
NAG Library Routine Document

F02FJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F02FJF finds eigenvalues and eigenvectors of a real sparse symmetric or generalized symmetric
eigenvalue problem.

2 Specification

SUBROUTINE F02FJF (N, M, K, NOITS, TOL, DOT, IMAGE, MONIT, NOVECS, X,
LDX, D, WORK, LWORK, RUSER, LRUSER, IUSER, LIUSER,
IFAIL)

&
&

INTEGER N, M, K, NOITS, NOVECS, LDX, LWORK, LRUSER,
IUSER(LIUSER), LIUSER, IFAIL

&

REAL (KIND=nag_wp) TOL, DOT, X(LDX,K), D(K), WORK(LWORK),
RUSER(LRUSER)

&

EXTERNAL DOT, IMAGE, MONIT

3 Description

F02FJF finds the m eigenvalues of largest absolute value and the corresponding eigenvectors for the
real eigenvalue problem

Cx ¼ �x ð1Þ
where C is an n by n matrix such that

BC ¼ CTB ð2Þ
for a given positive definite matrix B. C is said to be B-symmetric. Different specifications of C allow
for the solution of a variety of eigenvalue problems. For example, when

C ¼ A and B ¼ I where A ¼ AT

the routine finds the m eigenvalues of largest absolute magnitude for the standard symmetric eigenvalue
problem

Ax ¼ �x: ð3Þ
The routine is intended for the case where A is sparse.

As a second example, when

C ¼ B�1A

where

A ¼ AT

the routine finds the m eigenvalues of largest absolute magnitude for the generalized symmetric
eigenvalue problem

Ax ¼ �Bx: ð4Þ
The routine is intended for the case where A and B are sparse.

The routine does not require C explicitly, but C is specified via IMAGE which, given an n-element
vector z, computes the image w given by

F02 – Eigenvalues and Eigenvectors F02FJF

Mark 26 F02FJF.1



w ¼ Cz:

For instance, in the above example, where C ¼ B�1A, IMAGE will need to solve the positive definite
system of equations Bw ¼ Az for w.

To find the m eigenvalues of smallest absolute magnitude of (3) we can choose C ¼ A�1 and hence find
the reciprocals of the required eigenvalues, so that IMAGE will need to solve Aw ¼ z for w, and
correspondingly for (4) we can choose C ¼ A�1B and solve Aw ¼ Bz for w.

A table of examples of choice of IMAGE is given in Table 1. It should be remembered that the routine
also returns the corresponding eigenvectors and that B is positive definite. Throughout A is assumed to
be symmetric and, where necessary, nonsingularity is also assumed.

Eigenvalues
Required

Problem

Ax ¼ �x B ¼ Ið Þ Ax ¼ �Bx ABx ¼ �x

Largest Compute w ¼ Az Solve Bw ¼ Az Compute w ¼ ABz

Smallest (Find 1=�) Solve Aw ¼ z Solve Aw ¼ Bz Solve Av ¼ z, Bw ¼ v

Furthest from �
(Find �� �)

Compute
w ¼ A� �Ið Þz

Solve Bw ¼ A� �Bð Þz Compute
w ¼ AB� �Ið Þz

Closest to �
(Find 1= �� �ð Þ)

Solve A� �Ið Þw ¼ z Solve A� �Bð Þw ¼ Bz Solve AB� �Ið Þw ¼ z

Table 1
The Requirement of IMAGE for Various Problems.

The matrix B also need not be supplied explicitly, but is specified via DOT which, given n-element
vectors z and w, computes the generalized dot product wTBz.

F02FJF is based upon routine SIMITZ (see Nikolai (1979)), which is itself a derivative of the Algol
procedure ritzit (see Rutishauser (1970)), and uses the method of simultaneous (subspace) iteration.
(See Parlett (1998) for a description, analysis and advice on the use of the method.)

The routine performs simultaneous iteration on k > m vectors. Initial estimates to p � k eigenvectors,
corresponding to the p eigenvalues of C of largest absolute value, may be supplied to F02FJF. When
possible k should be chosen so that the kth eigenvalue is not too close to the m required eigenvalues,
but if k is initially chosen too small then F02FJF may be re-entered, supplying approximations to the k
eigenvectors found so far and with k then increased.

