NAG Library Routine Document ### G13BAF Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. ### 1 Purpose G13BAF filters a time series by an ARIMA model. ## 2 Specification ``` SUBROUTINE G13BAF (Y, NY, MR, NMR, PAR, NPAR, CY, WA, NWA, B, NB, IFAIL) INTEGER NY, MR(NMR), NMR, NPAR, NWA, NB, IFAIL REAL (KIND=nag_wp) Y(NY), PAR(NPAR), CY, WA(NWA), B(NB) ``` # 3 Description From a given series y_1, y_2, \ldots, y_n , a new series b_1, b_2, \ldots, b_n is calculated using a supplied (filtering) ARIMA model. This model will be one which has previously been fitted to a series x_t with residuals a_t . The equations defining b_t in terms of y_t are very similar to those by which a_t is obtained from x_t . The only dissimilarity is that no constant correction is applied after differencing. This is because the series y_t is generally distinct from the series x_t with which the model is associated, though y_t may be related to x_t . Whilst it is appropriate to apply the ARIMA model to y_t so as to preserve the same relationship between b_t and a_t as exists between y_t and x_t , the constant term in the ARIMA model is inappropriate for y_t . The consequence is that b_t will not necessarily have zero mean. The equations are precisely: $$w_t = \nabla^d \nabla^D_{\circ} y_t, \tag{1}$$ the appropriate differencing of y_t ; both the seasonal and non-seasonal inverted autoregressive operations are then applied, $$u_t = w_t - \Phi_1 w_{t-s} - \dots - \Phi_P w_{t-s \times P} \tag{2}$$ $$v_t = u_t - \phi_1 u_{t-1} - \dots - \phi_p u_{t-p} \tag{3}$$ followed by the inverted moving average operations $$z_t = v_t + \Theta_1 z_{t-s} + \dots + \Theta_Q z_{t-s \times Q} \tag{4}$$ $$b_t = z_t + \theta_1 b_{t-1} + \dots + \theta_a b_{t-a}. \tag{5}$$ Because the filtered series value b_t depends on present and past values y_t, y_{t-1}, \ldots , there is a problem arising from ignorance of y_0, y_{-1}, \ldots which particularly affects calculation of the early values b_1, b_2, \ldots , causing 'transient errors'. The routine allows two possibilities. (i) The equations (1), (2) and (3) are applied from successively later time points so that all terms on their right-hand sides are known, with v_t being defined for $t = (1 + d + s \times D + s \times P), \ldots, n$. Equations (4) and (5) are then applied over the same range, taking any values on the right-hand side associated with previous time points to be zero. This procedure may still however result in unacceptably large transient errors in early values of b_t . (ii) The unknown values y_0, y_{-1}, \ldots are estimated by backforecasting. This requires that an ARIMA model distinct from that which has been supplied for filtering, should have been previously fitted to y_t . For efficiency, you are asked to supply both this ARIMA model for y_t and a limited number of backforecasts which are prefixed to the known values of y_t . Within the routine further backforecasts of y_t , and the series w_t , u_t , v_t in (1), (2) and (3) are then easily calculated, and a set of linear equations solved for backforecasts of z_t , b_t for use in (4) and (5) in the case that q + Q > 0. Even if the best model for y_t is not available, a very approximate guess such as $$y_t = c + e_t$$ or $$\nabla y_t = e_t$$ can help to reduce the transients substantially. The backforecasts which need to be prefixed to y_t are of length $Q'_y = q_y + s_y \times Q_y$, where q_y and Q_y are the non-seasonal and seasonal moving average orders and s_y the seasonal period for the ARIMA model of y_t . Thus you need not carry out the backforecasting exercise if $Q'_y = 0$. Otherwise, the series y_1, y_2, \ldots, y_n should be reversed to obtain $y_n, y_{n-1}, \ldots, y_1$ and G13AJF should be used to forecast Q'_y values, $\hat{y}_0, \ldots, \hat{y}_{1-Q'_y}$. The ARIMA model used is that fitted to y_t (as a forward series) except that, if $d_y + D_y$ is odd, the constant should be changed in sign (to allow, for example, for the fact that a forward upward trend is a reversed downward trend). The ARIMA model for y_t supplied to the filtering routine must however have the appropriate constant for the forward series. The series $\hat{y}_{1-Q'_y}, \dots, \hat{y}_0, y_1, \dots, y_n$ is then supplied to the routine, and a corresponding set of values returned for b_t . ### 4 References Box G E P and Jenkins G M (1976) *Time Series Analysis: Forecasting and Control* (Revised Edition) Holden-Day ## 5 Arguments 1: Y(NY) - REAL (KIND=nag wp) array Input On entry: the Q_y' backforecasts, starting with backforecast at time $1 - Q_y'$ to backforecast at time 0, followed by the time series starting at time 1, where $Q_y' = \text{MR}(10) + \text{MR}(13) \times \text{MR}(14)$. If there are no backforecasts, either because the ARIMA model for the time series is not known, or because it is known but has no moving average terms, then the time series starts at the beginning of Y. 2: NY – INTEGER Input On entry: the total number of backforecasts and time series data points in array Y. Constraint: NY $$\geq \max(1 + Q'_y, NPAR)$$. 3: MR(NMR) – INTEGER array Input On entry: the orders vector for the filtering model, followed by the orders vector for the ARIMA model for the time series if the latter is known. The orders appear in the standard sequence (p,d,q,P,D,Q,s) as given in the G13 Chapter Introduction. If the ARIMA model for the time series is supplied, then the routine will assume that the first Q_y' values of the array Y are backforecasts. Constraints: the filtering model is restricted in the following ways: MR(1) + MR(3) + MR(4) + MR(6) > 0, i.e., filtering by a model which contains only differencing terms is not permitted; $$MR(k) \ge 0$$, for $k = 1, 2, ..., 7$; if $MR(7) = 0$, $MR(4) + MR(5) + MR(6) = 0$; if $MR(7) \ne 0$, $MR(4) + MR(5) + MR(6) \ne 0$; G13BAF.2 Mark 26 $$MR(7) \neq 1$$. the ARIMA model for the time series is restricted in the following ways: ``` MR(k) \ge 0, for k = 8, 9, ..., 14; if MR(14) = 0, MR(11) + MR(12) + MR(13) = 0; if MR(14) \ne 0, MR(11) + MR(12) + MR(13) \ne 0; MR(14) \ne 1. ``` ### 4: NMR – INTEGER Input On entry: the number of values specified in the array MR. It takes the value 7 if no ARIMA model for the time series is