
NAG Library Chapter Introduction

F11 – Large Scale Linear Systems

Contents

1 Scope of the Chapter . 2

2 Background to the Problems. 2

2.1 Sparse Matrices and Their Storage . 2

2.1.1 Coordinate storage (CS) format . 2
2.1.2 Symmetric coordinate storage (SCS) format . 3
2.1.3 Compressed column storage (CCS) format . 3

2.2 Direct Methods . 3

2.3 Iterative Methods . 4

2.4 Iterative Methods for Real Nonsymmetric and Complex Non-Hermitian Linear
Systems . 4

2.5 Iterative Methods for Real Symmetric and Complex Hermitian Linear Systems . . . 6

3 Recommendations on Choice and Use of Available Routines. 7

3.1 Types of Routine Available. 7

3.2 Iterative Methods for Real Nonsymmetric and Complex Non-Hermitian Linear
Systems . 7

3.3 Iterative Methods for Real Symmetric and Complex Hermitian Linear Systems . . . 8

3.4 Direct Methods . 9

4 Decision Tree . 11

5 Functionality Index . 11

6 Auxiliary Routines Associated with Library Routine Arguments 13

7 Routines Withdrawn or Scheduled for Withdrawal . 13

8 References . 13

F11 – Large Scale Linear Systems Introduction – F11

Mark 26 F11.1

1 Scope of the Chapter

This chapter provides routines for the solution of large sparse systems of simultaneous linear equations.
These include iterative methods for real nonsymmetric and symmetric, complex non-Hermitian and
Hermitian linear systems and direct methods for general real linear systems. Further direct methods are
currently available in Chapters F01 and F04.

2 Background to the Problems

This section is only a brief introduction to the solution of sparse linear systems. For a more detailed
discussion see for example Duff et al. (1986) and Demmel et al. (1999) for direct methods, or Barrett et
al. (1994) for iterative methods.

2.1 Sparse Matrices and Their Storage

A matrix A may be described as sparse if the number of zero elements is sufficiently large that it is
worthwhile using algorithms which avoid computations involving zero elements.

If A is sparse, and the chosen algorithm requires the matrix coefficients to be stored, a significant
saving in storage can often be made by storing only the nonzero elements. A number of different
formats may be used to represent sparse matrices economically. These differ according to the amount of
storage required, the amount of indirect addressing required for fundamental operations such as matrix-
vector products, and their suitability for vector and/or parallel architectures. For a survey of some of
these storage formats see Barrett et al. (1994).

Some of the routines in this chapter have been designed to be independent of the matrix storage format.
This allows you to choose your own preferred format, or to avoid storing the matrix altogether. Other
routines are the so-called Black Boxes, which are easier to use, but are based on fixed storage formats.
Three fixed storage formats for sparse matrices are currently used. These are known as coordinate
storage (CS) format, symmetric coordinate storage (SCS) format and compressed column storage (CCS)
format.

2.1.1 Coordinate storage (CS) format

This storage format represents a sparse matrix A, with NNZ nonzero elements, in terms of three one-
dimensional arrays – a real or complex array A and two integer arrays IROW and ICOL. These arrays
are all of dimension at least NNZ. A contains the nonzero elements themselves, while IROW and ICOL
store the corresponding row and column indices respectively.

For example, the matrix

A ¼
1 2 �1 �1 �3
0 �1 0 0 �4
3 0 0 0 2
2 0 4 1 1

�2 0 0 0 1

0
BBB@

1
CCCA

might be represented in the arrays A, IROW and ICOL as

A ¼ 1; 2;�1;�1;�3;�1;�4; 3; 2; 2; 4; 1; 1;�2; 1ð Þ
IROW ¼ 1; 1; 1; 1; 1; 2; 2; 3; 3; 4; 4; 4; 4; 5; 5ð Þ
ICOL ¼ 1; 2; 3; 4; 5; 2; 5; 1; 5; 1; 3; 4; 5; 1; 5ð Þ.

Notes

(i) The general format specifies no ordering of the array elements, but some routines may impose a
specific ordering. For example, the nonzero elements may be required to be ordered by increasing
row index and by increasing column index within each row, as in the example above. Utility
routines are provided to order the elements appropriately (see Section 2.2).

(ii) With this storage format it is possible to enter duplicate elements. These may be interpreted in
various ways (e.g., raising an error, ignoring all but the first entry, all but the last, or summing).

Introduction – F11 NAG Library Manual

F11.2 Mark 26

2.1.2 Symmetric coordinate storage (SCS) format

This storage format is suitable for symmetric and Hermitian matrices, and is identical to the CS format
described in Section 2.1.1, except that only the lower triangular nonzero elements are stored. Thus, for
example, the matrix

A ¼

4 1 0 0 �1 2
1 5 0 2 0 0
0 0 2 1 0 �1
0 2 1 3 1 0

�1 0 0 1 4 0
2 0 �1 0 0 3

0
BBBBB@

1
CCCCCA

might be represented in the arrays A, IROW and ICOL as

A ¼ 4; 1; 5; 2; 2; 1; 3;�1; 1; 4; 2;�1; 3ð Þ.
IROW ¼ 1; 2; 2; 3; 4; 4; 4; 5; 5; 5; 6; 6; 6ð Þ,
ICOL ¼ 1; 1; 2; 3; 2; 3; 4; 1; 4; 5; 1; 3; 6ð Þ.