At each major iteration F02FJF solves an r by r (r � k) eigenvalue sub-problem in order to obtain an
approximation to the eigenvalues for which convergence has not yet occurred. This approximation is
refined by Chebyshev acceleration.

4 References

Nikolai P J (1979) Algorithm 538: Eigenvectors and eigenvalues of real generalized symmetric matrices
by simultaneous iteration ACM Trans. Math. Software 5 118–125

Parlett B N (1998) The Symmetric Eigenvalue Problem SIAM, Philadelphia

Rutishauser H (1969) Computational aspects of F L Bauer's simultaneous iteration method Numer.
Math. 13 4–13

Rutishauser H (1970) Simultaneous iteration method for symmetric matrices Numer. Math. 16 205–223

F02FJF NAG Library Manual

F02FJF.2 Mark 26



5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix C.

Constraint: N � 1.

2: M – INTEGER Input/Output

On entry: m, the number of eigenvalues required.

Constraint: M � 1.

On exit: m0, the number of eigenvalues actually found. It is equal to m if IFAIL ¼ 0 on exit, and
is less than m if IFAIL ¼ 2, 3 or 4. See Sections 6 and 9 for further information.

3: K – INTEGER Input

On entry: the number of simultaneous iteration vectors to be used. Too small a value of K may
inhibit convergence, while a larger value of K incurs additional storage and additional work per
iteration.

Suggested value: K ¼ Mþ 4 will often be a reasonable choice in the absence of better
information.

Constraint: M < K � N.

4: NOITS – INTEGER Input/Output

On entry: the maximum number of major iterations (eigenvalue sub-problems) to be performed.
If NOITS � 0, the value 100 is used in place of NOITS.

On exit: the number of iterations actually performed.

5: TOL – REAL (KIND=nag_wp) Input

On entry: a relative tolerance to be used in accepting eigenvalues and eigenvectors. If the
eigenvalues are required to about t significant figures, TOL should be set to about 10�t. di is
accepted as an eigenvalue as soon as two successive approximations to di differ by less than
~di
�� ��� TOL
� �

=10, where ~di is the latest approximation to di. Once an eigenvalue has been
accepted, an eigenvector is accepted as soon as difið Þ= di � dkð Þ < TOL, where fi is the
normalized residual of the current approximation to the eigenvector (see Section 9 for further
information). The values of the fi and di can be printed from MONIT. If TOL is supplied outside
the range (�; 1:0), where � is the machine precision, the value � is used in place of TOL.

6: DOT – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

DOT must return the value wTBz for given vectors w and z. For the standard eigenvalue
problem, where B ¼ I, DOT must return the dot product wTz.

The specification of DOT is:

FUNCTION DOT (IFLAG, N, Z, W, RUSER, LRUSER, IUSER, LIUSER)
REAL (KIND=nag_wp) DOT

INTEGER IFLAG, N, LRUSER, IUSER(LIUSER), LIUSER
REAL (KIND=nag_wp) Z(N), W(N), RUSER(LRUSER)

1: IFLAG – INTEGER Input/Output

On entry: is always non-negative.

On exit: may be used as a flag to indicate a failure in the computation of wTBz. If
IFLAG is negative on exit from DOT, F02FJF will exit immediately with IFAIL set to
IFLAG. Note that in this case DOT must still be assigned a value.

F02 – Eigenvalues and Eigenvectors F02FJF

Mark 26 F02FJF.3



2: N – INTEGER Input

On entry: the number of elements in the vectors z and w and the order of the matrix B.

3: ZðNÞ – REAL (KIND=nag_wp) array Input

On entry: the vector z for which wTBz is required.

4: WðNÞ – REAL (KIND=nag_wp) array Input

On entry: the vector w for which wTBz is required.

5: RUSERðLRUSERÞ – REAL (KIND=nag_wp) array User Workspace

DOT is called with the argument RUSER as supplied to F02FJF. You should use the
array RUSER to supply information to DOT.

6: LRUSER – INTEGER Input

On entry: the dimension of the array RUSER as declared in the (sub)program from
which F02FJF is called.

7: IUSERðLIUSERÞ – INTEGER array User Workspace

DOT is called with the argument IUSER as supplied to F02FJF. You should use the
array IUSER to supply information to DOT.