supplied but otherwise it takes the value 14. Thus NMR acts as an indicator as to whether backforecasting can be carried out. Constraint: NMR = 7 or 14. ### 5: PAR(NPAR) - REAL (KIND=nag_wp) array Input On entry: the parameters of the filtering model, followed by the parameters of the ARIMA model for the time series, if supplied. Within each model the parameters are in the standard order of non-seasonal AR and MA followed by seasonal AR and MA. 6: NPAR – INTEGER Input On entry: the total number of parameters held in array PAR. Constraints: ``` if NMR = 7, NPAR = MR(1) + MR(3) + MR(4) + MR(6); if NMR = 14, NPAR = MR(1) + MR(3) + MR(4) + MR(6) + MR(8) + MR(10) + MR(11) + MR(13). ``` **Note:** the first constraint (i.e., MR(1) + MR(3) + MR(4) + MR(6) > 0) on the orders of the filtering model, in argument MR, ensures that NPAR > 0. ### 7: CY - REAL (KIND=nag_wp) Input On entry: if the ARIMA model is known (i.e., NMR = 14), CY must specify the constant term of the ARIMA model for the time series. If this model is not known (i.e., NMR = 7), then CY is not used. Workspace 9: NWA – INTEGER Input On entry: the dimension of the array WA as declared in the (sub)program from which G13BAF is called. Workspace is only required if the ARIMA model for the time series is known. Constraints: let $K = MR(3) + MR(6) \times MR(7) + MR(8) + MR(9) + (MR(11) + MR(12)) \times MR(14)$, then ``` if NMR = 14, NWA \geq K \times (K+2); if NMR = 7, NWA \geq 1. ``` ### 10: $B(NB) - REAL (KIND=nag_wp) array$ Output On exit: the filtered output series. If the ARIMA model for the time series was known, and hence Q'_y backforecasts were supplied in Y, then B contains Q'_y 'filtered' backforecasts followed by the filtered series. Otherwise, the filtered series begins at the start of B just as the original series began at the start of Y. In either case, if the value of the series at time t is held in Y(t), then the filtered value at time t is held in Y(t). 11: NB – INTEGER Input On entry: the dimension of the array B as declared in the (sub)program from which G13BAF is called. In addition to holding the returned filtered series, B is also used as an intermediate work array if the ARIMA model for the time series was known. Constraints: ``` if NMR = 14, NB \geq NY + max(K_3, K_1 + K_2); if NMR = 7, NB > NY. ``` Where ``` K_1 = MR(1) + MR(4) \times MR(7); K_2 = MR(2) + MR(5) \times MR(7); K_3 = MR(3) + MR(6) \times MR(7). ``` #### 12: IFAIL - INTEGER Input/Output On entry: IFAIL must be set to 0, -1 or 1. If you are unfamiliar with this argument you should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details. For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this argument, the recommended value is 0. When the value -1 or 1 is used it is essential to test the value of IFAIL on exit. On exit: IFAIL = 0 unless the routine detects an error or a warning has been flagged (see Section 6). ## 6 Error Indicators and Warnings If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF). Errors or warnings detected by the routine: IFAIL = 1 On entry, NMR \neq 7 and NMR \neq 14. $\mathrm{IFAIL} = 2$ On