2.1.3 Compressed column storage (CCS) format

This storage format also uses three one-dimensional arrays – a real or complex array A and two integer
arrays IROWIX and ICOLZP. The array A and IROWIX are of dimension at least nnz, while ICOLZP
is of dimension at least Nþ 1. A contains the nonzero elements, going down the first column, then the
second and so on. For example, the matrix in Section 2.1.1 above will be represented by

A ¼ 1; 3; 2;�2; 2;�1;�1; 4;�1; 1;�3;�4; 2; 1; 1ð Þ.
IROWIX records the row index for each entry in A, so the same matrix will have

IROWIX ¼ 1; 3; 4; 5; 1; 2; 1; 4; 1; 4; 1; 2; 3; 4; 5ð Þ.
ICOLZP records the index into A which starts each new column. The last entry of ICOLZP is equal to
nnz þ 1. An empty column (one filled with zeros, that is) is signalled by an index that is the same as
the next non-empty column, or nnz þ 1 if all subsequent columns are empty. The above example
corresponds to

ICOLZP ¼ 1; 5; 7; 9; 11; 16ð Þ
The example in Section 2.1.2 above will be represented by

A ¼ 4; 1;�1; 2; 1; 5; 2; 2; 1;�1; 2; 1; 3; 1;�1; 1; 4; 2;�1; 3ð Þ
IROWIX ¼ 1; 2; 5; 6; 1; 2; 4; 3; 4; 6; 2; 3; 4; 5; 1; 4; 5; 1; 3; 6ð Þ
ICOLZP ¼ 1; 5; 8; 11; 15; 18; 21ð Þ

2.2 Direct Methods

Direct methods for the solution of the linear algebraic system

Ax ¼ b ð1Þ
aim to determine the solution vector x in a fixed number of arithmetic operations, which is determined
a priori by the number of unknowns. For example, an LU factorization of A followed by forward and
backward substitution is a direct method for (1).

If the matrix A is sparse it is possible to design direct methods which exploit the sparsity pattern and
are therefore much more computationally efficient than the algorithms in Chapter F07, which in general
take no account of sparsity. However, if the matrix is very large and sparse, then iterative methods,
with an appropriate preconditioner, (see Section 2.3) may be more efficient still.

This chapter provides a direct LU factorization method for sparse real systems. This method is based on
special coding for supernodes, broadly defined as groups of consecutive columns with the same nonzero
structure, which enables use of dense BLAS kernels. The algorithms contained here come from the
SuperLU software suite (see Demmel et al. (1999)). An important requirement of sparse LU

F11 – Large Scale Linear Systems Introduction – F11

Mark 26 F11.3

factorization is keeping the factors as sparse as possible. It is well known that certain column orderings
can produce much sparser factorizations than the normal left-to-right ordering. It is well worth the
effort, then, to find such column orderings since they reduce both storage requirements of the factors,
the time taken to compute them and the time taken to solve the linear system. The row reorderings,
demanded by partial pivoting in order to keep the factorization stable, can further complicate the choice
of the column ordering, but quite good and fast algorithms have been developed to make possible a
fairly reliable computation of an appropriate column ordering for any sparsity pattern. We provide one
such algorithm (known in the literature as COLAMD) through one routine in the suite. Similar to the
case for dense matrices, routines are provided to compute the LU factorization with partial row pivoting
for numerical stability, solve (1) by performing the forward and backward substitutions for multiple
right hand side vectors, refine the solution, minimize the backward error and estimate the forward error
of the solutions, compute norms, estimate condition numbers and perform diagnostics of the
factorization. It is also possible to explicitly construct, column by column, the dense inverse of the
matrix by solving equation (1) for right hand sides corresponding to columns of the identity matrix.
Blocks of dense columns can be handled at one time and then stored in some chosen sparse format, as
system memory allows. For more details see Section 3.4.

It is also possible to use iterative method routines in this chapter to compute a direct factorization. Such
methods are available for sparse real nonsymmetric, complex non-Hermitian, real symmetric positive
definite and complex Hermitian positive definite systems. Further direct methods may be found in
Chapters F01, F04 and F07.

2.3 Iterative Methods

In contrast to the direct methods discussed in Section 2.2, iterative methods for (1) approach the
solution through a sequence of approximations until some user-specified termination criterion is met or
until some predefined maximum number of iterations has been reached. The number of iterations
required for convergence is not generally known in advance, as it depends on the accuracy required, and
on the matrix A – its sparsity pattern, conditioning and eigenvalue spectrum.

Faster convergence can often be achieved using a preconditioner (see Golub and Van Loan (1996) and
Barrett et al. (1994)). A preconditioner maps the original system of equations onto a different system

�A�x ¼ �b; ð2Þ
which hopefully exhibits better convergence characteristics. For example, the condition number of the
matrix �A may be better than that of A, or it may have eigenvalues of greater multiplicity.

An unsuitable preconditioner or no preconditioning at all may result in a very slow rate or lack of
convergence. However, preconditioning involves a trade-off between the reduction in the number of
iterations required for convergence and the additional computational costs per iteration. Setting up a
preconditioner may also involve non-negligible overheads. The application of preconditioners to real
nonsymmetric, complex non-Hermitian, real symmetric and complex Hermitian and real symmetric
systems of equations is further considered in Sections 2.4 and 2.5.

2.4 Iterative Methods for Real Nonsymmetric and Complex Non-Hermitian Linear
Systems

Many of the most effective iterative methods for the solution of (1) lie in the class of non-stationary
Krylov subspace methods (see Barrett et al. (1994)). For real nonsymmetric and complex non-
Hermitian matrices this class includes:

the restarted generalized minimum residual (RGMRES) method (see Saad and Schultz (1986));

the conjugate gradient squared (CGS) method (see Sonneveld (1989));

the polynomial stabilized bi-conjugate gradient (Bi-CGSTAB ‘ð Þ) method (see Van der Vorst
(1989) and Sleijpen and Fokkema (1993));

the transpose-free quasi-minimal residual method (TFQMR) (see Freund and Nachtigal (1991)
and Freund (1993)).

