NAG Library Routine Document
 g22yaf

Note: please be advised that this routine is classed as 'experimental' and its interface may be developed further in the future. Please see Section 3.1.1 in How to Use the NAG Library and its Documentation for further information.

1 Purpose

g22yaf parses a text string containing a formula specifying a linear model and outputs a G22 handle to an internal data structure. This G22 handle can then be passed to various routines in Chapter G22. In particular, the G22 handle can be passed to $\mathbf{g 2 2} \mathbf{y c f}$ to produce a design matrix or $\mathbf{g 2 2} \mathbf{y d f}$ to produce a vector of column inclusion flags suitable for use with routines in Chapter G02.

2 Specification

Fortran Interface

Subroutine g22yaf (hform, formula, ifail)
Integer, Intent (Inout) : ifail
Character (*), Intent (In) :: formula
Type (c_ptr), Intent (Inout) :: hform

3 Description

3.1 Background

Let D denote a data matrix with n observations on m_{d} independent variables, denoted $V_{1}, V_{2}, \ldots, V_{m_{d}}$. Let y denote a vector of n observations on a dependent variable.
A linear model, \mathcal{M}, as the term is used in this routine, expresses a relationship between the independent variables, V_{j}, and the dependent variable. This relationship can be expressed as a series of additive terms $T_{1}+T_{2}+\ldots$, with each term, T_{t}, representing either a single independent variable V_{j}, called the main effect of V_{j}, or the interaction between two or more independent variables. An interaction term, denoted here using the . operator, allows the effect of an independent variable on the dependent variable to depend on the value of one or more other independent variables. As an example, the three-way interaction between V_{1}, V_{2} and V_{3} is denoted $V_{1} \cdot V_{2}, V_{3}$ and describes a situation where the effect of one of these three variables is influenced by the value of the other two.

This routine takes a description of \mathcal{M}, supplied as a text string containing a formula, and outputs a G22 handle to an internal data structure. This G22 handle can then be passed to $\mathbf{g 2 2 y c f}$ to produce a design matrix for use in analysis routines from other chapters, for example the regression routines of Chapter G02.

A more detailed description of what is meant by a G22 handle can be found in Section 2.1 in the G22 Chapter Introduction.

3.2 Syntax

In its most verbose form \mathcal{M} can be described by one or more variable names, V_{j}, and the two operators, + and .. In order to allow a wide variety of models to be specified compactly this syntax is extended to six operators ($+, ., *,-,:$,) and parentheses.

A formula describing the model is supplied to g22yaf via a character string which must obey the following rules:

