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1  Scope of the Chapter

This chapter provides facilities for four types of problem:
(1) Matrix Inversion

(i1) Matrix Factorizations

(ii1)) Matrix Arithmetic and Manipulation

(iv) Matrix Functions

See Sections 2.1, 2.2, 2.3 and 2.4 where these problems are discussed.

2 Background to the Problems

2.1 Matrix Inversion
(i) Nonsingular square matrices of order n.

If A, a square matrix of order n, is nonsingular (has rank n), then its inverse X exists and satisfies
the equations AX = XA = I (the identity or unit matrix).

It is worth noting that if AX — I = R, so that R is the ‘residual’ matrix, then a bound on the
relative error is given by || R]|, i.e.,

M< IR].
A=Y~

(i1) General real rectangular matrices.

A real matrix A has no inverse if it is square (n by n) and singular (has rank < n), or if it is of
shape (m by n) with m # n, but there is a Generalized or Pseudo-inverse A' which satisfies the
equations

AATA=A, ATAAT = AT, (AAN) = 44", (ATA)T =4TA
(which of course are also satisfied by the inverse X of A if A is square and nonsingular).

(a) if m > n and rank(A) = n then A can be factorized using a QR factorization, given by

=els).

where () is an m by m orthogonal matrix and R is an n by n, nonsingular, upper triangular
matrix. The pseudo-inverse of A is then given by

A+ — R—IQT
where Q consists of the first n columns of Q.

(b) if m <n and rank(A) = m then A can be factorized using an RQ factorization, given by
A=(R 0)Q"

where () is an n by n orthogonal matrix and R is an m by m, nonsingular, upper triangular
matrix. The pseudo-inverse of A is then given by

A+ — QRflj
where Q consists of the first m columns of Q.

(c) if m>n and rank(A) =7 <n then A can be factorized using a QR factorization, with
column interchanges, as
A=0Q ( R) Pr
0
where () is an m by m orthogonal matrix, R is an 7 by n upper trapezoidal matrix and P is an
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n by n permutation matrix. The pseudo-inverse of A is then given by
A* = PR"(RR")"'Q,
where Q consists of the first 7 columns of Q.

(d) if rank(A) = r < k = min(m,n), then A can be factorized as the singular value decomposi-
tion
A=UxXVT,

where U is an m by m orthogonal matrix, V' is an n by n orthogonal matrix and X' is an m by
n diagonal matrix with non-negative diagonal elements ¢. The first £ columns of U and V are
the left- and right-hand singular vectors of A respectively and the k£ diagonal elements of X
are the singular values of A. X' may be chosen so that

o202 20,20

and in this case if rank(A) = r then

o202z 20>0, o41=--=0,=0.
If U and V consist of the first 7 columns of U and V respectively and X is an 7 by r diagonal
matrix with diagonal elements oy, 05,...,0, then A is given by
A=U0ZV"T

and the pseudo-inverse of A is given by
A = VST
Notice that
ATA=v(Z"D)v!
which is the classical eigenvalue (spectral) factorization of ATA.

(e) if A is complex then the above relationships are still true if we use ‘unitary’ in place of
‘orthogonal’ and conjugate transpose in place of transpose. For example, the singular value
decomposition of A is

A=UxVvH,

where U and V are unitary, V! the conjugate transpose of V and X is as in (d) above.

2.2 Matrix Factorizations

The routines in this section perform matrix factorizations which are required for the solution of systems
of linear equations with various special structures. A few routines which perform associated
computations are also included.

Other routines for matrix factorizations are to be found in Chapters FO7, FO8 and F11.

This section also contains a few routines associated with eigenvalue problems (see Chapter F02).
(Historical note: this section used to contain many more such routines, but they have now been
superseded by routines in Chapter FO08.)

2.3 Matrix Arithmetic and Manipulation

The intention of routines in this section (sub-chapters FO1C, FO1V and F01Z) is to cater for some of the
commonly occurring operations in matrix manipulation, i.e., transposing a matrix or adding part of one
matrix to another, and for conversion between different storage formats,such as conversion between
rectangular band matrix storage and packed band matrix storage. For vector or matrix-vector or matrix-
matrix operations refer to Chapters FO6 and F16.
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2.4 Matrix Functions

Given a square matrix A, the matrix function f(A) is a matrix with the same dimensions as A which
provides a generalization of the scalar function f.

If A has a full set of eigenvectors V' then A can be factorized as
A=VDV
where D is the diagonal matrix whose diagonal elements, d;, are the eigenvalues of A. f(A) is given by
f(A) =VD)V,
where f(D) is the diagonal matrix whose ith diagonal element is f(d;).