Here we just give a brief overview of these algorithms as implemented in this chapter. For full details
see the routine documents for F11BDF and F11BRF.

Introduction – F11 NAG Library Manual

F11.4 Mark 26

RGMRES is based on the Arnoldi method, which explicitly generates an orthogonal basis for the
Krylov subspace span Akr0

� �
, k ¼ 0; 1; 2; . . . , where r0 is the initial residual. The solution is then

expanded onto the orthogonal basis so as to minimize the residual norm. For real nonsymmetric and
complex non-Hermitian matrices the generation of the basis requires a ‘long’ recurrence relation,
resulting in prohibitive computational and storage costs. RGMRES limits these costs by restarting the
Arnoldi process from the latest available residual every m iterations. The value of m is chosen in
advance and is fixed throughout the computation. Unfortunately, an optimum value of m cannot easily
be predicted.

CGS is a development of the bi-conjugate gradient method where the nonsymmetric Lanczos method is
applied to reduce the coefficient matrix to tridiagonal form: two bi-orthogonal sequences of vectors are
generated starting from the initial residual r0 and from the shadow residual r̂0 corresponding to the
arbitrary problem AHx̂ ¼ b̂, where b̂ is chosen so that r0 ¼ r̂0. In the course of the iteration, the residual
and shadow residual ri ¼ Pi Að Þr0 and r̂i ¼ Pi A

Hð Þr̂0 are generated, where Pi is a polynomial of order i,
a n d b i - o r t h o g o n a l i t y i s e x p l o i t e d b y c o m p u t i n g t h e v e c t o r p r o d u c t
�i ¼ r̂i; rið Þ ¼ Pi A

Hð Þr̂0Pi Að Þr0ð Þ ¼ r̂0; P
2
i Að Þr0

� �
. Applying the ‘contraction’ operator Pi Að Þ twice,

the iteration coefficients can still be recovered without advancing the solution of the shadow problem,
which is of no interest. The CGS method often provides fast convergence; however, there is no reason
why the contraction operator should also reduce the once reduced vector Pi Að Þr0: this can lead to a
highly irregular convergence.

Bi-CGSTAB ‘ð Þ is similar to the CGS method. However, instead of generating the sequence P 2
i Að Þr0

� �
,

it generates the sequence Qi Að ÞPi Að Þr0f g where the Qi Að Þ are polynomials chosen to minimize the
residual after the application of the contraction operator Pi Að Þ. Two main steps can be identified for
each iteration: an OR (Orthogonal Residuals) step where a basis of order ‘ is generated by a Bi-CG
iteration and an MR (Minimum Residuals) step where the residual is minimized over the basis
generated, by a method similar to GMRES. For ‘ ¼ 1, the method corresponds to the Bi-CGSTAB
method of Van der Vorst (1989). For ‘ > 1, more information about complex eigenvalues of the
iteration matrix can be taken into account, and this may lead to improved convergence and robustness.
However, as ‘ increases, numerical instabilities may arise.

The transpose-free quasi-minimal residual method (TFQMR) (see Freund and Nachtigal (1991) and
Freund (1993)) is conceptually derived from the CGS method. The residual is minimized over the space
of the residual vectors generated by the CGS iterations under the simplifying assumption that residuals
are almost orthogonal. In practice, this is not the case but theoretical analysis has proved the validity of
the method. This has the effect of remedying the rather irregular convergence behaviour with wild
oscillations in the residual norm that can degrade the numerical performance and robustness of the CGS
method. In general, the TFQMR method can be expected to converge at least as fast as the CGS
method, in terms of number of iterations, although each iteration involves a higher operation count.
When the CGS method exhibits irregular convergence, the TFQMR method can produce much
smoother, almost monotonic convergence curves. However, the close relationship between the CGS and
TFQMR method implies that the overall speed of convergence is similar for both methods. In some
cases, the TFQMR method may converge faster than the CGS method.

Faster convergence can usually be achieved by using a preconditioner. A left preconditioner M�1 can
be used by the RGMRES, CGS and TFQMR methods, such that �A ¼ M�1A � In in (2), where In is the
identity matrix of order n; a right preconditioner M�1 can be used by the Bi-CGSTAB ‘ð Þ method, such
that �A ¼ AM�1 � In. These are formal definitions, used only in the design of the algorithms; in
practice, only the means to compute the matrix-vector products v ¼ Au and v ¼ AHu (the latter only
being required when an estimate of Ak k1 or Ak k1 is computed internally), and to solve the
preconditioning equations Mv ¼ u are required, that is, explicit information about M, or its inverse is
not required at any stage.

Preconditioning matrices M are typically based on incomplete factorizations (see Meijerink and Van der
Vorst (1981)), or on the approximate inverses occurring in stationary iterative methods (see Young
(1971)). A common example is the incomplete LU factorization

M ¼ PLDUQ ¼ A�R

where L is lower triangular with unit diagonal elements, D is diagonal, U is upper triangular with unit
diagonals, P and Q are permutation matrices, and R is a remainder matrix. A zero-fill incomplete LU

F11 – Large Scale Linear Systems Introduction – F11

Mark 26 F11.5

factorization is one for which the matrix

S ¼ P LþDþ Uð ÞQ
has the same pattern of nonzero entries as A. This is obtained by discarding any fill elements (nonzero
elements of S arising during the factorization in locations where A has zero elements). Allowing some
of these fill elements to be kept rather than discarded generally increases the accuracy of the
factorization at the expense of some loss of sparsity. For further details see Barrett et al. (1994).

