
NAG Library Routine Document

F01EMF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01EMF computes the matrix function, f Að Þ, of a real n by n matrix A, using analytical derivatives of
f you have supplied.

2 Specification

SUBROUTINE F01EMF (N, A, LDA, F, IUSER, RUSER, IFLAG, IMNORM, IFAIL)

INTEGER N, LDA, IUSER(*), IFLAG, IFAIL
REAL (KIND=nag_wp) A(LDA,*), RUSER(*), IMNORM
EXTERNAL F

3 Description

f Að Þ is computed using the Schur–Parlett algorithm described in Higham (2008) and Davies and
Higham (2003).

The scalar function f , and the derivatives of f , are returned by the subroutine F which, given an integer
m, should evaluate f mð Þ zið Þ at a number of (generally complex) points zi, for i ¼ 1; 2; . . . ; nz. For any z
on the real line, f zð Þ must also be real. F01EMF is therefore appropriate for functions that can be
evaluated on the complex plane and whose derivatives, of arbitrary order, can also be evaluated on the
complex plane.

4 References

Davies P I and Higham N J (2003) A Schur–Parlett algorithm for computing matrix functions. SIAM J.
Matrix Anal. Appl. 25(2) 464–485

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n matrix A.

On exit: the n by n matrix, f Að Þ.

3: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01EMF
is called.

Constraint: LDA � N.

F01 – Matrix Operations, Including Inversion F01EMF

Mark 26 F01EMF.1

4: F – SUBROUTINE, supplied by the user. External Procedure

Given an integer m, the subroutine F evaluates f mð Þ zið Þ at a number of points zi.

The specification of F is:

SUBROUTINE F (M, IFLAG, NZ, Z, FZ, IUSER, RUSER)

INTEGER M, IFLAG, NZ, IUSER(*)
REAL (KIND=nag_wp) RUSER(*)
COMPLEX (KIND=nag_wp) Z(NZ), FZ(NZ)

1: M – INTEGER Input

On entry: the order, m, of the derivative required.

If M ¼ 0, f zið Þ should be returned. For M > 0, f mð Þ zið Þ should be returned.

2: IFLAG – INTEGER Input/Output

On entry: IFLAG will be zero.

On exit: IFLAG should either be unchanged from its entry value of zero, or may be set
nonzero to indicate that there is a problem in evaluating the function f zð Þ; for instance
f zið Þ may not be defined for a particular zi. If IFLAG is returned as nonzero then
F01EMF will terminate the computation, with IFAIL ¼ 2.

3: NZ – INTEGER Input

On entry: nz, the number of function or derivative values required.

4: ZðNZÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the nz points z1; z2; . . . ; znz
at which the function f is to be evaluated.

5: FZðNZÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the nz function or derivative values. FZðiÞ should return the value f mð Þ zið Þ, for
i ¼ 1; 2; . . . ; nz. If zi lies on the real line, then so must f mð Þ zið Þ.

6: IUSERð�Þ – INTEGER array User Workspace
7: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

F is called with the arguments IUSER and RUSER as supplied to F01EMF. You should
use the arrays IUSER and RUSER to supply information to F.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which F01EMF is called. Arguments denoted as Input must not be changed by this
procedure.

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by F01EMF, but are passed directly to F and should be used to
pass information to this routine.

7: IFLAG – INTEGER Output

On exit: IFLAG ¼ 0, unless IFLAG has been set nonzero inside F, in which case IFLAG will be
the value set and IFAIL will be set to IFAIL ¼ 2.

8: IMNORM – REAL (KIND=nag_wp) Output

On exit: if A has complex eigenvalues, F01EMF will use complex arithmetic to compute f Að Þ.
The imaginary part is discarded at the end of the computation, because it will theoretically

F01EMF NAG Library Manual

F01EMF.2 Mark 26

vanish. IMNORM contains the 1-norm of the imaginary part, which should be used to check that
the routine has given a reliable answer.

If A has real eigenvalues, F01EMF uses real arithmetic and IMNORM ¼ 0.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A Taylor series failed to converge.