8: LIUSER – INTEGER Input

On entry: the dimension of the array IUSER as declared in the (sub)program from
which F02FJF is called.

DOT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which F02FJF is called. Arguments denoted as Input must not be changed by this
procedure.

7: IMAGE – SUBROUTINE, supplied by the user. External Procedure

IMAGE must return the vector w ¼ Cz for a given vector z.

The specification of IMAGE is:

SUBROUTINE IMAGE (IFLAG, N, Z, W, RUSER, LRUSER, IUSER, LIUSER)

INTEGER IFLAG, N, LRUSER, IUSER(LIUSER), LIUSER
REAL (KIND=nag_wp) Z(N), W(N), RUSER(LRUSER)

1: IFLAG – INTEGER Input/Output

On entry: is always non-negative.

On exit: may be used as a flag to indicate a failure in the computation of w. If IFLAG is
negative on exit from IMAGE, F02FJF will exit immediately with IFAIL set to IFLAG.

2: N – INTEGER Input

On entry: n, the number of elements in the vectors w and z, and the order of the matrix
C.

3: ZðNÞ – REAL (KIND=nag_wp) array Input

On entry: the vector z for which Cz is required.

F02FJF NAG Library Manual

F02FJF.4 Mark 26



4: WðNÞ – REAL (KIND=nag_wp) array Output

On exit: the vector w ¼ Cz.

5: RUSERðLRUSERÞ – REAL (KIND=nag_wp) array User Workspace

IMAGE is called with the argument RUSER as supplied to F02FJF. You should use the
array RUSER to supply information to IMAGE.

6: LRUSER – INTEGER Input

On entry: the dimension of the array RUSER as declared in the (sub)program from
which F02FJF is called.

7: IUSERðLIUSERÞ – INTEGER array User Workspace

IMAGE is called with the argument IUSER as supplied to F02FJF. You should use the
array IUSER to supply information to IMAGE.

8: LIUSER – INTEGER Input

On entry: the dimension of the array IUSER as declared in the (sub)program from
which F02FJF is called.

IMAGE must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which F02FJF is called. Arguments denoted as Input must not be changed by this
procedure.

8: MONIT – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

MONIT is used to monitor the progress of F02FJF. MONIT may be the dummy subroutine
F02FJZ if no monitoring is actually required. (F02FJZ is included in the NAG Library.) MONIT
is called after the solution of each eigenvalue sub-problem and also just prior to return from
F02FJF. The arguments ISTATE and NEXTIT allow selective printing by MONIT.

The specification of MONIT is:

SUBROUTINE MONIT (ISTATE, NEXTIT, NEVALS, NEVECS, K, F, D)

INTEGER ISTATE, NEXTIT, NEVALS, NEVECS, K
REAL (KIND=nag_wp) F(K), D(K)

1: ISTATE – INTEGER Input

On entry: specifies the state of F02FJF.

ISTATE ¼ 0
No eigenvalue or eigenvector has just been accepted.

ISTATE ¼ 1
One or more eigenvalues have been accepted since the last call to MONIT.

ISTATE ¼ 2
One or more eigenvectors have been accepted since the last call to MONIT.

ISTATE ¼ 3
One or more eigenvalues and eigenvectors have been accepted since the last call
to MONIT.

ISTATE ¼ 4
Return from F02FJF is about to occur.

2: NEXTIT – INTEGER Input

On entry: the number of the next iteration.

F02 – Eigenvalues and Eigenvectors F02FJF

Mark 26 F02FJF.5



3: NEVALS – INTEGER Input

On entry: the number of eigenvalues accepted so far.

4: NEVECS – INTEGER Input

On entry: the number of eigenvectors accepted so far.

5: K – INTEGER Input

On entry: k, the number of simultaneous iteration vectors.

6: FðKÞ – REAL (KIND=nag_wp) array Input

On entry: a vector of error quantities measuring the state of convergence of the
simultaneous iteration vectors. See TOL and Section 9 for further details. Each element
of F is initially set to the value 4:0 and an element remains at 4:0 until the
corresponding vector is tested.

7: DðKÞ – REAL (KIND=nag_wp) array Input

On entry: DðiÞ contains the latest approximation to the absolute value of the ith
eigenvalue of C.