2.5 Iterative Methods for Real Symmetric and Complex Hermitian Linear Systems

Three of the best known iterative methods applicable to real symmetric and complex Hermitian linear
systems are the conjugate gradient (CG) method (see Hestenes and Stiefel (1952) and Golub and Van
Loan (1996)) and Lanczos type methods based on SYMMLQ and MINRES (see Paige and Saunders
(1975)). The description of these methods given below is for the real symmetric cases. The
generalization to complex Hermitian matrices is straightforward.

For the CG method the matrix A should ideally be positive definite. The application of CG to indefinite
matrices may lead to failure, or to lack of convergence. The SYMMLQ and MINRES methods are
suitable for both positive definite and indefinite symmetric matrices. They are more robust than CG, but
less efficient when A is positive definite.

The methods start from the residual r0 ¼ b�Ax0, where x0 is an initial estimate for the solution (often
x0 ¼ 0), and generate an orthogonal basis for the Krylov subspace span Akr0

� �
, for k ¼ 0; 1; . . ., by

means of three-term recurrence relations (see Golub and Van Loan (1996)). A sequence of symmetric
tridiagonal matrices Tkf g is also generated. Here and in the following, the index k denotes the iteration
count. The resulting symmetric tridiagonal systems of equations are usually more easily solved than the
original problem. A sequence of solution iterates xkf g is thus generated such that the sequence of the
norms of the residuals rkk kf g converges to a required tolerance. Note that, in general, the convergence
is not monotonic.

In exact arithmetic, after n iterations, this process is equivalent to an orthogonal reduction of A to
symmetric tridiagonal form, Tn ¼ QTAQ; the solution xn would thus achieve exact convergence. In
finite-precision arithmetic, cancellation and round-off errors accumulate causing loss of orthogonality.
These methods must therefore be viewed as genuinely iterative methods, able to converge to a solution
within a prescribed tolerance.

The orthogonal basis is not formed explicitly in either method. The basic difference between the
methods lies in the method of solution of the resulting symmetric tridiagonal systems of equations: the
CG method is equivalent to carrying out an LDLT (Cholesky) factorization whereas the Lanczos
method (SYMMLQ) uses an LQ factorization. The MINRES method on the other hand minimizes the
residual into 2-norm.

A preconditioner for these methods must be symmetric and positive definite, i.e., representable by
M ¼ EET, where M is nonsingular, and such that �A ¼ E�1AE�T � In in (2), where In is the identity
matrix of order n. These are formal definitions, used only in the design of the algorithms; in practice,
only the means to compute the matrix-vector products v ¼ Au and to solve the preconditioning
equations Mv ¼ u are required.

Preconditioning matrices M are typically based on incomplete factorizations (see Meijerink and Van der
Vorst (1977)), or on the approximate inverses occurring in stationary iterative methods (see Young
(1971)). A common example is the incomplete Cholesky factorization

M ¼ PLDLTP T ¼ A�R

where P is a permutation matrix, L is lower triangular with unit diagonal elements, D is diagonal and
R is a remainder matrix. A zero-fill incomplete Cholesky factorization is one for which the matrix

S ¼ P LþDþ LT
� �

PT

has the same pattern of nonzero entries as A. This is obtained by discarding any fill elements (nonzero
elements of S arising during the factorization in locations where A has zero elements). Allowing some
of these fill elements to be kept rather than discarded generally increases the accuracy of the
factorization at the expense of some loss of sparsity. For further details see Barrett et al. (1994).

Introduction – F11 NAG Library Manual

F11.6 Mark 26

3 Recommendations on Choice and Use of Available Routines

3.1 Types of Routine Available

The direct method routines available in this chapter largely follow the LAPACK scheme in that four
different routines separately handle the tasks of factorizing, solving, refining and condition number
estimating. See Section 3.4.

The iterative method routines available in this chapter divide essentially into three types: basic routines,
utility routines and Black Box routines.

Basic routines are grouped in suites of three, and implement the underlying iterative method. Each
suite comprises a setup routine, a solver, and a routine to return additional information. The solver
routine is independent of the matrix storage format (indeed the matrix need not be stored at all) and the
type of preconditioner. It uses reverse communication (see Section 3.3.3 in How to Use the NAG
Library and its Documentation for further information), i.e., it returns repeatedly to the calling program
with the argument IREVCM set to specified values which require the calling program to carry out a
specific task (either to compute a matrix-vector product or to solve the preconditioning equation), to
signal the completion of the computation or to allow the calling program to monitor the solution.
Reverse communication has the following advantages.

(i) Maximum flexibility in the representation and storage of sparse matrices. All matrix operations are
performed outside the solver routine, thereby avoiding the need for a complicated interface with
enough flexibility to cope with all types of storage schemes and sparsity patterns. This also applies
to preconditioners.

(ii) Enhanced user interaction: you can closely monitor the solution and tidy or immediate termination
can be requested. This is useful, for example, when alternative termination criteria are to be
employed or in case of failure of the external routines used to perform matrix operations.

At present there are suites of basic routines for real symmetric and nonsymmetric systems, and for
complex Hermitian and non-Hermitian systems.

Utility routines perform such tasks as initializing the preconditioning matrix M, solving linear systems
involving M, or computing matrix-vector products, for particular preconditioners and matrix storage
formats. Used in combination, basic routines and utility routines therefore provide iterative methods
with a considerable degree of flexibility, allowing you to select from different termination criteria,
monitor the approximate solution, and compute various diagnostic parameters. The tasks of computing
the matrix-vector products and dealing with the preconditioner are removed from you, but at the
expense of sacrificing some flexibility in the choice of preconditioner and matrix storage format.