1. Variables can be denoted by arbitrary names, as long as
(i) The names used are a subset of those supplied to $\mathbf{g 2 2} \mathbf{y b f}$ when describing D.
(ii) The names do not contain any of the characters in $+. *-:() @$.
2. The . operator denotes an interaction between two or more variables or terms, with $V_{1} \cdot V_{2} \cdot V_{3}$ denoting the three-way interaction between V_{1}, V_{2} and V_{3}.
3. A term in \mathcal{M} can contain one or more variable names, separated using the . operator, i.e., a term can be either a main effect or an interaction term between two or more variables.
(i) If a variable appears in an interaction term more than once, all subsequent appearances, after the first, are ignored, therefore $V_{1} \cdot V_{2} \cdot V_{1}$ is the same as $V_{1} \cdot V_{2}$.
(ii) The ordering of the variables in an interaction term is ignored when comparing terms, therefore $V_{1} . V_{2}$ is the same as $V_{2} . V_{1}$. This ordering may have an effect when the resulting G22 handle is passed to another routine, for example g22ycf.
(iii) Applying the . operator to two terms appends one to the other, for example, if $T_{1}=V_{1} \cdot V_{2}$ and $T_{2}=V_{3} \cdot V_{4}, T_{1} \cdot T_{2}=V_{1} \cdot V_{2} \cdot V_{3} \cdot V_{4}$.
4. The + operator allows additional terms to be included in \mathcal{M}, therefore $T_{1}+T_{2}$ is a model that includes terms T_{1} and T_{2}.
(i) If a term is added to \mathcal{M} more than once, all subsequent appearances, after the first, are ignored, therefore $T_{1}+T_{2}+T_{1}$ is the same as $T_{1}+T_{2}$.
(ii) The ordering of the terms is ignored whilst parsing the formula, therefore $T_{1}+T_{2}$ is the same as $T_{2}+T_{1}$. This ordering may have an effect when the resulting G22 handle is passed to another routine, for example g22ycf.
(iii) Internally, the terms are reordered so that all main effects come first, followed by two-way interactions, then three-way interactions, etc. The ordering within each of these categories is preserved.
5. The $*$ operator can be used as a shorthand notation denoting the main effects and all interactions between the variables involved. Therefore, $T_{1} * T_{2}$ is equivalent to $T_{1}+T_{2}+T_{1} . T_{2}$ and $T_{1} * T_{2} * T_{3}$ is equivalent to $T_{1}+T_{2}+T_{3}+T_{1} \cdot T_{2}+T_{1} \cdot T_{3}+T_{2} \cdot T_{3}+T_{1} \cdot T_{2} \cdot T_{3}$.
6. The - operator removes a term from \mathcal{M}, therefore $T_{1} * T_{2} * T_{3}-T_{1} \cdot T_{2} \cdot T_{3}$ is equivalent to $T_{1}+T_{2}+T_{3}+T_{1} \cdot T_{2}+T_{1} \cdot T_{3}+T_{2} \cdot T_{3}$ as the three-way interaction, $T_{1} \cdot T_{2} \cdot T_{3}$, usually present due to $T_{1} * T_{2} * T_{3}$ has been removed.
7. The : operator is a shorthand way of specifying a series of variables, with $V_{1}: V_{j}$ being equivalent to $V_{1}+V_{2}+\ldots+V_{j}$.
(i) This operator can only be used if the variable names end in a numeric, therefore VAR2 : VAR4 would be valid, but FVAR : LVAR would not.
(ii) The root part of both variable names (i.e., the part before the trailing numeric, so VAR in the valid example above) must be the same.
(iii) The trailing numeric parts of the two variable names must be in ascending order.
8. The operator is a shorthand notation for a series of $*$ operators. $\left(T_{1}+T_{2}+T_{3}\right)^{2}$ is equivalent to $\left(T_{1}+T_{2}+T_{3}\right) *\left(T_{1}+T_{2}+T_{3}\right)$ which in turn is equivalent to $T_{1}+T_{2}+T_{3}+T_{1} \cdot T_{2}+T_{1} \cdot T_{3}+T_{2} \cdot T_{3}$.
(i) This notation is present primarily for use with the : operator in examples of the form, $\left(V_{1}: V_{5}\right)^{3}$ which specifies a model containing the main effects for variables V_{1} to V_{5} as well as all two- and three-way interactions.
(ii) Using the operator on a single term has no effect, therefore $T_{2}{ }^{2}$ is the same as T_{2}.

3.2.1 Precedence

Each operator has an associated default precedence, but this can be overridden through the use of parentheses. The default precedence is:

1. The : operator, with the resulting expression is treated as if it was surrounded by parentheses. Therefore, $V_{1}+V_{3}: V_{6} * V_{7}$ is equivalent to $V_{1}+\left(V_{3}+V_{4}+V_{5}+V_{6}\right) * V_{7}$.
2. The operator, with the resulting expression is treated as if it was surrounded by parentheses. Therefore, $\left(T_{1}+T_{2}+T_{3}\right)^{2} \cdot T_{4}$ is equivalent to $\left(\left(T_{1}+T_{2}+T_{3}\right)^{2}\right) \cdot T_{4}$, which is the equivalent to $T_{1} \cdot T_{4}+T_{2} \cdot T_{4}+T_{3} \cdot T_{4}+T_{1} \cdot T_{2} \cdot T_{4}+T_{1} \cdot T_{3} \cdot T_{4}+T_{2} \cdot T_{3} \cdot T_{4}$.
3. The . operator, so $T_{1} * T_{2} \cdot T_{3}$ is equivalent to $T_{1} *\left(T_{2} \cdot T_{3}\right)$.
4. The $*$ operator.
(i) When using parentheses with the $*$ or . operators the usual rules of multiplication apply, therefore $\left(T_{1}+T_{3} \cdot T_{4}\right) \cdot\left(T_{5}+T_{7}\right)$ is equivalent to $T_{1} \cdot T_{5}+T_{1} \cdot T_{7}+T_{3} \cdot T_{4} \cdot T_{5}+T_{3} \cdot T_{4} \cdot T_{7}$ and $\left(T_{1}+T_{3} \cdot T_{4}\right) *\left(T_{5}+T_{7}\right) \quad$ i s quivalente to $T_{1}+T_{5}+T_{7}+T_{3} \cdot T_{4}+T_{1} \cdot T_{5}+T_{1} \cdot T_{7}+T_{3} \cdot T_{4} \cdot T_{5}+T_{3} \cdot T_{4} \cdot T_{7}$.
(ii) Syntax of the following form is invalid: $T_{1} o\left(T_{2}\right) o T_{3}$, where o indicates an operator, unless one or more of those operators are + and/or - . Therefore, $T_{1} \cdot\left(T_{2}+T_{3}\right) * T_{4}$ is invalid, whilst $T_{1} \cdot\left(T_{2}+T_{3}\right)+T_{4}$ is valid.
5. The + and - operators have equal precedence.
(i) If the terms associated with a - operator do not occur in the current expression they are ignored, therefore $T_{1}+\left(T_{2}-T_{1}\right)$ is the equivalent to $T_{1}+T_{2}$; the $\left(T_{2}-T_{1}\right)$ part of the expression is calculated first and results in T_{2} as the T_{1} term does not exist in this particular sub-expression so cannot be removed.

3.2.2 Mean Effect / Intercept Term

A mean effect (or intercept term) can be explicitly added to a formula by specifying 1 and can be explicitly excluded from the formula by specifying -1 . For example, $1+V_{1}+V_{2}$ indicates a model with the main effects of two variables and a mean effect, whereas $V_{1}+V_{2}-1$ denotes the same model, but without the mean effect. The mean indicator can appear anywhere in the formula string as long as it is not contained within parentheses.
If the mean effect is not explicitly mentioned in the model formula, the model is assumed to include a mean effect.

4 References

None.

5 Arguments

1: hform - Type (c_ptr)
Input/Output
On entry: must be set to c_null_ptr.
As an alternative, an existing G22 handle may be supplied in which case this routine will destroy the supplied G22 handle as if g22zaf had been called.
On exit: holds a G22 handle to the internal data structure containing a description of the model \mathcal{M} as specified in formula. You must not change the G22 handle other than through routines in Chapter G22.

2: \quad formula - Character ${ }^{*}$)
Input
On entry: a string containing the formula specifying \mathcal{M}. See Section 3 for details on the allowed model syntax.

3: ifail - Integer
Input/Output
On entry: ifail must be set to $0,-1$ or 1 . If you are unfamiliar with this argument you should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this argument, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of ifail on exit.