MONIT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which F02FJF is called. Arguments denoted as Input must not be changed by this
procedure.

9: NOVECS – INTEGER Input

On entry: the number of approximate vectors that are being supplied in X. If NOVECS is outside
the range 0;Kð Þ, the value 0 is used in place of NOVECS.

10: XðLDX;KÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if 0 < NOVECS � K, the first NOVECS columns of X must contain approximations to
the eigenvectors corresponding to the NOVECS eigenvalues of largest absolute value of C.
Supplying approximate eigenvectors can be useful when reasonable approximations are known,
or when F02FJF is being restarted with a larger value of K. Otherwise it is not necessary to
supply approximate vectors, as simultaneous iteration vectors will be generated randomly by
F02FJF.

On exit: if IFAIL ¼ 0, 2, 3 or 4, the first m0 columns contain the eigenvectors corresponding to
the eigenvalues returned in the first m0 elements of D; and the next k�m0 � 1 columns contain
approximations to the eigenvectors corresponding to the approximate eigenvalues returned in the
next k�m0 � 1 elements of D. Here m0 is the value returned in M, the number of eigenvalues
actually found. The kth column is used as workspace.

11: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F02FJF
is called.

Constraint: LDX � N.

12: DðKÞ – REAL (KIND=nag_wp) array Output

On exit: if IFAIL ¼ 0, 2, 3 or 4, the first m0 elements contain the first m0 eigenvalues in
decreasing order of magnitude; and the next k�m0 � 1 elements contain approximations to the
next k�m0 � 1 eigenvalues. Here m0 is the value returned in M, the number of eigenvalues
actually found. DðkÞ contains the value e where �e; eð Þ is the latest interval over which
Chebyshev acceleration is performed.

F02FJF NAG Library Manual

F02FJF.6 Mark 26



13: WORKðLWORKÞ – REAL (KIND=nag_wp) array Workspace
14: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which F02FJF
is called.

Constraint: LWORK � 3� K þmax K � K; 2� Nð Þ.

15: RUSERðLRUSERÞ – REAL (KIND=nag_wp) array User Workspace

RUSER is not used by F02FJF, but is passed directly to DOT and IMAGE and should be used to
pass information to these routines.

16: LRUSER – INTEGER Input

On entry: the dimension of the array RUSER as declared in the (sub)program from which F02FJF
is called.

Constraint: LRUSER � 1.

17: IUSERðLIUSERÞ – INTEGER array User Workspace

IUSER is not used by F02FJF, but is passed directly to DOT and IMAGE and should be used to
pass information to these routines.

18: LIUSER – INTEGER Input

On entry: the dimension of the array IUSER as declared in the (sub)program from which F02FJF
is called.

Constraint: LIUSER � 1.

19: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL < 0

A negative value of IFAIL indicates an exit from F02FJF because you have set IFLAG negative
in DOT or IMAGE. The value of IFAIL will be the same as your setting of IFLAG.

IFAIL ¼ 1

On entry, N < 1,
or M < 1,
or M � K,
or K > N,
or LDX < N,

F02 – Eigenvalues and Eigenvectors F02FJF

Mark 26 F02FJF.7



or LWORK < 3� K þmax K � K; 2� Nð Þ,
or LRUSER < 1,
or LIUSER < 1.

IFAIL ¼ 2

Not all the requested eigenvalues and vectors have been obtained. Approximations to the rth
eigenvalue are oscillating rapidly indicating that severe cancellation is occurring in the rth
eigenvector and so M is returned as r� 1ð Þ. A restart with a larger value of K may permit
convergence.

IFAIL ¼ 3

Not all the requested eigenvalues and vectors have been obtained. The rate of convergence of the
remaining eigenvectors suggests that more than NOITS iterations would be required and so the
input value of M has been reduced. A restart with a larger value of K may permit convergence.

IFAIL ¼ 4

Not all the requested eigenvalues and vectors have been obtained. NOITS iterations have been
performed. A restart, possibly with a larger value of K, may permit convergence.