Black Box routines call basic and utility routines in order to provide easy-to-use routines for particular
preconditioners and sparse matrix storage formats. They are much less flexible than the basic routines,
but do not use reverse communication, and may be suitable in many simple cases.

The structure of this chapter has been designed to cater for as many types of application as possible. If
a Black Box routine exists which is suitable for a given application you are recommended to use it. If
you then decide you need some additional flexibility it is easy to achieve this by using basic and utility
routines which reproduce the algorithm used in the Black Box, but allow more access to algorithmic
control parameters and monitoring. If you wish to use a preconditioner or storage format for which no
utility routines are provided, you must call basic routines, and provide your own utility routines.

3.2 Iterative Methods for Real Nonsymmetric and Complex Non-Hermitian Linear
Systems

The suite of basic routines F11BDF, F11BEF and F11BFF implements either RGMRES, CGS, Bi-
CGSTAB ‘ð Þ, or TFQMR, for the iterative solution of the real sparse nonsymmetric linear system
Ax ¼ b. These routines allow a choice of termination criteria and the norms used in them, allow
monitoring of the approximate solution, and can return estimates of the norm of A and the largest
singular value of the preconditioned matrix �A.

In general, it is not possible to recommend one of these methods (RGMRES, CGS, Bi-CGSTAB ‘ð Þ, or
TFQMR) in preference to another. RGMRES is popular, but requires the most storage, and can easily
stagnate when the size m of the orthogonal basis is too small, or the preconditioner is not good enough.

F11 – Large Scale Linear Systems Introduction – F11

Mark 26 F11.7

CGS can be the fastest method, but the computed residuals can exhibit instability which may greatly
affect the convergence and quality of the solution. Bi-CGSTAB ‘ð Þ seems robust and reliable, but it can
be slower than the other methods. TFQMR can be viewed as a more robust variant of the CGS method:
it shares the CGS method speed but avoids the CGS fluctuations in the residual, which may give, rise to
instability. Some further discussion of the relative merits of these methods can be found in Barrett et al.
(1994).

The utility routines provided for real nonsymmetric matrices use the coordinate storage (CS) format
described in Section 2.1.1. F11DAF computes a preconditioning matrix based on incomplete LU
factorization, and F11DBF solves linear systems involving the preconditioner generated by F11DAF.
The amount of fill-in occurring in the incomplete factorization can be controlled by specifying either
the level of fill, or the drop tolerance. Partial or complete pivoting may optionally be employed, and the
factorization can be modified to preserve row-sums.

F11DFF is a generalization of F11DAF. It computes incomplete LU factorizations on a set of (possibly
overlapping) block diagonal matrices, using a prescribed block structure, to provide a block Jacobi or
additive Schwartz preconditioner. To solve the linear system defined by the preconditioner generated by
F11DFF, a sequence of calls to F11DBF (one for each block) would be required.

F11DDF is similar to F11DBF, but solves linear systems involving the preconditioner corresponding to
symmetric successive-over-relaxation (SSOR). The value of the relaxation parameter ! must currently
be supplied by you. Automatic procedures for choosing ! will be included in the chapter at a future
mark.

F11DKF applies the iterated Jacobi method to a symmetric or nonsymmetric system of linear equations
and can be used as a preconditioner. However, the domain of validity of the Jacobi method is rather
restricted; you should read the routine document for F11DKF before using it.

F11XAF computes matrix-vector products for real nonsymmetric matrices stored in ordered CS format.
An additional utility routine F11ZAF orders the nonzero elements of a real sparse nonsymmetric matrix
stored in general CS format. The same routine can be used to convert a matrix from CS format to CCS
format.

The Black Box routine F11DCF makes calls to F11BDF, F11BEF, F11BFF, F11DBF and F11XAF, to
solve a real sparse nonsymmetric linear system, represented in CS format, using RGMRES, CGS, Bi-
CGSTAB ‘ð Þ, or TFQMR, with incomplete LU preconditioning. F11DEF is similar, but has options for
no preconditioning, Jacobi preconditioning or SSOR preconditioning. F11DGF is also similar to
F11DCF, but uses block Jacobi or additive Schwartz preconditioning.

For complex non-Hermitian sparse matrices there is an equivalent suite of routines. F11BRF, F11BSF
and F11BTF are the basic routines which implement the same methods used for real nonsymmetric
systems, namely RGMRES, CGS, Bi-CGSTAB ‘ð Þ and TFQMR, for the solution of complex sparse non-
Hermitian linear systems. F11DNF and F11DPF are the complex equivalents of F11DAF and F11DBF,
respectively, providing facilities for implementing ILU preconditioning. F11DRF and F11DTF
implement complex versions of the SSOR and block Jacobi (or additive Schwartz) preconditioners,
respectively. F11DXF implements a complex version of the iterated Jacobi preconditioner. Utility
routines F11XNF and F11ZNF are provided for computing matrix-vector products and sorting the
elements of complex sparse non-Hermitian matrices, respectively. Finally, the Black Box routines
F11DQF, F11DSF and F11DUF are complex equivalents of F11DCF, F11DEF and F11DFF,
respectively.

3.3 Iterative Methods for Real Symmetric and Complex Hermitian Linear Systems

The suite of basic routines F11GDF, F11GEF and F11GFF implement either the conjugate gradient
(CG) method, or a Lanczos method based on SYMMLQ, for the iterative solution of the real sparse
symmetric linear system Ax ¼ b. If A is known to be positive definite the CG method should be
chosen; the Lanczos method is more robust but less efficient for positive definite matrices. These
routines allow a choice of termination criteria and the norms used in them, allow monitoring of the
approximate solution, and can return estimates of the norm of A and the largest singular value of the
preconditioned matrix �A.