entry, the orders vector MR does not satisfy the constraints given in Section 5. IFAIL = 3 On entry, NPAR is inconsistent with the contents of MR (see Section 5). IFAIL = 4 On entry, NY is too small to successfully carry out the requested filtering, (see Section 5). IFAIL = 5 On entry, the work array WA is too small. IFAIL = 6 On entry, the array B is too small. IFAIL = 7 The orders vector for the filtering model is invalid. G13BAF.4 Mark 26 IFAIL = 8 The orders vector for the ARIMA model is invalid. (Only occurs if NMR = 14.) IFAIL = 9 The initial values of the filtered series are indeterminate for the given models. IFAIL = -99 An unexpected error has been triggered by this routine. Please contact NAG. See Section 3.9 in How to Use the NAG Library and its Documentation for further information. IFAIL = -399 Your licence key may have expired or may not have been installed correctly. See Section 3.8 in How to Use the NAG Library and its Documentation for further information. IFAIL = -999 Dynamic memory allocation failed. See Section 3.7 in How to Use the NAG Library and its Documentation for further information. ## 7 Accuracy Accuracy and stability are high except when the MA parameters are close to the invertibility boundary. ### 8 Parallelism and Performance G13BAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library. G13BAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information. Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information. ### **9** Further Comments If an ARIMA model is supplied, a local workspace array of fixed length is allocated internally by G13BAF. The total size of this array amounts to K integer elements, where K is the expression defined in the description of the argument WA. The time taken by G13BAF is approximately proportional to $$NY \times (MR(1) + MR(3) + MR(4) + MR(6)),$$ with an appreciable fixed increase if an ARIMA model is supplied for the time series. ### 10 Example This example reads a time series of length 296. It reads the univariate ARIMA (4,0,2,0,0,0,0) model and the ARIMA filtering (3,0,0,0,0,0,0) model for the series. Two initial backforecasts are required and these are calculated by a call to G13AJF. The backforecasts are inserted at the start of the series and G13BAF is called to perform the calculations. ### 10.1 Program Text ``` Program g13bafe G13BAF Example Program Text ! 1 Mark 26 Release. NAG Copyright 2016. .. Use Statements .. Use nag_library, Only: g13ajf, g13baf, nag_wp ! .. Implicit None Statement .. Implicit None ! .. Parameters .. Integer, Parameter :: nin = 5, nout = 6 .. Local Scalars .. :: cx, cy, rms Real (Kind=nag_wp) :: i, idd, ifail, ifv, ii, ij, ipar, & iqxd, ist, iw, nb, nmr, npar, nparx, & Integer nst, nwa, nx, ny, pp, qp, sy ! .. Local Arrays .. \label{eq:Real_condition} \textit{Real (Kind=nag_wp), Allocatable} \quad :: \; \textit{b(:), fsd(:), fva(:), par(:),} parx(:), st(:), w(:), wa(:), x(:), y(:) Integer :: isf(4), mrx(7) :: mr(:) Integer, Allocatable .. Intrinsic Procedures .. Intrinsic :: max, min, mod .. Executable Statements .. Write (nout,*) 'G13BAF Example Program