IFAIL ¼ 5

This error is very unlikely to occur, but indicates that convergence of the eigenvalue sub-problem
has not taken place. Restarting with a different set of approximate vectors may allow
convergence. If this error occurs you should check carefully that F02FJF is being called correctly.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Eigenvalues and eigenvectors will normally be computed to the accuracy requested by the argument
TOL, but eigenvectors corresponding to small or to close eigenvalues may not always be computed to
the accuracy requested by the argument TOL. Use of the MONIT to monitor acceptance of eigenvalues
and eigenvectors is recommended.

8 Parallelism and Performance

F02FJF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F02FJF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

F02FJF NAG Library Manual

F02FJF.8 Mark 26



Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by F02FJF will be principally determined by the time taken to solve the eigenvalue sub-
problem and the time taken by DOT and IMAGE. The time taken to solve an eigenvalue sub-problem is
approximately proportional to nk2. It is important to be aware that several calls to DOT and IMAGE
may occur on each major iteration.

As can be seen from Table 1, many applications of F02FJF will require the IMAGE to solve a system
of linear equations. For example, to find the smallest eigenvalues of Ax ¼ �Bx, IMAGE needs to solve
equations of the form Aw ¼ Bz for w and routines from Chapters F01 and F04 will frequently be useful
in this context. In particular, if A is a positive definite variable band matrix, F04MCF may be used after
A has been factorized by F01MCF. Thus factorization need be performed only once prior to calling
F02FJF. An illustration of this type of use is given in the example program.

An approximation ~dh, to the ith eigenvalue, is accepted as soon as ~dh and the previous approximation
differ by less than ~dh

�� ��� TOL=10. Eigenvectors are accepted in groups corresponding to clusters of
eigenvalues that are equal, or nearly equal, in absolute value and that have already been accepted. If dr
is the last eigenvalue in such a group and we define the residual rj as

rj ¼ Cxj � yr

where yr is the projection of Cxj, with respect to B, onto the space spanned by x1; x2; . . . ; xr, and xj is
the current approximation to the jth eigenvector, then the value fi returned in MONIT is given by

fi ¼ max rj
�� ��

B
= Cxj

�� ��
B

xk k2B ¼ xTBx

and each vector in the group is accepted as an eigenvector if

drj jfrð Þ= drj j � eð Þ < TOL;

where e is the current approximation to ~dk
�� ��. The values of the fi are systematically increased if the

convergence criteria appear to be too strict. See Rutishauser (1970) for further details.

The algorithm implemented by F02FJF differs slightly from SIMITZ (see Nikolai (1979)) in that the
eigenvalue sub-problem is solved using the singular value decomposition of the upper triangular matrix
R of the Gram–Schmidt factorization of Cxr, rather than forming RTR.

F02 – Eigenvalues and Eigenvectors F02FJF

Mark 26 F02FJF.9



10 Example

This example finds the four eigenvalues of smallest absolute value and corresponding eigenvectors for
the generalized symmetric eigenvalue problem Ax ¼ �Bx, where A and B are the 16 by 16 matrices

A ¼ �1
4

�4 1 1
1 �4 1 1

1 �4 1 1
1 �4 1 1

1 1 �4 1 1
1 1 �4 1 1

1 1 �4 1 1
1 1 �4 1 1

1 1 �4 1 1
1 1 �4 1 1

1 1 �4 1 1
1 1 �4 1 1

1 1 �4 1
1 1 �4 1

1 1 �4 1
1 1 �4

0
BBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCA

B ¼ �1
2

�2 1
1 �2 1

1 �2 1
1 �2 1

1 �2 1
1 �2 1

1 �2 1
1 �2 1

1 �2 1
1 �2 1

1 �2 1
1 �2 1

1 �2 1
1 �2 1

1 �2 1
1 �2

0
BBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCA

TOL is taken as 0:0001 and 6 iteration vectors are used. F11JAF is used to factorize the matrix A, prior
to calling F02FJF, and F11JCF is used within IMAGE to solve the equations Aw ¼ Bz for w.

Output from MONIT occurs each time ISTATE is nonzero. Note that the required eigenvalues are the
reciprocals of the eigenvalues returned by F02FJF.