The utility routines provided for real symmetric matrices use the symmetric coordinate storage (SCS)
format described in Section 2.1.2. F11JAF computes a preconditioning matrix based on incomplete

Introduction – F11 NAG Library Manual

F11.8 Mark 26

Cholesky factorization, and F11JBF solves linear systems involving the preconditioner generated by
F11JAF. The amount of fill-in occurring in the incomplete factorization can be controlled by specifying
either the level of fill, or the drop tolerance. Diagonal Markowitz pivoting may optionally be employed,
and the factorization can be modified to preserve row-sums. Additionally, the utility routine F11YEF
can be used to discover a row and column permutation that reduces the bandwidth of A.

F11JDF is similar to F11JBF, but solves linear systems involving the preconditioner corresponding to
symmetric successive-over-relaxation (SSOR). The value of the relaxation parameter ! must currently
be supplied by you. Automatic procedures for choosing ! will be included in the chapter at a future
mark.

F11DKF applies the iterated Jacobi method to a symmetric or nonsymmetric system of linear equations
and can be used as a preconditioner. However, the domain of validity of the Jacobi method is rather
restricted; you should read the routine document for F11DKF before using it.

F11XEF computes matrix-vector products for real symmetric matrices stored in ordered SCS format. An
additional utility routine F11ZBF orders the nonzero elements of a real sparse symmetric matrix stored
in general SCS format.

The Black Box routine F11JCF makes calls to F11GDF, F11GEF, F11GFF, F11JBF and F11XEF, to
solve a real sparse symmetric linear system, represented in SCS format, using a conjugate gradient or
Lanczos method, with incomplete Cholesky preconditioning. F11JEF is similar, but has options for no
preconditioning, Jacobi preconditioning or SSOR preconditioning.

For complex Hermitian sparse matrices there is an equivalent suite of routines. F11GRF, F11GSF and
F11GTF are the basic routines which implement the same methods used for real symmetric systems,
namely CG and SYMMLQ, for the solution of complex sparse Hermitian linear systems. F11JNF and
F11JPF are the complex equivalents of F11JAF and F11JBF, respectively, providing facilities for
implementing incomplete Cholesky preconditioning. F11JRF implements a complex version of the
SSOR preconditioner. F11DXF implements a complex version of the iterated Jacobi preconditioner.
Utility routines F11XSF and F11ZPF are provided for computing matrix-vector products and sorting the
elements of complex sparse Hermitian matrices, respectively. Finally, the Black Box routines F11JQF
and F11JSF provide easy-to-use implementations of the CG and SYMMLQ methods for complex
Hermitian linear systems.

3.4 Direct Methods

The suite of routines F11MDF, F11MEF, F11MFF, F11MGF, F11MHF, F11MKF, F11MLF and
F11MMF implement the COLAMD/SuperLU direct real sparse solver and associated utilities. You are
expected to first call F11MDF to compute a suitable column permutation for the subsequent
factorization by F11MEF. F11MFF then solves the system of equations. A solution can be further
refined by F11MHF, which also minimizes the backward error and estimates a bound for the forward
error in the solution. Diagnostics are provided by F11MGF which computes an estimate of the condition
number of the matrix using the factorization output by F11MEF, and F11MMF which computes the
reciprocal pivot growth (a numerical stability measure) of the factorization. The two utility routines,
F11MKF, which computes matrix-matrix products in the particular storage scheme demanded by the
suite (CCS format), and F11MLF which computes quantities relating to norms of a matrix in that
particular storage scheme, complete the suite.

Another way of computing a direct solution is to choose specific arguments for the indirect solvers. For
example, routine F11DBF solves a linear system involving the incomplete LU preconditioning matrix

M ¼ PLDUQ ¼ A�R

generated by F11DAF, where P and Q are permutation matrices, L is lower triangular with unit
diagonal elements, U is upper triangular with unit diagonal elements, D is diagonal and R is a
remainder matrix.

If A is nonsingular, a call to F11DAF with LFILL < 0 and DTOL ¼ 0:0 results in a zero remainder
matrix R and a complete factorization. A subsequent call to F11DBF will therefore result in a direct
method for real sparse nonsymmetric systems.

If A is known to be symmetric positive definite, F11JAF and F11JBF may similarly be used to give a
direct solution. For further details see Section 9.4 in F11JAF.

F11 – Large Scale Linear Systems Introduction – F11

Mark 26 F11.9

Complex non-Hermitian systems can be solved directly in the same way using F11DNF and F11DPF,
while for complex Hermitian systems F11JNF and F11JPF may be used.

Some other routines specifically designed for direct solution of sparse linear systems can currently be
found in Chapters F01, F04 and F07. In particular, the following routines allow the direct solution of
nonsymmetric systems:

Almost block-diagonal F01LHF and F04LHF
Sparse F01BRF (or F01BSF) and F04AXF

and the following routines allow the direct solution of symmetric positive definite systems:

Variable band (skyline) F01MCF and F04MCF

Routines for the solution of band and tridiagonal systems can be found in Chapters F04 and F07.