In general, A may not have a full set of eigenvectors. The matrix function can then be defined via a
Cauchy integral. For A € C"*",

1

74) = 5= [ 1)1 - )

where I" is a closed contour surrounding the eigenvalues of A, and f is analytic within I

Some matrix functions are defined implicitly. A matrix logarithm is a solution X to the equation
eX = A

In general X is not unique, but if A has no eigenvalues on the closed negative real line then a unique
principal logarithm exists whose eigenvalues have imaginary part between m and —m. Similarly, a
matrix square root is a solution X to the equation

X? = A.

If A has no eigenvalues on the closed negative real line then a unique principal square root exists with
eigenvalues in the right half-plane. If A has a vanishing eigenvalue then log (A) cannot be computed. If
the vanishing eigenvalue is defective (its algebraic multiplicity exceeds its geometric multiplicity, or
equivalently it occurs in a Jordan block of size greater than 1) then the square root cannot be computed.
If the vanishing eigenvalue is semisimple (its algebraic and geometric multiplicities are equal, or
equivalently it occurs only in Jordan blocks of size 1) then a square root can be computed.

Algorithms for computing matrix functions are usually tailored to a specific function. Currently Chapter
FO1 contains routines for calculating the exponential, logarithm, sine, cosine, sinh, cosh, square root
and general real power of both real and complex matrices. In addition there are routines to compute a
general function of real symmetric and complex Hermitian matrices and a general function of general
real and complex matrices.

The Fréchet derivative of a matrix function f(A) in the direction of the matrix E is the linear function
mapping E to L;(A, E) such that

f(A+E) = f(A) = Ly(A, E) = O(]|E)-

The Fréchet derivative measures the first-order effect on f(A) of perturbations in A. Chapter FO1
contains routines for calculating the Fréchet derivative of the exponential, logarithm and real powers of
both real and complex matrices.

The condition number of a matrix function is a measure of its sensitivity to perturbations in the data.
The absolute condition number measures these perturbations in an absolute sense, and is defined by

IF(A+ E) - f(A]

€

condaps (f, A)lime—osupy oy

The relative condition number, which is usually of more interest, measures these perturbations in a
relative sense, and is defined by

1A
ILFCAIF

The absolute and relative condition numbers can be expressed in terms of the norm of the Fréchet
derivative by

condye(f, A) = condaps(f, A)
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L(AE
Cond&bS(f? A) = max E#OM7
1E]|
A L(AE
Condrel(f’ A) H || max E#OM

T FA)] 2]

Chapter FOl contains routines for calculating the condition number of the matrix exponential,
logarithm, sine, cosine, sinh, cosh, square root and general real power of both real and complex
matrices. It also contains routines for estimating the condition number of a general function of a real or
complex matrix.

3

3.1

Recommendations on Choice and Use of Available Routines

Matrix Inversion

Note: before using any routine for matrix inversion, consider carefully whether it is really needed.

Although the solution of a set of linear equations Az = b can be written as x = A~'b, the solution
should never be computed by first inverting A and then computing A~'b; the routines in Chapters FO4
or FO7 should always be used to solve such sets of equations directly; they are faster in execution, and
numerically more stable and accurate. Similar remarks apply to the solution of least squares problems
which again should be solved by using the routines in Chapters FO4 and FO8 rather than by computing a
pseudo-inverse.

(a)

(b)

Nonsingular square matrices of order n

This chapter describes techniques for inverting a general real matrix A and matrices which are
positive definite (have all eigenvalues positive) and are either real and symmetric or complex and
Hermitian. It is wasteful and uneconomical not to use the appropriate routine when a matrix is
known to have one of these special forms. A general routine must be used when the matrix is not
known to be positive definite. In most routines the inverse is computed by solving the linear
equations Ax; = e;, for i =1,2,...,n, where e; is the ith column of the identity matrix.

Routines are given for calculating the approximate inverse, that is solving the linear equations just
once, and also for obtaining the accurate inverse by successive iterative corrections of this first
approximation. The latter, of course, are more costly in terms of time and storage, since each
correction involves the solution of 7 sets of linear equations and since the original A and its LU
decomposition must be stored together with the first and successively corrected approximations to
the inverse. In practice the storage requirements for the ‘corrected’ inverse routines are about
double those of the ‘approximate’ inverse routines, though the extra computer time is not
prohibitive since the same matrix and the same LU decomposition is used in every linear equation
solution.

Despite the extra work of the ‘corrected’ inverse routines they are superior to the ‘approximate’
inverse routines. A correction provides a means of estimating the number of accurate figures in the
inverse or the number of ‘meaningful’ figures relating to the degree of uncertainty in the
coefficients of the matrix.