10.1 Program Text

! F02FJF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module f02fjfe_mod

! F02FJF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: dot, image, monit

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: half = 0.5_nag_wp

F02FJF NAG Library Manual

F02FJF.10 Mark 26



Real (Kind=nag_wp), Parameter, Public :: zero = 0.0_nag_wp
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Function dot(iflag,n,z,w,ruser,lruser,iuser,liuser)

! This function implements the dot product - transpose(W)*B*Z.
! DOT assumes that N is at least 3.

! .. Function Return Value ..
Real (Kind=nag_wp) :: dot

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: liuser, lruser, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ruser(lruser)
Real (Kind=nag_wp), Intent (In) :: w(n), z(n)
Integer, Intent (Inout) :: iuser(liuser)

! .. Local Scalars ..
Real (Kind=nag_wp) :: s
Integer :: i

! .. Executable Statements ..
s = zero
s = s + (z(1)-half*z(2))*w(1)
s = s + (-half*z(n-1)+z(n))*w(n)
Do i = 2, n - 1

s = s + (-half*z(i-1)+z(i)-half*z(i+1))*w(i)
End Do
dot = s

! Set iflag negative to terminate execution for any reason.
iflag = 0
Return

End Function dot
Subroutine image(iflag,n,z,w,ruser,lruser,iuser,liuser)

! This routine solves A*W = B*Z for W.
! The routine assumes that N is at least 3.

! The data A, NNZ, LA, IROW, ICOL, IPIV and ISTR on exit from
! F11JAF have been packed into the xUSER communication arrays in
! the following way:
! IUSER(1:2) = (/NNZ, LA/)
! RUSER(1:LA) = A
! IUSER(3:(2*LA+2*N+3)) = (/IROW, ICOL, IPIV, ISTR/)
! We’ll also use RUSER((LA+1):(LA+N)) as space for F11JCF’s dummy
! arg. B, and RUSER((LA+N+1):(LA+7*N+120)) as space for F11JCF’s
! dummy arg. WORK

! .. Use Statements ..
Use nag_library, Only: f11jcf, x02ajf

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: liuser, lruser, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ruser(lruser)
Real (Kind=nag_wp), Intent (Out) :: w(n)
Real (Kind=nag_wp), Intent (In) :: z(n)
Integer, Intent (Inout) :: iuser(liuser)

! .. Local Scalars ..
Real (Kind=nag_wp) :: rnorm, tol
Integer :: ifail, itn, j, la, lwork, maxitn, &

nnz
Character (2) :: method

! .. Executable Statements ..
nnz = iuser(1)
la = iuser(2)

! Form B*Z in RUSER((LA+1):(LA+N)) and initialize W to
! zero.

w(1:n) = zero
ruser(la+1) = z(1) - half*z(2)
Do j = 2, n - 1

ruser(la+j) = -half*z(j-1) + z(j) - half*z(j+1)
End Do

F02 – Eigenvalues and Eigenvectors F02FJF

Mark 26 F02FJF.11



ruser(la+n) = -half*z(n-1) + z(n)

! Call F11JCF to solve the equations A*W = B*Z.
method = ’CG’
tol = x02ajf()
maxitn = 100
lwork = 6*n + 120

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 1
Call f11jcf(method,n,nnz,ruser,la,iuser(3),iuser(la+3),iuser(2*la+3), &

iuser(2*la+n+3),ruser(la+1),tol,maxitn,w,rnorm,itn,ruser(la+n+1), &
lwork,ifail)

If (ifail>0) Then
iflag = -ifail

End If
Return

End Subroutine image
Subroutine monit(istate,nextit,nevals,nevecs,k,f,d)

! Monitoring routine for F02FJF.

! .. Parameters ..
Integer, Parameter :: nout = 6

! .. Scalar Arguments ..
Integer, Intent (In) :: istate, k, nevals, nevecs, nextit

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: d(k), f(k)

! .. Local Scalars ..
Integer :: i

! .. Executable Statements ..
If (istate/=0) Then

Write (nout,*)
Write (nout,99999) ’ ISTATE = ’, istate, ’ NEXTIT = ’, nextit
Write (nout,99999) ’ NEVALS = ’, nevals, ’ NEVECS = ’, nevecs
Write (nout,*) ’ F D’
Write (nout,99998)(f(i),d(i),i=1,k)