On exit: ifail $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry ifail $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by $\mathbf{x 0 4 a a f}$).
Errors or warnings detected by the routine:
ifail $=11$
On entry, hform is not c_null_ptr or a recognised G22 handle.

ifail $=21$

The formula contained a mismatched parenthesis.
The position in the formula string of the error is $\langle v a l u e\rangle$.

$$
\text { ifail }=22
$$

An operator was missing.
The position in the formula string of the error is \langle value \rangle.

$$
\text { ifail }=23
$$

Invalid use of an operator.
The position in the formula string of the error is \langle value \rangle.

ifail $=24$

Invalid specification for the power operator.
The position in the formula string of the error is \langle value \rangle.

ifail $=25$

Invalid specification for the colon operator.
The position in the formula string of the error is $\langle v a l u e\rangle$.

ifail $=26$

Invalid specification for the mean.
The position in the formula string of the error is \langle value \rangle.
ifail $=27$
Invalid variable name.
The position in the formula string of the error is \langle value \rangle.

$$
\text { ifail }=28
$$

Missing variable name.
The position in the formula string of the error is \langle value \rangle.
ifail $=29$
After processing, the model contains no terms.
ifail $=30$
An invalid contrast specifier has been supplied.
The position in the formula string of the error is $\langle v a l u e\rangle$.

$\mathbf{i f a i l}=31$

A term contained a repeated variable with a different contrast specifier.

ifail $=-99$

An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

ifail $=-399$

Your licence key may have expired or may not have been installed correctly.
See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

ifail $=-999$

Dynamic memory allocation failed.
See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

g22yaf is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads in and parses a formula specifying a model, \mathcal{M}, and displays the processed formula. A data matrix, D, is then read in and a design matrix constructed from D and \mathcal{M} using g22ycf.

The design matrix includes an explicit term for the mean effect.
See also the examples for $\mathbf{g 2 2 y b f}$, g22ycf and g22ydf.