Results' Write (nout,*) Skip heading in data file ! Read (nin,*) Read in the problem size Read (nin,*) nx Read univariate ARIMA for series Read (nin,*) mrx(1:7) Read (nin,*) cx Calculate number of backforecasts required iqxd = mrx(3) + mrx(6)*mrx(7) If (iqxd/=0) Then nmr = 14 Else nmr = 7 End If Back forecasts will be stored in first IQXD elements 1 of Y, the series will be stored in last NX elements of Y, so calculate start point for the series sy = iqxd + 1 Calculate length of series with back forecasts ! ny = nx + iqxd Allocate (y(ny),mr(nmr)) ! Read in the series into the end of Y Read (nin,*) y(sy:ny) Get back forecasts if required If (iqxd/=0) Then Calculate number of parameters in ARIMA model nparx = mrx(1) + mrx(3) + mrx(4) + mrx(6) ist = mrx(4) + mrx(7) + mrx(2) + mrx(5) + mrx(3) + & max(mrx(1),mrx(6)*mrx(7)) ifv = max(1, iqxd) ``` G13BAF.6 Mark 26 ``` qp = mrx(6)*mrx(7) + mrx(3) pp = mrx(4)*mrx(7) + mrx(1) iw = 6*nx + 5*nparx + qp*(qp+11) + 3*pp + 7 Allocate (parx(nparx),x(nx),st(ist),fva(ifv),fsd(ifv),w(iw)) Read in initial values Read (nin,*) parx(1:nparx) Reverse series x(nx:1:-1) = y(sy:ny) Possible sign reversal for ARIMA constant ! idd = mrx(2) + mrx(5) If (mod(idd,2)/=0) Then cx = -cx End If ! Calculate back forecasts ifail = 0 Call g13ajf(mrx,parx,nparx,cx,1,x,nx,rms,st,ist,nst,iqxd,fva,fsd,ifv, & isf,w,iw,ifail) Move back forecasts into Y, in reverse order ! y(1:iqxd) = fva(iqxd:1:-1) Reverse sign for ARIMA constant back again If (mod(idd, 2)/=0) Then CX = -CX End If End If Read model by which to filter series ! Read (nin,*) mr(1:7) Calculate NPAR ipar = mr(1) + mr(3) + mr(4) + mr(6) npar = ipar + nparx Allocate (par(npar)) ! Read in initial parameter values Read (nin,*) par(1:ipar) If (iqxd/=0) Then Move ARIMA series into MR mr(8:14) = mrx(1:7) ! Move parameters of ARIMA for Y into PAR par((ipar+1):(ipar+nparx)) = parx(1:nparx) End If Move constant cy = cx Set parameters for call to filter routine G13BAF If (nmr == 14) Then nwa = mr(3) + mr(6)*mr(7) + mr(8) + mr(9) + (mr(11)+mr(12))*mr(14) nwa = nwa*(nwa+2) nb = ny + max(mr(3)+mr(6)*mr(7), mr(1)+mr(2)+(mr(4)+mr(5))*mr(7)) Else nwa = 1 nb = ny End If Allocate (wa(nwa),b(nb)) Filter series by call to G13BAF ifail = 0 Call g13baf(y,ny,mr,nmr,par,npar,cy,wa,nwa,b,nb,ifail) Display results If (iqxd/=0) Then ``` ``` Write (nout,*)' Original Filtered' Write (nout,*) 'Backforecasts y-series series' ij = -iqxd Do i = 1, iqxd Write (nout,99999) ij, y(i), b(i) ij = ij + 1 End Do Write (nout,*) End If Write (nout,*) Filtered Filtered Filtered Filtered' Write (nout,*) δ series series series series' Do i = iqxd + 1, ny, 4 Write (nout, 99998) (ii-iqxd, b(ii), ii=i, min(ny, i+3)) End Do 99999 Format (1X, I8, F17.4, F15.4) 99998 Format (1X, I5, F9.4, I7, F9.4, I7, F9.4, I7, F9.4) End Program gl3bafe ``` #### 10.2 Program Data ``` G13BAF Example Program Data 296 :: MRX 0 0 0 4 0 0.000 :: CX 53.8 53.6 53.5 53.5 53.4 53.1 52.7 52.4 52.2 52.0 52.0 52.4 53.0 54.0 54.9 56.0 56.8 56.8 56.4 55.7 55.0 54.3 53.2 52.3 51.6 51.2 50.8 50.5 50.0 49.2 48.4 47.9 47.6 47.5 47.5 47.6 48.1 49.0 50.0 51.1 51.8 51.9 51.7 51.2 50.0 