring in their declarations are
integer variables which are also arguments of the Library routine.

For example, a Library routine might have the specification:

Subroutine <name> (m, n, a, b, ldb)
Integer m, n, a(n), b(ldb,n), ldb

For a one-dimensional array argument, such as a in this example, the specification would begin

a(n) – Integer array

You must ensure that the dimension of the array, as declared in your calling (sub)program, is at least as
large as the value you supply for n. It may be larger, but the routine uses only the first n elements.

For a two-dimensional array argument, such as b in the example, the specification might be

b(ldb,n) – Integer array

On entry: the m by n matrix B.

and the argument ldb might be described as follows:

ldb – Integer

On entry: the first dimension of the array b as declared in the (sub)program from which <name>
is called.

Constraint: ldb � m.

You must supply the first dimension of the array b, as declared in your calling (sub)program, through
the argument ldb, even though the number of rows actually used by the routine is determined by the
argument m. You must ensure that the first dimension of the array is at least as large as the value you
supply for m. The extra argument ldb is needed to allow the routine to act on subarrays of a larger two-
dimensional array, e.g., factorizing a diagonal submatrix of a larger matrix.

How to Use the NAG Library and its Documentation NAG Library Manual

essint.20 Mark 26.1

You must also ensure that the second dimension of the array, as declared in your calling (sub)program,
is at least as large as the value you supply for n. It may be larger, but the routine uses only the first n
columns.

A program to call the hypothetical routine used as an example in this section might include the
statements:

Integer aa(100), bb(100,50)
ldb = 100
.
.
.
m = 80
n = 20
Call <name>(m,n,aa,bb,ldb)

or Integer Allocatable :: aa(:), bb(:,:)
Integer :: m, n, ldb
.
.
.
Read(5,*) m, n
ldb = m
Allocate (aa(m),bb(ldb,n))
Call <name>(m,n,aa,bb,ldb)

Many NAG routines contain array arguments declared with the ‘assumed size’ array dimension, and
would be given as

Integer a(*), b(ldb,*)

However, the original declaration of an array in your calling program must always have dimensions,
greater than or equal to the minimum value documented. The advantage of using allocatable arrays is
that they can be dynamically allocated to be of a correct size not known at compile time.

Consult an expert or a textbook on Fortran if you have difficulty in calling NAG routines with array
arguments.

4.4 Implementation-dependent Information

In order to support all implementations of the Library, the Manual has adopted a convention of using
bold italics to distinguish terms which have different interpretations in different implementations.

One bold italicised term is machine precision, which denotes the relative precision to which real
floating-point numbers are stored in the computer, e.g., in an implementation with approximately 16
decimal digits of precision, machine precision has a value of approximately 10�16.

The precise value of machine precision is given by the routine x02ajf. Other routines in Chapter X02
return the values of other implementation-dependent constants, such as the overflow threshold, or the
largest representable integer. Refer to the X02 Chapter Introduction for more details.

The bold italicised term block size is used only in Chapters F07 and F08. It denotes the block size used
by block algorithms in these chapters. You only need to be aware of its value when it affects the
amount of workspace to be supplied – see the arguments work and lwork of the relevant routine
documents and the appropriate Chapter Introduction.

For each implementation of the Library, a separate Users' Note is published. This is a short document,
revised at each mark. At most installations it is available in machine-readable form. It gives any
necessary additional information which applies specifically to that implementation, in particular:

the values returned by Chapter X02 routines;

the default unit numbers for output (see Section 3.5);

the meanings of the precision arguments nag_rp (reduced precision), nag_wp (basic precision)
and nag_hp (additional precision).

4.5 Example Programs and Results

The example program in Section 10 of most routine documents illustrates a simple call of the routine.
The programs are designed so that they can be fairly easily modified, and so serve as the basis for a
simple program to solve your problem.

For each implementation of the Library, NAG distributes the example programs in machine-readable
form, with all necessary modifications already applied. Many sites make the programs accessible to you
in this form. Generic forms of the programs, without implementation-specific modifications, may be

Introduction How to Use the NAG Library and its Documentation

Mark 26.1 essint.21

obtained directly from the NAG web site. The Users' Note for your implementation will mention any
special changes which need to be made to the example programs.