10.1 Program Text

```
Module g22yafe_mod
    G22YAF Example Program Module:
                        Parameters and User-defined Routines
        .. Implicit None Statement ..
        Implicit None
! .. Accessibility Statements ..
        Private
        Public :: read_line
        .. Parameters ..
        Integer, Parameter, Public : : nin = 5, nout = 6
Contains
        Subroutine read_line(v1)
            Read in a line from NIN and remove any comments
```

```
! .. Scalar Arguments ..
    Character (*), Intent (Out) :: v1
    .. Local Scalars ..
    Integer :: pend
    .. Intrinsic Procedures ..
    Intrinsic :: adjustl, index
    .. Executable Statements ..
    Continue
    Read (nin,'(A200)') v1
    pend = index(v1,'::')
    If (pend/=0) Then
        v1 = v1(1:pend-1)
    End If
    v1 = adjustl(v1)
        Return
    End Subroutine read_line
    End Module g22yafe_mod
    Program g22yafe
    G22YAF Example Program Text
    Mark 26.1 Release. NAG Copyright 2016.
    .. Use Statements ..
    Use g22yafe_mod, Only: nin, nout, read_line
    Use, Intrinsic :: iso_c_binding, Only: c_null_ptr, &
                                    c_ptr
    Use nag_library, Only: g22yaf, g22ybf, g22ycf, g22zaf, g22zmf, g22znf
    Use nag_precisions, Only: wp
! .. Implicit None Statement ..
    Implicit None
! .. Local Scalars ..
    Type (c_ptr) :: hddesc, hform, hxdesc
    Real (Kind=wp) :: rvalue
    Integer :: i, ifail, ivalue, lddat, ldx,
    lvnames, mx, nobs, nvar, optype, &
    sddat, sdx
    Character (200) :: cvalue, formula
    .. Local Arrays ..
    Real (Kind=wp), Allocatable :: dat(:,:), x(:,:), y(:)
    Real (Kind=wp) :: tx(0,0)
    Integer, Allocatable :: levels(:)
    Character (50), Allocatable :: vnames(:)
    .. Intrinsic Procedures ..
    Intrinsic :: trim
    .. Executable Statements ..
    Write (nout,*) 'G22YAF Example Program Results'
    Write (nout,*)
    hform = c_null_ptr
    hddesc = c__null_ptr
    hxdesc = c_null_ptr
    Skip heading in data file
    Read (nin,*)
    Read in the model formula, remove comments and parse it
    Call read_line(formula)
    ifail = 0
    Call g22yaf(hform,formula,ifail)
    Extract and display the parsed formula
    ifail = 0
    Call g22znf(hform,'Formula',ivalue,rvalue,cvalue,optype,ifail)
    Write (nout,*) 'Formula: ', trim(cvalue)
    Write (nout,*)
    Read in size of the data matrix and number of variable labels supplied
```

```
    Read (nin,*) nobs, nvar, lvnames
! Read in number of levels and names for the variables
    Allocate (levels(nvar),vnames(lvnames))
    Read (nin,*) levels(1:nvar)
    If (lvnames>0) Then
        Read (nin,*) vnames(1:lvnames)
    End If
! Create a description of the data matrix
    ifail = 0
    Call g22ybf(hddesc,nobs,nvar,levels,lvnames,vnames,ifail)
! Read in the data matrix and response variable
    lddat = nobs
    sddat = nvar
    Allocate (dat(lddat,sddat),y(nobs))
    Read (nin,*)(dat(i,1:nvar),y(i),i=1,nobs)
! We want the design matrix in include an explicit term for the mean effect
    ifail = 0
    Call g22zmf(hform,'Explicit Mean = Yes',ifail)
! Calculate the size of the design matrix
    ldx = 0
    sdx = 0
    ifail = 1
    Call g22ycf(hform,hddesc,dat,lddat,sddat,hxdesc,tx,ldx,sdx,mx,ifail)
    If (ifail/=91) Then
        Redisplay any error messages, other than IFAIL = 91
        ifail = 0
        Call g22ycf(hform,hddesc,dat,lddat,sddat,hxdesc,tx,ldx,sdx,mx,ifail)
    End If
! Generate the design matrix
    ldx = nobs
    sdx = mx
    Allocate (x(ldx,sdx))
    ifail = 0
    Call g22ycf(hform,hddesc,dat,lddat,sddat,hxdesc,x,ldx,sdx,mx,ifail)
! Display the design matrix
    Write (nout,*) 'Design Matrix (X)'
    Do i = 1, nobs
        Write (nout,99999) x(i,1:mx)
    End Do
! Clean-up the G22 handles
    ifail = 0
    Call g22zaf(hform,ifail)
    Call g22zaf(hddesc,ifail)
    Call g22zaf(hxdesc,ifail)
    Deallocate (dat,x,y,levels,vnames)
99999 Format (100(1X,F4.1))
    End Program g22yafe
```


10.2 Program Data

```
G22YAF Example Program Data
(F2 + Con + F1)^2 :: FORMULA
2 5 3 3 ~ : : ~ N O B S , N V A R , L V N A M E S
3 1 :: LEVELS
F1 F2 Con :: VNAMES
3 1 -2.4 1.16
0.2 4.96
3-1.4 -1.67
1 -5.4 -11.80
3 3 0.2 6.03
```

3	2	1.4	11.70
1	2	6.8	33.34
1	2	6.7	31.97
1	1	5.3	23.93
2	3	-1.3	3.17
3	2	-3.6	1.68
3	2	-0.7	8.01
1	1	5.7	26.14
3	3	2.3	11.04
1	2	3.3	20.32
2	3	-0.5	5.62
1	1	-2.6	-6.21
1	2	3.7	22.45
1	2	0.9	10.93
3	1	-1.1	1.59
2	2	2.1	13.55
1	3	4.6	24.16
2	3	4.6	20.70
1	2	5.1	28.30
1	3	0.9	9.69