End If
Return

99999 Format (1X,A,I4,A,I4)
99998 Format (1X,1P,E11.3,3X,E11.3)

End Subroutine monit
End Module f02fjfe_mod
Program f02fjfe

! F02FJF Example Main Program

! .. Use Statements ..
Use nag_library, Only: f02fjf, f06fef, f11jaf, nag_wp, x04cbf
Use f02fjfe_mod, Only: dot, image, monit, nin, nout, zero

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: dscale, dtol, tol
Integer :: i, ifail, k, l, la, ldx, lfill, &

liuser, lruser, lwork, m, n, nnz, &
nnzc, noits, novecs, npivm

Character (1) :: mic, pstrat
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:), d(:), ruser(:), work(:), &
x(:,:)

Integer, Allocatable :: icol(:), ipiv(:), irow(:), istr(:), &
iuser(:)

Character (1) :: clabs(1), rlabs(1)
! .. Executable Statements ..

Write (nout,*) ’F02FJF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file

F02FJF NAG Library Manual

F02FJF.12 Mark 26



Read (nin,*)
Read (nin,*) n, m, k, tol
la = 10*n
ldx = n
liuser = 2*la + 2*n + 3
lruser = la + 7*n + 120
lwork = 5*k + 2*n
Allocate (a(la),d(n),ruser(lruser),work(lwork),x(ldx,k),icol(la), &

ipiv(n),irow(la),istr(n+1),iuser(liuser))

! Set up the sparse symmetric coefficient matrix A.
l = 0
Do i = 1, n

If (i>=5) Then
l = l + 1
a(l) = -0.25_nag_wp
irow(l) = i
icol(l) = i - 4

End If
If (i>=2) Then

l = l + 1
a(l) = -0.25_nag_wp
irow(l) = i
icol(l) = i - 1

End If
l = l + 1
a(l) = 1.0_nag_wp
irow(l) = i
icol(l) = i

End Do
nnz = l

! Call F11JAF to find an incomplete Cholesky factorization of A.
lfill = 2
dtol = zero
mic = ’M’
dscale = zero
pstrat = ’M’

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f11jaf(n,nnz,a,la,irow,icol,lfill,dtol,mic,dscale,pstrat,ipiv,istr, &

nnzc,npivm,iuser,liuser,ifail)

! Call F02FJF to find eigenvalues and eigenvectors.

noits = 1000
novecs = 0

! Communicate A, NNZ, LA, IROW, ICOL, IPIV and ISTR to IMAGE
! thread-safely using RUSER and IUSER.
! In addition to using RUSER for storing A, we’ll also use
! 7*N+120 elements of RUSER in place of local arrays in IMAGE.

! Initialized A goes into ruser.
ruser(1:nnz+nnzc) = a(1:nnz+nnzc)

! NNZ, LA, IROW, ICOL, IPIV and ISTR go into IUSER, in that order.
! Only the first NNZ+NNZC elements of IROW and ICOL will have been
! initialized:

iuser(1) = nnz
iuser(2) = la
iuser(3:2+nnz+nnzc) = irow(1:nnz+nnzc)
iuser(la+3:la+2+nnz+nnzc) = icol(1:nnz+nnzc)
iuser(2*la+3:2*la+2+n) = ipiv(1:n)
iuser(liuser-n:liuser) = istr(1:n+1)

ifail = -1
Call f02fjf(n,m,k,noits,tol,dot,image,monit,novecs,x,ldx,d,work,lwork, &

ruser,lruser,iuser,liuser,ifail)

F02 – Eigenvalues and Eigenvectors F02FJF

Mark 26 F02FJF.13



If (ifail>=0) Then
If (ifail/=1 .And. ifail<=4 .And. m>=1) Then

Do i = 1, m
d(i) = 1.0_nag_wp/d(i)

End Do
Write (nout,*) ’Final results’
Write (nout,*)
Write (nout,*) ’ Eigenvalues’
Write (nout,99999) d(1:m)
Write (nout,*)
Flush (nout)