Note that the results obtained from running the example programs may not be identical in all
implementations and may not agree exactly with the results in the Manual.

For many routine documents, a plot of the example program results is also provided. In some cases the
example program has been modified slightly to produce larger sets of results to give a more
representative plot of the solution profile produced.

4.6 Online Documentation

The complete NAG Library Manual, Mark 26 can be viewed online in the following formats:

HTML, a fully linked version of the manual using HTML, SVG and MathML (recommended for
browsing) and providing links to the PDF version of each document (recommended for printing);

PDF, a full PDF manual browsed using the PDF bookmarks, or via HTML index files;

Single file PDF, the manual as a single PDF file;

Windows HTML help, Windows HTML help version as a single file.

The two single file formats are more compact than the formats that use one file per routine and, for
example, allow text searches across the entire manual, but of course the larger files may not be so
convenient if you only need to view the documentation for a few routines.

The following sections describe how to obtain the software required to view the documentation and
advises you how best to navigate the files with or without a browser.

4.6.1 HTML Format

4.6.1.1 Viewing HTML5 Files

These files do not use any proprietary browser specific features, and conform to relevant W3C
Recommendations (HTML, MathML, SVG, CSS).

Support for these languages may require that your browser be updated and/or the installation of
additional fonts. This information is restricted to the more widely used browsers. If you require
information for additional browsers please contact NAG.

4.6.1.2 Firefox (and other Mozilla based browsers)

Versions of Firefox from Firefox 4 onwards should display MathML in HTML files by default.

Rendering of the mathematics is improved if you install the STIX or other OpenType math fonts if they
are not already included on your system (as is the case with OS X and some Linux distributions). Full
details of the installers available for these fonts on all the major platforms are included in the Firefox
MathML fonts page:
http://www.mozilla.org/projects/mathml/fonts/

4.6.1.3 Other Browsers

If Firefox is not being used, then the javascript on the page loads the MathJax javascript library (http://
www.mathjax.org) to enable MathML rendering. By default this is loaded from the web using the
MathJax Content Distribution Network. If you require the documentation to work without an Internet
connection then you may either use Firefox as described in the previous section or you may download a
local copy of MathJax (http://docs.mathjax.org/en/latest/installation.html) which needs to be unpacked
on to your local fileserver or file system, and then edit the file ../styles/nagmathml.js changing the line
http://cdn.mathjax.org/mathjax/latest/ to refer to your local installation.

How to Use the NAG Library and its Documentation NAG Library Manual

essint.22 Mark 26.1

http://www.mozilla.org/projects/mathml/fonts/
http://www.mathjax.org
http://www.mathjax.org
http://docs.mathjax.org/en/latest/installation.html
../styles/nagmathml.js

4.6.1.4 Navigating HTML5 Files

A main index file has been provided (html/frontmatter/manconts.html) which links to individual Chapter
Contents documents, which in turn link to a complete set of HTML files. Use your browser to navigate
from this main index file. For each routine document in HTML format you are provided with a link to
its equivalent PDF file, this file has been provided primarily for printing purposes.

Each library document contains a number of hyperlinks to particular elements, e.g., arguments, sections,
chapter contents, etc. The following key identifies the colour used for each element:

CSS colour CSS name
black NAG type
green appendix, chap, chapter introduction, decision tree, general introduction, section
grey withdrawn document
pale blue equation, figure, item in a list, note, bibliographic reference, table, url, verbatim item,

website
navy blue ifail value
red parameter name
pink member
purple optional parameter
royal blue html table of contents, example plot, routine document, link to a routine example from a

table of contents

4.6.1.5 Printing HTML5 Files

It is possible to print your HTML5 files from the browser, however support for printing from browsers,
especially support for printing mathematics, varies considerably between versions of browsers and
platforms and printer drivers in use.

4.6.1.6 Windows HTML Help

The Windows HTML Help version of the manual is essentially a compressed version of the HTML5
help, customised for the Windows HTML Help viewer (with a bundled copy of MathJax). This format
can be very convenient as it is a small compressed single file version allowing full text search over the
entire library. You may find this useful if you have a Microsoft Windows desktop, even if you have the
NAG Library installed on a different platform.