48.3 47.0 45.8 45.6 46.0 46.9 47.8 48.2 48.3 47.9 47.2 47.2 48.1 49.4 50.6 51.5 51.6 51.2 50.5 50.1 49.8 49.6 49.4 49.3 49.2 49.3 49.7 50.3 51.3 52.8 54.4 56.0 56.9 57.5 57.3 56.6 56.0 55.4 55.4 56.4 57.2 58.0 58.4 58.4 58.1 57.7 57.0 56.0 54.7 53.2 52.1 51.6 51.0 50.5 50.4 51.0 51.8 52.4 53.0 53.4 53.6 53.7 53.8 53.8 53.8 53.3 53.0 52.9 53.4 54.6 56.4 58.0 59.4 60.2 60.0 59.4 58.4 57.6 56.9 56.4 56.0 55.7 55.3 55.0 54.4 53.7 52.8 51.6 50.6 49.4 48.8 48.5 48.7 49.2 49.8 50.4 50.7 50.9 50.7 50.5 50.4 50.2 50.4 51.2 52.3 53.2 53.9 54.1 54.0 53.6 53.2 53.0 52.8 52.3 51.9 51.6 51.6 51.4 51.2 50.7 50.0 49.4 49.3 49.7 50.6 51.8 53.0 54.0 55.3 55.9 55.9 54.6 53.5 52.4 52.1 52.3 53.0 53.8 54.6 55.4 55.9 55.9 55.2 54.4 53.7 53.6 53.6 53.2 52.5 52.0 51.4 51.0 50.9 52.4 53.5 55.6 58.0 59.5 60.0 60.4 60.5 60.2 59.7 59.0 57.6 56.4 55.2 54.5 54.1 54.1 54.4 55.5 56.2 57.0 57.3 57.4 57.0 56.4 55.9 55.5 55.3 55.2 55.4 56.0 56.5 57.1 57.3 56.8 55.6 55.0 54.1 54.3 55.3 56.4 57.2 57.8 58.3 58.6 58.8 58.8 58.6 58.0 57.4 57.0 56.4 56.3 56.4 56.4 56.0 55.2 54.0 53.0 52.0 51.6 51.6 51.1 50.4 50.0 50.0 52.0 54.0 55.1 54.5 52.8 51.4 50.8 51.2 52.0 52.8 53.8 54.5 54.9 54.9 54.8 54.4 53.7 53.3 52.8 52.6 52.6 53.0 54.3 56.0 57.0 58.0 58.6 58.5 58.3 57.8 57.3 57.0 :: End of Y :: PARX :: MR 1.970 -1.370 0.340 :: PAR ``` ### 10.3 Program Results G13BAF Example Program Results ``` Filtered Original Backforecasts y-series series 49.9807 3.4222 -2 -1 52.6714 3.0809 Filtered Filtered Filtered Filtered series series series series 2.9813 2 2.7803 3 3.7057 4 3.2450 ``` G13BAF.8 Mark 26 | 5 | 3.0760 | 6 | 3.0070 | 7 | 3.0610 | 8 | 3.1720 | |-------------------|--------------------------------------|-------------------|----------------------------|--------------------------|--------------------------------------|-------------------|----------------------------| | 9 | 3.1170 | 10 | 3.0360 | 11 | 3.2580 | 12 | 3.4520 | | 13 | 3.3320 | 14 | 3.6980 | 15 | 3.3140 | 16 | 3.8070 | | 17 | 3.3330 | 18 | 2.9580 | 19 | 3.2800 | 20 | 3.0960 | | 21 | 3.2270 | 22 | 3.0830 | 23 | 2.6410 | 24 | 3.1870 | | 25 | 2.9910 | 26 | 3.1110 | 27 | 2.8460 | 28 | 3.0240 | | 29 | 2.7030 | 30 | 2.6130 | 31 | 2.8060 | 32 | 2.9560 | | 33 | 2.8170 | 34 | 2.8950 | 35 | 2.8510 | 36 | 2.9160 | | 37 | 3.2530 | 38 | 3.3050 | 39 | 3.1830 | 40 | 3.3760 | | 41 | 2.9730 | 42 | 2.8610 | 43 | 3.0490 | 44 | 2.8420 | | 45 | 2.3190 | 46 | 2.3660 | 47 | 2.9410 | 48 | 2.3810 | | 49 | 3.3420 | 50 | 2.9340 | 51 | 3.1800 | 52 | 2.9230 | | 53 | 2.6470 | 54 | 2.8860 | 55 | 2.5310 | 56 | 2.6200 | | 57 | 3.4170 | 58 | 3.4940 | 59 | 3.2590 | 60 | 3.1310 | | 61 | 3.1420 | 62 | 2.6710 | 63 | 2.8990 | 64 | 2.8180 | | 65 | 3.2150 | 66 | 2.8800 | 67 | 2.9610 | 68 | 2.8800 | | 69
73
77 | 3.2130
3.0020
3.2040
3.7260 | 70
74
78 | 2.8930
3.5360
3.1560 | 71
75
79 | 3.1210
3.7520
3.6310 | 72
76
80 | 3.2210
3.5630