The residual matrix R = AX — I, where X is a computed inverse of A, conveys useful
information. Firstly || R| is a bound on the relative error in X and secondly || R|| < guarantees the
convergence of the iterative process in the ‘corrected’ inverse routines.

The decision trees for inversion show which routines in Chapter FO04 and Chapter FO7 should be
used for the inversion of other special types of matrices not treated in the chapter.

General real rectangular matrices

For real matrices FOSAEF (DGEQRF) and FO1QJF return QR and R(Q) factorizations of A
respectively and FO8BFF (DGEQP3) returns the QR factorization with column interchanges. The
corresponding complex routines are FO8ASF (ZGEQRF), FOIRJF and FO8BTF (ZGEQP3)
respectively. Routines are also provided to form the orthogonal matrices and transform by the
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orthogonal matrices following the use of the above routines. FOIQGF and FO1RGF form the RQ
factorization of an upper trapezoidal matrix for the real and complex cases respectively.

FO1BLF uses the QR factorization as described in Section 2.1(ii)(a) and is the only routine that
explicitly returns a pseudo-inverse. If m > n, then the routine will calculate the pseudo-inverse A"
of the matrix A. If m < n, then the n by m matrix AT should be used. The routine will calculate

the pseudo-inverse Z = (AT)" = (A4")" of AT and the required pseudo-inverse will be ZT. The
routine also attempts to calculate the rank, r, of the matrix given a tolerance to decide when
elements can be regarded as zero. However, should this routine fail due to an incorrect
determination of the rank, the singular value decomposition method (described below) should be
used.

FO8KBF (DGESVD) and FO8KPF (ZGESVD) compute the singular value decomposition as
described in Section 2 for real and complex matrices respectively. If A has rank r» < k = min(m, n)
then the k — r smallest singular values will be negligible and the pseudo-inverse of A can be
obtained as AT = VX 'UT as described in Section 2. If the rank of A is not known in advance it
can be estimated from the singular values (see Section 2.4 in the FO4 Chapter Introduction). In the
real case with m > n, FOSAEF (DGEQRF) followed by FO2WUF provide details of the QR
factorization or the singular value decomposition depending on whether or not A is of full rank and
for some problems provides an attractive alternative to FOSKBF (DGESVD). For large sparse
matrices, leading terms in the singular value decomposition can be computed using routines from
Chapter F12.

3.2 Matrix Factorizations

Each of these routines serves a special purpose required for the solution of sets of simultaneous linear
equations or the eigenvalue problem. For further details you should consult Sections 3 or 4 in the F02
Chapter Introduction or Sections 3 or 4 in the FO4 Chapter Introduction.

FO1BRF and FO1BSF are provided for factorizing general real sparse matrices. A more recent algorithm
for the same problem is available through F11MEF. For factorizing real symmetric positive definite
sparse matrices, see F11JAF. These routines should be used only when A is not banded and when the
total number of nonzero elements is less than 10% of the total number of elements. In all other cases
either the band routines or the general routines should be used.

3.3 Matrix Arithmetic and Manipulation

The routines in the FO1C section are designed for the general handling of m by n matrices. Emphasis
has been placed on flexibility in the argument specifications and on avoiding, where possible, the use of
internally declared arrays. They are therefore suited for use with large matrices of variable row and
column dimensions. Routines are included for the addition and subtraction of sub-matrices of larger
matrices, as well as the standard manipulations of full matrices. Those routines involving matrix
multiplication may use additional-precision arithmetic for the accumulation of inner products. See also
Chapter F06.

The routines in the FO1V (LAPACK) and FO1Z section are designed to allow conversion between full
storage format and one of the packed storage schemes required by some of the routines in Chapters
F02, F04, F06, FO7 and FOS.

3.3.1 NAG Names and LAPACK Names

Routines with NAG name beginning FO1V may be called either by their NAG names or by their
LAPACK names. When using the NAG Library, the double precision form of the LAPACK name must
be used (beginning with D- or Z-).

References to Chapter FOl routines in the manual normally include the LAPACK double precision
names, for example, FOIVEF (DTRTTF).