10.3 Program Results

```
G22YAF Example Program Results
Formula: F2+CON+F1+F2.CON+F2.F1+CON.F1
```

| Design Matrix | (X) | | | | | | | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1.0 | 0.0 | 0.0 | -2.4 | 0.0 | 1.0 | -0.0 | -0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -0.0 | -2.4 |
| 1.0 | 0.0 | 1.0 | 0.2 | 0.0 | 1.0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.2 |
| 1.0 | 0.0 | 1.0 | -1.4 | 0.0 | 0.0 | -0.0 | -1.4 | 0.0 | 0.0 | 0.0 | 0.0 | -0.0 | -0.0 |
| 1.0 | 0.0 | 0.0 | -5.4 | 1.0 | 0.0 | -0.0 | -0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -5.4 | -0.0 |
| 1.0 | 0.0 | 1.0 | 0.2 | 0.0 | 1.0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.2 |
| 1.0 | 1.0 | 0.0 | 1.4 | 0.0 | 1.0 | 1.4 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.4 |
| 1.0 | 1.0 | 0.0 | 6.8 | 0.0 | 0.0 | 6.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.0 | 1.0 | 0.0 | 6.7 | 0.0 | 0.0 | 6.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.0 | 0.0 | 0.0 | 5.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.0 | 0.0 | 1.0 | -1.3 | 1.0 | 0.0 | -0.0 | -1.3 | 0.0 | 0.0 | 1.0 | 0.0 | -1.3 | -0.0 |
| 1.0 | 1.0 | 0.0 | -3.6 | 0.0 | 1.0 | -3.6 | -0.0 | 0.0 | 1.0 | 0.0 | 0.0 | -0.0 | -3.6 |
| 1.0 | 1.0 | 0.0 | -0.7 | 0.0 | 1.0 | -0.7 | -0.0 | 0.0 | 1.0 | 0.0 | 0.0 | -0.0 | -0.7 |
| 1.0 | 0.0 | 0.0 | 5.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.0 | 0.0 | 1.0 | 2.3 | 0.0 | 1.0 | 0.0 | 2.3 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 2.3 |
| 1.0 | 1.0 | 0.0 | 3.3 | 0.0 | 0.0 | 3.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.0 | 0.0 | 1.0 | -0.5 | 1.0 | 0.0 | -0.0 | -0.5 | 0.0 | 0.0 | 1.0 | 0.0 | -0.5 | -0.0 |
| 1.0 | 0.0 | 0.0 | -2.6 | 0.0 | 0.0 | -0.0 | -0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -0.0 | -0.0 |
| 1.0 | 1.0 | 0.0 | 3.7 | 0.0 | 0.0 | 3.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.0 | 1.0 | 0.0 | 0.9 | 0.0 | 0.0 | 0.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.0 | 0.0 | 0.0 | -1.1 | 0.0 | 1.0 | -0.0 | -0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -0.0 | -1.1 |
| 1.0 | 1.0 | 0.0 | 2.1 | 1.0 | 0.0 | 2.1 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 2.1 | 0.0 |
| 1.0 | 0.0 | 1.0 | 4.6 | 0.0 | 0.0 | 0.0 | 4.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.0 | 0.0 | 1.0 | 4.6 | 1.0 | 0.0 | 0.0 | 4.6 | 0.0 | 0.0 | 1.0 | 0.0 | 4.6 | 0.0 |
| 1.0 | 1.0 | 0.0 | 5.1 | 0.0 | 0.0 | 5.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.0 | 0.0 | 1.0 | 0.9 | 0.0 | 0.0 | 0.0 | 0.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |

11 Optional Parameters

As well as the optional parameters common to all G22 handles described in g22zmf and g22znf, a number of additional optional parameters can be specified for a G22 handle holding the description of a model, as returned by $\mathbf{g 2 2} \mathbf{y a f}$ in hform.

Each writeable optional parameter has an associated default value; to set any of them to a non-default value, use g02zkf. The value of any optional parameter can be queried using g22znf.

The remainder of this section can be skipped if you wish to use the default values for all optional parameters.
The following is a list of the optional parameters available. A full description of each optional parameter is provided in Section 11.1.