! Normalize eigenvectors
Do i = 1, m

Call f06fef(n,x(1,i),x(1,i),1)
End Do
Call x04cbf(’General’,’ ’,n,m,x,ldx,’1P,E12.3’,’ Eigenvectors’,’N’, &

rlabs,’N’,clabs,80,0,ifail)
End If

End If

99999 Format (1X,1P,4E12.3)
End Program f02fjfe

10.2 Program Data

F02FJF Example Program Data
16 4 6 0.0001 : n, m, k, tol

10.3 Program Results

F02FJF Example Program Results

ISTATE = 3 NEXTIT = 17
NEVALS = 1 NEVECS = 1

F D
1.246E-07 1.822E+00
4.000E+00 1.695E+00
4.000E+00 1.668E+00
4.000E+00 1.460E+00
4.000E+00 1.275E+00
4.000E+00 1.132E+00

ISTATE = 4 NEXTIT = 30
NEVALS = 4 NEVECS = 4

F D
1.246E-07 1.822E+00
2.450E-09 1.695E+00
7.922E-09 1.668E+00
3.210E-07 1.460E+00
4.000E+00 1.275E+00
4.000E+00 1.153E+00

Final results

Eigenvalues
5.488E-01 5.900E-01 5.994E-01 6.850E-01

Eigenvectors
1.000E+00 1.000E+00 1.000E+00 1.000E+00

-1.159E+00 -8.089E-01 1.127E+00 -1.237E+00
1.168E+00 -7.555E-01 -1.070E+00 1.925E+00

-1.130E+00 7.444E-01 -1.351E+00 -1.318E+00
1.692E+00 1.494E+00 1.827E+00 8.027E-01

-1.880E+00 -1.283E+00 1.793E+00 -4.766E-01
1.885E+00 -1.251E+00 -1.759E+00 1.481E+00

-1.760E+00 1.354E+00 -2.015E+00 -6.525E-01
1.760E+00 1.354E+00 2.015E+00 -6.525E-01

-1.885E+00 -1.251E+00 1.759E+00 1.481E+00
1.880E+00 -1.283E+00 -1.793E+00 -4.766E-01

F02FJF NAG Library Manual

F02FJF.14 Mark 26



-1.692E+00 1.494E+00 -1.827E+00 8.027E-01
1.130E+00 7.444E-01 1.351E+00 -1.318E+00

-1.168E+00 -7.555E-01 1.070E+00 1.925E+00
1.159E+00 -8.089E-01 -1.127E+00 -1.237E+00

-1.000E+00 1.000E+00 -1.000E+00 1.000E+00

F02 – Eigenvalues and Eigenvectors F02FJF

Mark 26 F02FJF.15 (last)


	F02FJF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Nikolai (1979)
	Parlett (1998)
	Rutishauser (1969)
	Rutishauser (1970)

	5 Arguments
	N
	M
	K
	NOITS
	TOL
	DOT
	IFLAG
	N
	Z
	W
	RUSER
	LRUSER
	IUSER
	LIUSER

	IMAGE
	IFLAG
	N
	Z
	W
	RUSER
	LRUSER
	IUSER
	LIUSER

	MONIT
	ISTATE
	NEXTIT
	NEVALS
	NEVECS
	K
	F
	D

	NOVECS
	X
	LDX
	D
	WORK
	LWORK
	RUSER
	LRUSER
	IUSER
	LIUSER
	IFAIL

	6 Error Indicators and Warnings
	IFAIL<0
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	NAG Fortran Library Manual, Mark 26.1
	Copyright Statement
	Foreword
	Introduction
	How to Use the NAG Library and its Documentation
	Mark 26.1 NAG Fortran Library News
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Code Contributors
	Support from NAG
	Index

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Contents
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Contents
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Contents
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Contents
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Contents
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Contents
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Contents
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Contents
	D02 Chapter Introduction
	D02M-N Sub-chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Contents
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Contents
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Contents
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Contents
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Contents
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Contents
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Contents
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Contents
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Contents
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Contents
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Contents
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Contents
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Contents
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Contents
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Contents
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Contents
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Contents
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Contents
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Contents
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Contents
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Contents
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Contents
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Contents
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Contents
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Contents
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Contents
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Contents
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Contents
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Contents
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Contents
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Contents
	G13 Chapter Introduction

	G22 - Linear Model Specification
	G22 Chapter Contents
	G22 Chapter Introduction

	H - Operations Research
	H Chapter Contents
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Contents
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Contents
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Contents
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Contents
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Contents
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Contents
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Contents
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Contents
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Contents
	X07 Chapter Introduction