The LAPACK routine names follow a simple scheme (which is similar to that used for the BLAS in
Chapter F06). Most names have the structure XYYTZZ, where the components have the following
meanings:
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—the initial letter, X, indicates the data type (real or complex) and precision:
S — real, single precision (in Fortran, 4 byte length REAL)
D - real, double precision (in Fortran, 8 byte length REAL)
C — complex, single precision (in Fortran, 8 byte length COMPLEX)
Z — complex, double precision (in Fortran, 16 byte length COMPLEX)

—the fourth letter, T, indicates that the routine is performing a storage scheme transformation
(conversion)

—the letters YY indicate the original storage scheme used to store a triangular part of the matrix A,
while the letters ZZ indicate the target storage scheme of the conversion (YY cannot equal ZZ since
this would do nothing):

TF — Rectangular Full Packed Format (RFP)
TP — Packed Format
TR — Full Format

3.4 Matrix Functions

FOIECF and FOIFCF compute the matrix exponential, e, of a real and complex square matrix A
respectively. If estimates of the condition number of the matrix exponential are required then FO1JGF
and FO1IKGF should be used. If Fréchet derivatives are required then FO1JHF and FO1KHF should be
used.

FOI1EDF and FOIFDF compute the matrix exponential, e, of a real symmetric and complex Hermitian
matrix respectively. If the matrix is real symmetric, or complex Hermitian then it is recommended that
FO1EDF, or FO1FDF be used as they are more efficient and, in general, more accurate than FO1ECF and
FO1FCF.

FO1EJF and FOIFJF compute the principal matrix logarithm, log (A), of a real and complex square
matrix A respectively. If estimates of the condition number of the matrix logarithm are required then
FO1JJF and FO1KJF should be used. If Fréchet derivatives are required then FO1JKF and FO1KKF
should be used.

FO1EKF and FOIFKF compute the matrix exponential, sine, cosine, sinh or cosh of a real and complex
square matrix A respectively. If the matrix exponential is required then it is recommended that FO1ECF
or FO1FCF be used as they are, in general, more accurate than FO1EKF and FO1FKF. If estimates of the
condition number of the matrix function are required then FO1JAF and FO1KAF should be used.

FO1ELF and FO1EMF compute the matrix function, f(A), of a real square matrix. FOIFLF and FOIFMF
compute the matrix function of a complex square matrix. The derivatives of f are required for these
computations. FOIELF and FOIFLF use numerical differentiation to obtain the derivatives of f.
FO1IEMF and FO1FMF use derivatives you have supplied. If estimates of the condition number are
required but you are not supplying derivatives then FO1JBF and FOIKBF should be used. If estimates of
the condition number of the matrix function are required and you are supplying derivatives of f, then
FO1JCF and FO1KCF should be used.

If the matrix A is real symmetric or complex Hermitian then it is recommended that to compute the
matrix function, f(A), FOIEFF and FOIFFF are used respectively as they are more efficient and, in
general, more accurate than FOIELF, FO1EMF, FOIFLF and FO1FMF.

FOIGAF and FOIHAF compute the matrix function ¢4 B for explicitly stored dense real and complex
matrices A and B respectively while FOIGBF and FOIHBF compute the same using reverse
communication. In the latter case, control is returned to you. You should calculate any required matrix-
matrix products and then call the routine again. See Section 3.3.3 in How to Use the NAG Library and
its Documentation for further information.

FO1ENF and FOIFNF compute the principal square root A'/2 of a real and complex square matrix A
respectively. If A is complex and upper triangular then FOIFPF should be used. If A is real and upper
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quasi-triangular then FO1EPF should be used. If estimates of the condition number of the matrix square
root are required then FO1JDF and FO1KDF should be used.

FOIEQF and FOIFQF compute the matrix power AP, where p € R, of real and complex matrices
respectively. If estimates of the condition number of the matrix power are required then FO1JEF and
FOIKEF should be used. If Fréchet derivatives are required then FO1JFF and FO1KFF should be used.

4 Decision Trees

The decision trees show the routines in this chapter and in Chapter F04, Chapter FO7 and Chapter FO8
that should be used for inverting matrices of various types. They also show which routine should be
used to calculate various matrix functions.

(1) Matrix Inversion:

Tree 1

|Is A an n by n matrix of rank n? |—|Is A a real matrix? |—| see Tree 2
yes yes
no

| see Tree 3 |

no
| see Tree 4 |

Tree 2: Inverse of a real n by n matrix of full rank

|Is A a band matrix? |—| See Note 1.
yes
|no
. o . Do you want guaranteed
? 9
Is A symmetric? VoS Is A positive definite? ves |accuracy? (See Note 2) W' FO1ABF |

[vo

Is one triangle of A stored

as a linear array? yes FO7GDF and FO7GJF |

|no

FO1ADF or FO7FDF and
FO7FJF

no

Is one triangle of A stored
as a linear array? yes FO7PDF and FO7PJF

no

| FO7MDF and FO7MJF |

no

Is A triangular? |—| Is A stored as a linear array? |—| FO7UJF
yes yes
no
| FO7TJF |
no
Do you want guaranteed
accuracy? (See Note 2) yes FO7ABF |