Introduction – F11 NAG Library Manual

F11.10 Mark 26

4 Decision Tree

Tree 1: Solvers

Do you have a real system
and want to use a direct
method?

yes
F11MDF, F11MEF and

F11MFF

no

Do you want to use your
own storage scheme or
preconditioner?

yes
complex system?

yes
Hermitian?

yes
F11GRF, F11GSF and

F11GTF

no

F11BRF, F11BSF and
F11BTF

no

symmetric?
yes

F11GDF, F11GEF and
F11GFF

no

F11BDF, F11BEF and
F11BFF

no

complex system?
yes

Hermitian positive definite?
yes

Incomplete Cholesky
preconditioner? yes

F11JNF and F11JPF

no

F11JSF

no

Incomplete LU
preconditioner? yes

Using (possibly
overlapping) diagonal
blocks?

yes
F11DTF and F11DUF

no

F11DNF and F11DQF

no

F11DSF

no

symmetric positive definite?
yes

Incomplete Cholesky
preconditioner? yes

F11JAF and F11JCF

no

F11JEF

no

Incomplete LU
preconditioner? yes

Using (possibly
overlapping) diagonal
blocks?

yes
F11DFF and F11DGF

no

F11DAF and F11DCF

no

F11DEF

5 Functionality Index

Basic routines for complex Hermitian linear systems,
diagnostic routine.. F11GTF
reverse communication CG or SYMMLQ solver routine.. F11GSF
setup routine ... F11GRF

Basic routines for complex non-Hermitian linear systems,
diagnostic routine.. F11BTF
reverse communication RGMRES, CGS, Bi-CGSTAB ‘ð Þ or TFQMR solver routine F11BSF
setup routine ... F11BRF

F11 – Large Scale Linear Systems Introduction – F11

Mark 26 F11.11

Basic routines for real nonsymmetric linear systems,
diagnostic routine.. F11BFF
reverse communication RGMRES, CGS, Bi-CGSTAB ‘ð Þ or TFQMR solver routine F11BEF
setup routine ... F11BDF

Basic routines for real symmetric linear systems,
diagnostic routine.. F11GFF
reverse communication CG or SYMMLQ solver.. F11GEF
setup routine ... F11GDF

Black Box routines for complex Hermitian linear systems,
CG or SYMMLQ solver,

with incomplete Cholesky preconditioning .. F11JQF
with no preconditioning, Jacobi or SSOR preconditioning .. F11JSF

Black Box routines for complex non-Hermitian linear systems,
RGMRES, CGS, Bi-CGSTAB ‘ð Þ or TFQMR solver,

with block Jacobi or additive Schwarz preconditioning... F11DUF
with incomplete LU preconditioning ... F11DQF
with no preconditioning, Jacobi, or SSOR preconditioning F11DSF

Black Box routines for real nonsymmetric linear systems,
RGMRES, CGS, Bi-CGSTAB ‘ð Þ or TFQMR solver,

with block Jacobi or additive Schwarz preconditioning... F11DGF
with incomplete LU preconditioning ... F11DCF
with no preconditioning, Jacobi, or SSOR preconditioning F11DEF

Black Box routines for real symmetric linear systems,
CG or SYMMLQ solver,

with incomplete Cholesky preconditioning .. F11JCF
with no preconditioning, Jacobi, or SSOR preconditioning F11JEF

Direct methods for real sparse nonsymmetric linear systems in CCS format,
apply iterative refinement to the solution and compute error estimates, after factorizing
the matrix of coefficients ..

F11MHF

condition number estimation, after factorizing the matrix of coefficients, F11MGF
LU factorization,

diagnostic ... F11MMF
factorize ... F11MEF
setup... F11MDF

solution of simultaneous linear equations, after factorizing the matrix of coefficients, .. F11MFF
utility,

compute a norm or the element of largest absolute value, .. F11MLF
matrix-matrix multiplier ... F11MKF

Utility routine for complex Hermitian linear systems,
incomplete Cholesky factorization .. F11JNF
matrix-vector multiplier for complex Hermitian matrices in SCS format F11XSF
solver for linear systems involving preconditioning matrix from F11JNF...................... F11JPF
solver for linear systems involving SSOR preconditioning matrix F11JRF
sort routine for complex Hermitian matrices in SCS format .. F11ZPF

Utility routine for complex linear systems,
solver for linear systems involving iterated Jacobi method .. F11DXF

Utility routine for complex non-Hermitian linear systems,
incomplete LU factorization ... F11DNF
incomplete LU factorization of local or overlapping diagonal blocks F11DTF
matrix-vector multiplier for complex non-Hermitian matrices in CS format F11XNF
solver for linear systems involving preconditioning matrix from F11DNF..................... F11DPF
solver for linear systems involving SSOR preconditioning matrix F11DRF
sort routine for complex non-Hermitian matrices in CS format F11ZNF

Introduction – F11 NAG Library Manual

F11.12 Mark 26

Utility routine for real linear systems,
solver for linear systems involving iterated Jacobi method .. F11DKF

Utility routine for real nonsymmetric linear systems,
incomplete LU factorization ... F11DAF
incomplete LU factorization of local or overlapping diagonal blocks F11DFF
matrix-vector multiplier for real nonsymmetric matrices in CS format F11XAF
solver for linear systems involving preconditioning matrix from F11DAF..................... F11DBF
solver for linear systems involving SSOR preconditioning matrix F11DDF
sort routine for real nonsymmetric matrices in CS format ... F11ZAF

Utility routine for real symmetric linear systems,
incomplete Cholesky factorization .. F11JAF
matrix-vector multiplier for real symmetric matrices in SCS format.............................. F11XEF
solver for linear systems involving preconditioning matrix from F11JAF...................... F11JBF
solver for linear systems involving SSOR preconditioning matrix F11JDF
sort routine for real symmetric matrices in SCS format... F11ZBF

Utility routine for real symmetric linear systems, compute bandwidth-reducing reverse
Cuthill–McKee permutation ...

F11YEF

6 Auxiliary Routines Associated with Library Routine Arguments

None.