2.9380 | | 81 | 3.1480 | 82 | 3.4490 | 83 | 3.1400 | 84 | 3.7380 | | 85 | 4.1200 | 86 | 3.1540 | 87 | 3.7480 | 88 | 3.3280 | | 89 | 3.3640 | 90 | 3.3400 | 91 | 3.3950 | 92 | 3.0720 | | 93 | 3.0050 | 94 | 2.8520 | 95 | 2.7810 | 96 | 3.1950 | | 97 | 3.2490 | 98 | 2.6370 | 99 | 3.0080 | 100 | 3.2410 | | 101 | 3.5570 | 102 | 3.2080 | 103 | 3.0880 | 104 | 3.3980 | | 105 | 3.1660 | 106 | 3.1960 | 107 | 3.2460 | 108 | 3.2870 | | 109 | 3.1590 | 110 | 3.2620 | 111 | 2.7280 | 112 | 3.4130 | | 113 | 3.2190 | 114 | 3.6750 | 115 | 3.8550 | 116 | 4.0100 | | 117 | 3.5380 | 118 | 3.8440 | 119 | 3.4660 | 120 | 3.0640 | | 121
125
129 | 3.4780
3.3630
3.3280 | 122
126
130 | 3.1140
3.2610
2.8730 | 123
127
131 | 3.4000
3.5300
3.3020
3.0800 | 124
128
132 | 3.2400
3.1150
2.8390 | | 133 | 2.6570 | 134 | 3.0260 | 135 | 2.4580 | 136 | 3.2600 | | 137 | 2.8380 | 138 | 3.2150 | 139 | 3.1140 | 140 | 3.1050 | | 141 | 3.1400 | 142 | 2.9100 | 143 | 3.1370 | 144 | 2.7500 | | 145 | 3.1160 | 146 | 3.0680 | 147 | 2.8590 | 148 | 3.3840 | | 149 | 3.5500 | 150 | 3.4160 | 151 | 3.1770 | 152 | 3.3390 | | 153 | 3.0190 | 154 | 3.1780 | 155 | 3.0110 | 156 | 3.1940 | | 157 | 3.2680 | 158 | 3.0500 | 159 | 2.8060 | 160 | 3.1850 | | 161 | 3.0560 | 162 | 3.2690 | 163 | 2.7940 | 164 | 3.0900 | | 165 | 2.7100 | 166 | 2.7890 | 167 | 2.9510 | 168 | 3.2440 | | 169 | 3.2570 | 170 | 3.4360 | 171 | 3.4450 | 172 | 3.3780 | | 173 | 3.3520 | 174 | 3.9180 | 175 | 2.9190 | 176 | 3.1780 | | 177 | 2.2580 | 178 | 3.5150 | 179 | 2.8010 | 180 | 3.6030 | | 181 | 3.2610 | 182 | 3.5300 | 183 | 3.3270 | 184 | 3.4420 | | 185 | 3.5240 | 186 | 3.2720 | 187 | 3.1110 | 188 | 2.8240 | | 189 | 3.2330 | 190 | 3.1500 | 191 | 3.5710 | 192 | 3.0810 | | 193 | 2.7820 | 194 | 2.9040 | 195 | 3.2350 | 196 | 2.7970 | | 197 | 3.1320 | 198 | 3.1680 | 199 | 4.5210 | 200 | 2.6650 | | 201 | 4.6870 | 202 | 3.9470 | 203 | 3.2220 | 204 | 3.3410 | | 205 | 3.9950 | 206 | 3.4820 | 207 | 3.3630 | 208 | 3.4550 | | 209 | 3.2950 | 210 | 2.6910 | 211 | 3.4600 | 212 | 2.9440 | | 213 | 3.4400 | 214 | 3.1830 | 215 | 3.4200 | 216 | 3.4100 | | 217 | 4.0550 | 218 | 2.9990 | 219 | 3.8250 | 220 | 3.1340 | | 221 | 3.5010 | 222 | 3.0430 | 223 | 3.2660 | 224 | 3.3660 | | 225 | 3.2650 | 226 | 3.3720 | 227 | 3.2880 | 228 | 3.5470 | | 229 | 3.6840 | 230 | 3.3100 | 231 | 3.6790 | 232 | 3.1780 | | 233 | 2.9360 | 234 | 2.7910 | 235 | 3.8020 | 236 | 2.6100 | | 237 | 4.1690 | 238 | 3.7460 | 239 | 3.4560 | 240 | 3.3910 | | 241 | 3.5820 | 242 | 3.6220 | 243 | 3.4870 | 244 | 3.5770 | | 245 | 3.4240 | 246 | 3.3960 | 247 | 3.1220 | 248 | 3.4300 | | 249 | 3.4580 | 250 | 3.0280 | 251 | 3.7660 | 252 | 3.3770 | | 253
257
261 | 3.2470
3.2040
2.4600 | 254
258
262 | 3.0180
2.8020
2.8810 | 255
255
259
263 | 2.9720
3.4100
3.1750 | 256
260
264 | 2.8000
3.1680
3.1740 | | 265 | 4.8640 | 266 | 3.0600 | 267 | 2.9600 | 268 | 2.2530 | | 269 | 2.5620 | 270 | 3.3150 | 271 | 3.3480 | 272 | 3.5900 | | 273 | 3.2560 | 274 | 3.2320 | 275 | 3.6160 | 276 | 3.1700 | | 277 | 3.2890 | 278 | 3.1200 | 279 | 3.3300 | 280 | 2.9910 | | |-----|--------|-----|--------|-----|--------|-----|--------|--| | 281 | 2.9420 | 282 | 3.4070 | 283 | 2.8720 | 284 | 3.3470 | | | 285 | 3.1920 | 286 | 3.4880 | 287 | 4.0680 | 288 | 3.7550 | | | 289 | 3.0510 | 290 | 3.9680 | 291 | 3.3900 | 292 | 3.1380 | | | 293 | 3.6170 | 294 | 3.1700 | 295 | 3.4150 | 296 | 3.4830 | | G13BAF.10 (last) Mark 26