[no
FO7ADF and FOTAJF |
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Tree 3: Inverse of a complex » by n» matrix of full rank

Is A a band matrix? |—| See Note 1.
yes
oo
Is A Hermitian? Is A positive definite? Is one triangle of A stored —| FO7GRF and FO7GWF
yes yes [as a linear array? yes

no

| FO7FRF and FO7TFWF |

no

1:9 one triangle A stored as a FO7PRF and FO7PWF |
linear array? yes

no

FO7MRF and FOTMWEF |

no
Is A symmetric? = fs ‘;nﬁrg‘;nfrlfa;’f A stored ﬁ FO7QRF and FOTQWF
no
| FOTNRF and FONWF |
no
Is A triangular? lﬁ' Is A stored as a linear array? lﬁ' FO7TUWF
no
| FO7TWF |
no
FO7ANF or FO7ARF and
FO7TAWF
Tree 4: Pseudo-inverses
Is A a complex matrix? ves Is A of full rank? ves 111;1 f:,l, m by n matrix with E' FOIRJF and FOIRKF
no
FO8ASF and FOSAUF or
FOSATF
no
FOSKPF |
no
Is A of full rank? = iii‘ anm by n matrix with ﬁ FOIQJF and FOIQKF
no
FOS8AEF and FOSAGF or
FOSAFF
no
leil 21{17 m by n matrix with E' FOSKBF |
| no
ity e vornt [ o]
[0
| FOIBLF |

Note 1: the inverse of a band matrix A does not in general have the same shape as A, and no routines
are provided specifically for finding such an inverse. The matrix must either be treated as a full matrix,
or the equations AX = B must be solved, where B has been initialized to the identity matrix I. In the
latter case, see the decision trees in Section 4 in the FO4 Chapter Introduction.

Note 2: by ‘guaranteed accuracy’ we mean that the accuracy of the inverse is improved by use of the
iterative refinement technique using additional precision.
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(i1)) Matrix Factorizations: see the decision trees in Section 4 in the F02 and F04 Chapter
Introductions.

(i1i) Matrix Arithmetic and Manipulation: not appropriate.

(iv) Matrix Functions:
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Tree 5: Matrix functions f(A) of an n by n real matrix A

Introduction — FO01

|Is e B required? IW'IS A stored in dense format? |E| FO1GAF
no
| FOI1GBF |
no
|Is A real symmetric? |E|Is e required? |W| FO1EDF
no
| FO1EFF |
no
() required o e et FOLIAF
no
FOIEKF |
no
Is log (A) required? VoS {th:r?t}f;nigz?r;%mber of the matrix W' FO1JJF |
|n0
{(s) ;ilreit}irnecrléztu i(i:il;atlve of the matrix W' FOLIKF |
|no
FO1EJF |
no
e ] condidon et o he masis | |
|no
R = |
oo
FOIECF |
no
], S e of e s |y |
|n0
|Is the matrix upper quasi-triangular? lﬁ' FO1EPF |
|n0
| FOIENF |
no
Is A required? = Lso\gfr ‘;ﬁc’gﬁﬁg}, number of the matrix 3 FO1JEF |
oo
Lso \i}:r ];“;e]cl:ll;:etd({.i)erlvanve of the matrix W' FOLIFF |
oo
FOIEQF |
no
f(A) will be gomputed. Will derivatives Is the? conditipn number of the matrix _| FOLICF
of f be supplied by the user? yes | function required? yes
no
| FOIEMF |
no
Is the condition number of the matrix FOLIBF |

function required?

ol

no

| FO1ELF

Mark 26

FO1.11



Introduction — F0O1 NAG Library Manual

Tree 6: Matrix functions f(A) of an n by n complex matrix A

|Is e B required? IW'IS A stored in dense format? |E| FOIHAF
no
| FOIHBF |
no
|Is A complex Hermitian? |E|Is e required? lﬁ' FO1FDF
no
| FO1FFF |
no
o) reguired e e et FOIKAF
no
FOIFKF |
no
Is log (A) required? VoS {Z;:r?ﬂf;nigz?r;%mber of the matrix W' FO1KJF |
|no
{(s) ;lreit}ifcr};?u i(izgl;atlve of the matrix W' FOIKKF |
|no
FOIFJF |
no
s ) i ] condidon et o he matis | |
|no
R = |
oo
FOIFCF |
no
], S e of e s |y |
|n0
|Is the matrix upper triangular? Vs FO1FPF |
|n0
| FOIFNF |
no
Is A required? = Lso\gfr ‘;ﬁc’gﬁﬁg}, number of the matrix 3 FOIKEF |
oo
Lso \i}:r ];“;e]cl:ll;:etd({.i)erlvanve of the matrix W' FOIKFF |
oo
FO1FQF |
no
f(A) will be gomputed. Will derivatives Is the? conditipn number of the matrix _| FOIKCF
of f be supplied by the user? yes | function required? yes
no
| FOIFMF |
no
El rglteioiorrl;i;i?rr;dr}?umber of the matrix W' FOIKBF |
no
| FOIFLF |
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5  Functionality Index