4.6.2 PDF Format

4.6.2.1 Viewing and Printing PDF Files

If you do not already have a copy of Adobe Acrobat Reader, a free copy can be downloaded from
http://www.adobe.com/reader. Please check this site for availability of a reader for your platform. While
we recommend the use of Acrobat Reader, there are alternative PDF viewers available which can also
be used, such as xpdf or ghostview.

If Acrobat is not running as a plug-in then the bookmark links will not work correctly if you are
browsing the PDF files via http rather than the local filesystem. You are advised to reinstall Adobe
Acrobat which should rectify the problem.

4.6.2.2 Navigating the PDF Files

The manual is supplied as a set of individual PDF files, one for each routine document, chapter
introduction, etc.. Each PDF file contains bookmarks that can be used to navigate between the files.
Alternatively, and often more conveniently, HTML tables of contents are supplied which allow you to
navigate to the desired file using a browser, and then using Acrobat as a browser plugin to read or print
the document.

Alternatively the single file version of the PDF may be used. In this case the bookmarks will provide
links to every routine in the Library, and text search may be used to search the entire Library contents.

Introduction How to Use the NAG Library and its Documentation

Mark 26.1 essint.23

http://www.adobe.com/reader

5 NAG Library Design and Development

Various aspects of the design and development of the NAG Library, and NAG's technical policies and
organization are given in Ford (1982), Ford et al. (1979), Ford and Pool (1984), and Hague et al.
(1982).

6 NAG Library Standards

NAG Library development adheres to a number of international standards, see ISO Fortran 95 (1997),
ANSI (1966), ANSI (1978), ANSI/IEEE POSIX (1995), Basic Linear Algebra Subprograms Technical
(BLAST) Forum (2001).

7 References

ACM (1960–1976) Collected algorithms from ACM index by subject to algorithms

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

ANSI (1966) USA standard Fortran Publication X3.9 American National Standards Institute

ANSI (1978) American National Standard Fortran Publication X3.9 American National Standards
Institute

ANSI/IEEE (1985) IEEE standard for binary floating-point arithmetic Std 754-1985 IEEE, New York

ANSI/IEEE POSIX (1995) POSIX Standard Thread Library ANSI/IEEE POSIX 1003.1c:1995

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra
Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee
http://www.netlib.org/blas/blast-forum/blas-report.pdf

Blackford L S, Demmel J, Dongarra J J, Duff I S, Hammarling S, Henry G, Heroux M, Kaufman L,
Lumsdaine A, Petitet A, Pozo R, Remington K and Whaley R C (2002) An updated set of Basic Linear
Algebra Subprograms (BLAS) ACM Trans. Math. Software 28 135–151

Dongarra J J, Du Croz J J, Duff I S and Hammarling S (1990) A set of Level 3 basic linear algebra
subprograms ACM Trans. Math. Software 16 1–28

Dongarra J J, Du Croz J J, Hammarling S and Hanson R J (1988) An extended set of FORTRAN basic
linear algebra subprograms ACM Trans. Math. Software 14 1–32

Ford B (1982) Transportable numerical software Lecture Notes in Computer Science 142 128–140
Springer–Verlag

Ford B, Bentley J, Du Croz J J and Hague S J (1979) The NAG Library ‘machine’ Softw. Pract. Exper.
9(1) 65–72

Ford B and Pool J C T (1984) The evolving NAG Library service Sources and Development of
Mathematical Software (ed W Cowell) 375–397 Prentice–Hall

Hague S J, Nugent S M and Ford B (1982) Computer-based documentation for the NAG Library
Lecture Notes in Computer Science 142 91–127 Springer–Verlag

ISO Fortran 95 (1997) ISO Fortran 95 programming language (ISO/IEC 1539–1:1997)

OpenMP The OpenMP Specification for Parallel Programming http://www.openmp.org

The BLAS Technical Forum Standard (2001) http://www.netlib.org/blas/blast-forum

How to Use the NAG Library and its Documentation NAG Library Manual

essint.24 (last) Mark 26.1

http://www.netlib.org/lapack/lug
http://www.netlib.org/blas/blast-forum/blas-report.pdf
http://www.openmp.org
http://www.netlib.org/blas/blast-forum