7 Routines Withdrawn or Scheduled for Withdrawal

The following lists all those routines that have been withdrawn since Mark 19 of the Library or are
scheduled for withdrawal at one of the next two marks.

Withdrawn
Routine

Mark of
Withdrawal Replacement Routine(s)

F11BAF 21 F11BDF
F11BBF 21 F11BEF
F11BCF 21 F11BFF
F11GAF 22 F11GDF
F11GBF 22 F11GEF
F11GCF 22 F11GFF

8 References

Barrett R, Berry M, Chan T F, Demmel J, Donato J, Dongarra J, Eijkhout V, Pozo R, Romine C and
Van der Vorst H (1994) Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods SIAM, Philadelphia

Demmel J W, Eisenstat S C, Gilbert J R, Li X S and Li J W H (1999) A supernodal approach to sparse
partial pivoting SIAM J. Matrix Anal. Appl. 20 720–755

Duff I S, Erisman A M and Reid J K (1986) Direct Methods for Sparse Matrices Oxford University
Press, London

Freund R W (1993) A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems
SIAM J. Sci. Comput. 14 470–482

Freund R W and Nachtigal N (1991) QMR: a Quasi-Minimal Residual Method for Non-Hermitian
Linear Systems Numer. Math. 60 315–339

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Hestenes M and Stiefel E (1952) Methods of conjugate gradients for solving linear systems J. Res. Nat.
Bur. Stand. 49 409–436

F11 – Large Scale Linear Systems Introduction – F11

Mark 26 F11.13

Meijerink J and Van der Vorst H (1977) An iterative solution method for linear systems of which the
coefficient matrix is a symmetric M-matrix Math. Comput. 31 148–162

Meijerink J and Van der Vorst H (1981) Guidelines for the usage of incomplete decompositions in
solving sets of linear equations as they occur in practical problems J. Comput. Phys. 44 134–155

Paige C C and Saunders M A (1975) Solution of sparse indefinite systems of linear equations SIAM J.
Numer. Anal. 12 617–629

Saad Y and Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving
nonsymmetric linear systems SIAM J. Sci. Statist. Comput. 7 856–869

Sleijpen G L G and Fokkema D R (1993) BiCGSTAB ‘ð Þ for linear equations involving matrices with
complex spectrum ETNA 1 11–32

Sonneveld P (1989) CGS, a fast Lanczos-type solver for nonsymmetric linear systems SIAM J. Sci.
Statist. Comput. 10 36–52

Van der Vorst H (1989) Bi-CGSTAB, a fast and smoothly converging variant of Bi-CG for the solution
of nonsymmetric linear systems SIAM J. Sci. Statist. Comput. 13 631–644

Young D (1971) Iterative Solution of Large Linear Systems Academic Press, New York

Introduction – F11 NAG Library Manual

F11.14 (last) Mark 26

	F11 - Large Scale Linear Systems, Chapter Introduction
	1 Scope of the Chapter
	2 Background to the Problems
	2.1 Sparse Matrices and Their Storage
	2.1.1 Coordinate storage (CS) format
	2.1.2 Symmetric coordinate storage (SCS) format
	2.1.3 Compressed column storage (CCS) format

	2.2 Direct Methods
	2.3 Iterative Methods
	2.4 Iterative Methods for Real Nonsymmetric and Complex Non-Hermitian Linear Systems
	2.5 Iterative Methods for Real Symmetric and Complex Hermitian Linear Systems

	3 Recommendations on Choice and Use of Available Routines
	3.1 Types of Routine Available
	3.2 Iterative Methods for Real Nonsymmetric and Complex Non-Hermitian Linear Systems
	3.3 Iterative Methods for Real Symmetric and Complex Hermitian Linear Systems
	3.4 Direct Methods

	4 Decision Tree
	Tree 1

	5 Functionality Index
	6 Auxiliary Routines Associated with Library Routine Arguments
	7 Routines Withdrawn or Scheduled for Withdrawal
	8 References
	Barrett et al. (1994)
	Demmel et al. (1999)
	Duff et al. (1986)
	Freund (1993)
	Freund and Nachtigal (1991)
	Golub and Van Loan (1996)
	Hestenes and Stiefel (1952)
	Meijerink and Van der Vorst (1977)
	Meijerink and Van der Vorst (1981)
	Paige and Saunders (1975)
	Saad and Schultz (1986)
	Sleijpen and Fokkema (1993)
	Sonneveld (1989)
	Van der Vorst (1989)
	Young (1971)

	NAG Fortran Library Manual, Mark 26.1
	Copyright Statement
	Foreword
	Introduction
	How to Use the NAG Library and its Documentation
	Mark 26.1 NAG Fortran Library News
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Code Contributors
	Support from NAG
	Index

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Contents
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Contents
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Contents
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Contents
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Contents
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Contents
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Contents
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Contents
	D02 Chapter Introduction
	D02M-N Sub-chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Contents
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Contents
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Contents
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Contents
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Contents
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Contents
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Contents
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Contents
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Contents
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Contents
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Contents
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Contents
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Contents
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Contents
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Contents
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Contents
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Contents
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Contents
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Contents
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Contents
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Contents
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Contents
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Contents
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Contents
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Contents
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Contents
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Contents
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Contents
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Contents
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Contents
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Contents
	G13 Chapter Introduction

	G22 - Linear Model Specification
	G22 Chapter Contents
	G22 Chapter Introduction

	H - Operations Research
	H Chapter Contents
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Contents
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Contents
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Contents
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Contents
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Contents
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Contents
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Contents
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Contents
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Contents
	X07 Chapter Introduction