Action of the matrix exponential on a complex MatriX......cccceeeeeeereiieereeeeeeeennnn. FO1IHAF
Action of the matrix exponential on a complex matrix (reverse communication) FO1HBF
Action of the matrix exponential on a real MatriX .......c.ceeeveviciiiiiiiiieeereeneniins FO1GAF
Action of the matrix exponential on a real matrix (reverse communication)..... FO1GBF

Inversion (also see Chapter F07),
real m by n matrix,

PSCUAO-TNVEISE. ..eeiiieeeeiiiiiiiieee e e e e e e e ettt e e e e e e e e e et eeeeaeeeeesennneeaaeeeas FO1BLF
real symmetric positive definite matrix,

ACCUTALE ITIVETSE. . .uuvvvreeiiteeeeeeeeaiiiiieteeeeeeeeeessaaanaettaeeeeeeeeeessaannnnessneeeeeeeeesaas FOIABF

APPTOXIMALE TNIVETSE ..vvveiireeeeriiiiiiiiiiieeeeeeeeeeaaaiititeeteeeeeeesssaaanniebeeeeeeeeeeeaans FO1ADF

Matrix Arithmetic and Manipulation,
matrix addition,

COMPIEX MALTICES ...vvvvvriiieeeeeeeiiiiiiitieeeeeeeeeeessititbereeeeeeeseeassnenenareeeeeaeeeaans FOICWF
TEAL MALTICES . c.ueviiiieiiiiiic ettt et e e FO1CTF
MAtriX MUIIPHICAION ...uvvviiiiiiieeeeieiiiiii e e e e e e e e e e e e et eeeeeeeeeas FO1CKF

matrix storage conversion,
full to packed triangular storage,

COMPIEX MALTICES -..vvvvvriirreeeeeeeiiiiiteeteeeeeee e e e ettt e eeeeeeeeessennbeeeeeeeas FO1VBF (ZTRTTP)
TEAL TNALTICES. .uuuuiiieeieeeeeeeeeeeeee ettt e e e e e e e e eaaeeeeas FO1VAF (DTRTTP)
full to Rectangular Full Packed storage,
(670 1110) (550 11 T: 13 0 0. QO PP U USRI FO1VFF (ZTRTTF)
TEAL MALTIX..eiiiiiieiee ittt e e e e e ettt e e e e e e e e e etbareeeeeeeeeeeeennnesnsaaeeeas FO1VEF (DTRTTF)
packed band «+ rectangular storage, special provision for diagonal
COMPIEX MALTICES Luvvveveiiniiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeerererrsraesreeeennnnnnnnns FO1ZDF
TEAL TNALTICES. ..uuuueeeieeeee e e e e e e e e e e e e e e e aeeeeas FO1ZCF
packed triangular to full storage,
COMPIEX MALTICES ...vvvvvirrrieeeeeeeieiiiiiiiireeeeeeeeeassentbbaeeeeeeeeeeesannnnneseeeeeas FO1VDF (ZTPTTR)
TEAL TNALTICES. .uuvuiieeeieeeeeeeeeeeeee e e e e e e e eaaeaaas FO1VCF (DTPTTR)
packed triangular to Rectangular Full Packed storage,
COMPIEX MALTICES Luvvvvriiinuiiniiieieeeeeeeeeeeeeeeeeeeeeereeeeereereerrssrrssssareseeeennnnnnns FO1VKF (ZTPTTF)
TEAL MALTICES. .iiiiiieiiiiiiiiiieee e e e e e ettt e e e e e e e e ettt e e e e e eeeeeeennerabaeeeeas FO1VIJF (DTPTTF)
packed triangular < square storage, special provision for diagonal
COMPIEX MALTICES ..uvvvvvrririeeeeeeeieiiiiitiieeeeeeeeeeaeearbraeeeeeaeeeeesannnnnreeeeeeas FO1ZBF
TEAL MALTICES . c.uuviiiiiiiiiiie ittt et e et e e e e e FO1ZAF
Rectangular Full Packed to full storage,
COMPIEX MALTICES ..vvvuiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeaseesneeenennennnnnns FO1VHF (ZTFTTR)
TEAL MALTICES. ceiiiiieiiiiiiiiiiieeee e e e e ettt e e e e e e e e e et reeeeeeeeeeennennsaeeeeas FO1VGF (DTFTTR)
Rectangular Full Packed to packed triangular storage,
COMPIEX MALTICES ...vvvvvveeiieeeeeeeiiiiiiieteeeeeee e e e ettt eeeeeeeeesesennbeeeeeeeas FO1VMF (ZTFTTP)
TEAL TNALTICES. ..uuuuieeieeeeeeeeeeeee e ee ettt e e e e e e e aaaeeeeas FO1VLF (DTFTTP)
matrix subtraction,
COMPIEX MALTICES ..vvvvvrririreeeeeeeieiiiiriieeeeeeeeeeseitatrareeeeeeeeessssnnnssasreeeeaeeesans FO1CWF
TEAL MNALTICES . c..ettiieeiiiiiie et et e et e e FO1CTF
MNALLIX TTANSPOSE .eeiiiiiittieeeeeeeeeaaeietitteteeeeeeeeeaaaenessaareeeeaaessesaasnsssnrreeeaaeesenns FO1CRF