	How to Use the NAG Library and its Documentation
	1 Library Identification
	2 How to Find a NAG Library Routine
	3 How to Use the NAG Library
	3.1 Structure of the Library
	3.1.1 Experimental Routines
	3.1.2 Long Names for Library Routines

	3.2 General Advice
	3.3 Programming Advice
	3.3.1 Alternative Routine Names
	3.3.2 The NAG Fortran Environment
	3.3.3 Direct and Reverse Communication Routines

	3.4 Error Handling and the Argument ifail
	3.4.1 Errors, Failure and Warning Conditions
	3.4.2 The ifail Argument
	3.4.3 Hard Fail Option
	3.4.4 Soft Fail Option
	3.4.5 Structure of the NAG Error Messages
	3.4.6 Legacy Error Handling

	3.5 Input/output in the Library
	3.6 Auxiliary Routines as External Procedure Arguments
	3.7 Dynamic Memory Allocation
	3.8 License Management
	3.9 Unexpected Errors
	3.10 Calling the Library from Other Languages
	3.11 Arithmetic Considerations and Reproducibility of Results
	3.11.1 Bit-wise Reproducibility (BWR)
	3.11.1.1 Vendor Math Libraries and Conditional Bitwise Reproducibility (CBWR)

	3.12 Multithreading
	3.12.1 Thread Safety
	3.12.1.1 Routines with Routine Arguments
	3.12.1.2 Input/Output
	3.12.1.3 Implementation Issues

	3.12.2 Parallelism
	3.12.2.1 Introduction
	3.12.2.2 How is Parallelism Used in the NAG Library?

	3.12.3 Multithreaded Routines

	4 How to Use NAG Documentation
	4.1 Using the Manual
	4.2 Structure of the Documentation
	4.3 Specification of Arguments
	4.3.1 Classification of Arguments (Intents)
	4.3.2 Constraints and suggested values
	4.3.3 Array Arguments

	4.4 Implementation-dependent Information
	4.5 Example Programs and Results
	4.6 Online Documentation
	4.6.1 HTML Format
	4.6.1.1 Viewing HTML5 Files
	4.6.1.2 Firefox (and other Mozilla based browsers)
	4.6.1.3 Other Browsers
	4.6.1.4 Navigating HTML5 Files
	4.6.1.5 Printing HTML5 Files
	4.6.1.6 Windows HTML Help

	4.6.2 PDF Format
	4.6.2.1 Viewing and Printing PDF Files
	4.6.2.2 Navigating the PDF Files

	5 NAG Library Design and Development
	6 NAG Library Standards
	7 References
	ACM (1960-1976)
	Anderson et al. (1999)
	ANSI (1966)
	ANSI (1978)
	ANSI/IEEE (1985)
	ANSI/IEEE POSIX (1995)
	Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)
	Blackford et al. (2002)
	Dongarra et al. (1990)
	Dongarra et al. (1988)
	Ford (1982)
	Ford et al. (1979)
	Ford and Pool (1984)
	Hague et al. (1982)
	ISO Fortran 95 (1997)
	OpenMP
	The BLAS Technical Forum Standard (2001)

	NAG Fortran Library Manual, Mark 26.1
	Copyright Statement
	Foreword
	Introduction
	How to Use the NAG Library and its Documentation
	Mark 26.1 NAG Fortran Library News
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Code Contributors
	Support from NAG
	Index

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Contents
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Contents
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Contents
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Contents
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Contents
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Contents
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Contents
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Contents
	D02 Chapter Introduction
	D02M-N Sub-chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Contents
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Contents
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Contents
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Contents
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Contents
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Contents
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Contents
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Contents
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Contents
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Contents
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Contents
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Contents
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Contents
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Contents
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Contents
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Contents
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Contents
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Contents
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Contents
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Contents
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Contents
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Contents
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Contents
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Contents
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Contents
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Contents
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Contents
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Contents
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Contents
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Contents
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Contents
	G13 Chapter Introduction

	G22 - Linear Model Specification
	G22 Chapter Contents
	G22 Chapter Introduction

	H - Operations Research
	H Chapter Contents
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Contents
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Contents
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Contents
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Contents
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Contents
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Contents
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Contents
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Contents
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Contents
	X07 Chapter Introduction