Contrast

Explicit Mean

Formula

Storage Order

All routines that make use of the G22 handle returned by g22yaf combine it with a description of a data matrix, D, to construct a design matrix, X.

11.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of constraints.

The summary line contains:
a parameter value, where the letters a, i and r denote options that take character, integer and real values respectively;
the default value.
Keywords and character values are case and white space insensitive.

Contrast

$$
a
$$

Default $=$ FIRST
This parameter controls the default contrasts used for the categorical independent variables appearing in the model. Six types of contrasts and dummy variables are available:

FIRST
Treatment contrasts relative to the first level of the variable will be used.

LAST

Treatment contrasts relative to the last level of the variable will be used.

SUM FIRST

Sum contrasts relative to the first level of the variable will be used.

SUM LAST

Sum contrasts relative to the last level of the variable will be used.

HELMERT

Helmert contrasts will be used.

POLYNOMIAL

Polynomial contrasts will be used.

DUMMY

Dummy variables will be used rather than a contrast.
See g22ycf for more information on contrasts, their effect on the design matrix and how they are constructed.

This parameter may have an instance identifier associated with it (see $\mathbf{g 2 2 z m f}$ and $\mathbf{g 2 2 z n f}$). The instance identifier must be the name of one of the variables appearing in the model supplied in formula when the G22 handle was created. For example, CONTRAST:VAR1 = HELMERT would set Helmert contrasts for the variable named VAR1.
If no instance identifier is specified, the default contrast for all categorical variables in the model is changed, otherwise only the default contrast for the named variable is changed.

In some situations it might be necessary for a variable to use a different contrast, depending on where it appears in the model formula. In order to allow contrasts to be specified on a term by term basis the @ operator can be used in the model formula. The syntax for this operator is $V_{j} @ c$, where c is one of: F, L, $S F, S L, H, P$ or D, corresponding to treatment contrasts relative to the first and last levels, sum contrasts relative to the first and last levels, Helmert contrasts, polynomial contrasts or dummy variables respectively.

If the contrast has not been explicitly specified via the @ operator, the value obtained from the optional parameter Contrast is used.
For example, setting formula to VAR1 + VAR1@H.VAR2@P + VAR2@H.VAR3, specifies that the variable named VAR1 should use the default contrasts in the first term and Helmert contrasts in the second term. The variable named VAR2 should use polynomial contrasts in the second term and Helmert contrasts in the third term. The variable named VAR3 should use the default contrasts in the third term.

Constraint: Contrast = FIRST, LAST, SUM FIRST, SUM LAST, HELMERT, POLYNOMIAL or DUMMY.

Explicit Mean

a

Default $=$ NO
If Explicit Mean $=$ YES, any mean effect included in the model will be explicitly added to the design matrix, X, as a column of 1 s .

If Explicit Mean $=$ NO, it is assumed that the routine to which X will be passed treats the mean effect as a special case, see mean in g02daf for example.

Constraint: Explicit Mean $=$ YES or NO.
Formula $\quad a \quad$ Read Only
This parameter returns a verbose version of the model formula specified in formula, expanded and simplified to only contain variable names, the operators + and . and any contrast identifiers present.

Storage Order

a
Default = OBSVAR
This optional parameter controls how the design matrix, X, should be stored in its output array and only has an effect if the design matrix is being constructed using g22ycf.
If Storage Order $=$ OBSVAR, $X_{i j}$, the value for the j th variable of the i th observation of the design matrix is stored in $\mathbf{x}(i, j)$.

If Storage Order $=\mathrm{VAROBS}, X_{i j}$, the value for the j th variable of the i th observation of the design matrix is stored in $\mathbf{x}(j, i)$.
Where \mathbf{x} is the output parameter of the same name in g22ycf.
Constraint: Storage Order $=$ OBSVAR or VAROBS.