Matrix function,
complex Hermitian n by n matrix,

MALriX EXPONENTIAL ... .uuuiiiiiiiiiieeeieiiiiiiii et e e e e e e e e e e e e e eiaraeeeeeas FO1FDF

MAtriX fUNCHON. ..ccoeieie e FO1FFF
complex n by n matrix,

condition number for a matrix exponential............ccccceeerrviiiiiiiiiiiiieeeernnnn. FO1KGF

condition number for a matrix exponential, logarithm, sine, cosine, sinh or FO1KAF

COSIL Lttt e e ——————

condition number for a matrix function, using numerical differentiation.. FO1KBF
condition number for a matrix function, using user-supplied derivatives. FO1KCF
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condition number for a matrix logarithm............ccccccoveeeiiiiiiiiiiiiiiiieeeeeen, FO1KJF
condition number for a MatriX POWET ........cceeevririiiirieeeeeeeeeiiiiriireeeeeeeeeans FO1KEF
condition number for the matrix square root, logarithm, sine, cosine, sinh FO1KDF
OF COSI ..ttt
Fréchet derivative

matrix eXpPonential.............cooeiiiiiiiiiiiiiiiii e FO1KHF

matrix logarithm.........ccccvvviiiiiiiiiiiee e FO1KKF

INALLIX POWET 1eeeeeeeeiiiiiiiiieeeeeeeeeesaaetetttreeeaaeeeeeaaaannnsareaeeeeaseesasssnsssseeees FO1KFF
general power

0011 b SUTTT U URNUTP PR FO1FQF
MAatriX eXPONENTIAl........uuuiiiiiiiiiiiiiiii e FOIFCF
matrix exponential, sine, cosine, sinh or cosh ..........ccccceeiiiiiiiiininnnl. FOI1FKF
matrix function, using numerical differentiation .............cccccceevevvcuvrnnennn... FO1FLF
matrix function, using user-supplied derivatives...........ccccceeeeeeriecnrrreennnn.. FO1FMF
matrix logarithm...........c.oiiiiiiiiiiiii e FOIFJF
MALTIX SQUATE TOOT...ueiiiiiiiiiieeeeee e ettt e e e e e e e e e sttt e e e eeeeeeeesaanbbbeeeeeeas FOIFNF
upper triangular

MALLIX SQUATE TOOT....uuuiiiiiiereeeeeeeeeeiiiiiiteeeeeeeeeeassantrareaeeeeeseesssnsnnnnsreeeens FO1FPF

real n by n matrix,

condition number for a matrix exponential............ccccceerreiiiiiiiiiiiieiieeeennnn. FO1JGF

condition number for a matrix function, using numerical differentiation.. FO1JBF
condition number for a matrix function, using user-supplied derivatives. FO1JCF

condition number for a matrix logarithm............cccccceveeeiiiniiiiiiiiiiiieeeeee, FO1JJF
condition number for a MatriX POWET .......ccevreuuririiiiiieeeeeeeeiiiiiiireeeeeeeeeenns FO1JEF
condition number for the matrix exponential, logarithm, sine, cosine, sinh FO1JAF
OF COSI Loiiiiiiiiiiiiiiiiititit s s e s s e e s e e e eeeeeeeaaaaaaaaaaeeeereeeeeesssssssssssssssssssnsssnnnnnnn
condition number for the matrix square root, logarithm, sine, cosine, sinh FO1JDF
OF COSM oottt
Fréchet derivative
MAatriX eXPONENIAl........uuviiiiiiieiiiiiiiiiiiiiiee e e e e e e e FO1JHF
matrix 10Zarithm............coooiiiiiiiii e FO1JKF
TNALTIX POWET ceeeeeeiiiiiiiiiiteee e e e e e e e ettt e e e e e e e e e ettt et e eeeeeeessnnenbeeeeeeeas FOLJFF
general power
MAtriX eXPONENIAL........uviiiiiiiieiiiiiiiiiiiiiee e e e e e e e FO1EQF
MAtriX EXPONENEIAL.......uuiiiiiiiiiieeeieiiiiiiiiee e e e e e e e e e e e e e e eeeeaeeeeeas FO1ECF
matrix exponential, sine, cosine, sinh or cosh ..........cccccccvieeeeiiiiiiciiiieeen... FO1EKF
matrix function, using numerical differentiation ............cccccceevvviinnnneeenn... FO1ELF
matrix function, using user-supplied derivatives .........ccccceeeeeeeeeeeieeeeeeeennnn. FO1EMF
MAtriX loGarithm........cccuuviiiiiiiiiiiiiie e FO1EJF
MALLIX SQUATE TOOL .. .uueuiiiiiiiieeeeeeeeeaaieitreeeeeeeeeeseaaaannsssrereeeaaaesesssssnnnsseeeeens FO1ENF
upper quasi-triangular
MALFIX SQUATE TOOT..ieeiieeeieeeeeeeeeeiiieeiieeeeitreeeerrarreeaeeanesannnnnaaaeaaaaaaaaaaeens FO1EPF
real symmetric n by n matrix,
matrix eXpPonential.............oooiiiiiiiiiiiiiii e FO1EDF
MAtriX fUNCHON. ...coeeeiiiiee e FO1EFF
Matrix Transformations,
complex matrix, form unitary matriX...........ccceeeeiiiiiiiiiiiieiiiiiiieiereeeieeeeeeeeeanns FO1RKF
complex m by n(m < n) matrix,
RQO factOTIZatiON ......ccoiiiiiiiiiiiiiiiiiee e e e e e e e e e e e e e e e e e e e e e e eeeeeeeeeees FO1RJF
complex upper trapezoidal matrix,
RQ factOTIZatiON ..........oiiiiiiiiiiiiiiiiiiiiiiee e e e e e e e e e e e e e e aeeeeeeeeeeeeereeeeeees FO1RGF
eigenproblem Ax = ABxz, A, B banded,
reduction to standard symmetric problem ...........cccccvviiiiiiiiiiiiiiiiiiiiiiieeen. FO1BVF
real almost block-diagonal matrix,
LU factOrIZaAtION .....oevvviiiiiiiiiiiieeeeeeeeee e e e e e e e e e e e e e e e e FO1LHF
real band symmetric positive definite matrix,
ULDLTUT faCtOriZation........c.oeeeoeeieeeeeee oo FO1BUF
variable bandwidth, LDLT factorization ..........cocveeeeeeeeeeeeeeeeeeeeeeeeeeens FOIMCF
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real matrix,

form orthogonal MAtIIX .......cceeeeiiiiiiiiiiiie e e e e e e e e e e e FO1QKF
real m by n(m < n) matrix,

RQ faCtOTIZAtION ..eeeeeeiiiiiiiieeeee et e e e e e e FOI1QJF
real sparse matrix,

FACTOTIZAtION ....eeiiiiiiiiii ettt e FO1BRF

factorization, known Sparsity pattern.............cccccovviririieeeeeeiiiiiiiiiiieeeeeeeeenns FO1BSF
real upper trapezoidal matrix,

RQO factOTIZatiON ..........oiiiiiiiiiiiiiiiiiiiiiiie e e e e e e e e e e e eeeaeaeeeeeeeeeeeeeeeeeaes FO1QGF
tridiagonal matrix,

LU factOriZAtION ...eeeeiiieieiiiiiiiiiiiieeee e ettt e e ettt e e e e e e e e e FO1LEF

6  Auxiliary Routines Associated with Library Routine Arguments

None.

7 Routines Withdrawn or Scheduled for Withdrawal

The following lists all those routines that have been withdrawn since Mark 19 of the Library or are
scheduled for withdrawal at one of the next two marks.

Withdrawn Mark of
Routine Withdrawal Replacement Routine(s)

FOIMAF 19 F11JAF
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