IFAIL ¼ 2

IFLAG has been set nonzero by the user.

IFAIL ¼ 3

There was an error whilst reordering the Schur form of A.
Note: this failure should not occur and suggests that the routine has been called incorrectly.

IFAIL ¼ 4

The routine was unable to compute the Schur decomposition of A.
Note: this failure should not occur and suggests that the routine has been called incorrectly.

IFAIL ¼ 5

An unexpected internal error occurred. Please contact NAG.

IFAIL ¼ �1

Input argument number valueh i is invalid.

IFAIL ¼ �3

On entry, argument LDA is invalid.
Constraint: LDA � N.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

F01 – Matrix Operations, Including Inversion F01EMF

Mark 26 F01EMF.3

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

For a normal matrix A (for which ATA ¼ AAT), the Schur decomposition is diagonal and the algorithm
reduces to evaluating f at the eigenvalues of A and then constructing f Að Þ using the Schur vectors.
This should give a very accurate result. In general, however, no error bounds are available for the
algorithm. See Section 9.4 of Higham (2008) for further discussion of the Schur–Parlett algorithm.

8 Parallelism and Performance

F01EMF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library. In these implementations, this routine may make calls to the user-supplied functions from
within an OpenMP parallel region. Thus OpenMP directives within the user functions can only be used
if you are compiling the user-supplied function and linking the executable in accordance with the
instructions in the Users' Note for your implementation. The user workspace arrays IUSER and RUSER
are classified as OpenMP shared memory and use of IUSER and RUSER has to take account of this in
order to preserve thread safety whenever information is written back to either of these arrays. If at all
possible, it is recommended that these arrays are only used to supply read-only data to the user
functions when a multithreaded implementation is being used.

F01EMF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

If A has real eigenvalues then up to 6n2 of real allocatable memory may be required. If A has complex
eigenvalues then up to 6n2 of complex allocatable memory may be required.

The cost of the Schur–Parlett algorithm depends on the spectrum of A, but is roughly between 28n3

and n4=3 floating-point operations. There is an additional cost in evaluating f and its derivatives. If the
derivatives of f are not known analytically, then F01ELF can be used to evaluate f Að Þ using numerical
differentiation. If A is real symmetric then it is recommended that F01EFF be used as it is more
efficient and, in general, more accurate than F01EMF.

For any z on the real line, f zð Þ must be real. f must also be complex analytic on the spectrum of A.
These conditions ensure that f Að Þ is real for real A.

For further information on matrix functions, see Higham (2008).

If estimates of the condition number of the matrix function are required then F01JCF should be used.

F01FMF can be used to find the matrix function f Að Þ for a complex matrix A.

F01EMF NAG Library Manual

F01EMF.4 Mark 26

10 Example

This example finds the e2A where

A ¼
1 0 �2 1

�1 2 0 1
2 0 1 0
1 0 �1 2

0
B@

1
CA:

10.1 Program Text

! F01EMF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

Module f01emfe_mod

! F01EMF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fexp2

Contains
Subroutine fexp2(m,iflag,nz,z,fz,iuser,ruser)

! .. Parameters ..
Complex (Kind=nag_wp), Parameter :: two = (2.0E0_nag_wp,0.0E0_nag_wp)

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: m, nz

! .. Array Arguments ..
Complex (Kind=nag_wp), Intent (Out) :: fz(nz)
Complex (Kind=nag_wp), Intent (In) :: z(nz)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Integer, Intent (Inout) :: iuser(*)

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
Continue
fz(1:nz) = (two**m)*exp(two*z(1:nz))

! Set iflag nonzero to terminate execution for any reason.
iflag = 0
Return

End Subroutine fexp2
End Module f01emfe_mod
Program f01emfe

! F01EMF Example Main Program

! .. Use Statements ..
Use nag_library, Only: f01emf, nag_wp, x04caf
Use f01emfe_mod, Only: fexp2

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: imnorm
Integer :: i, ifail, iflag, lda, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:)
Real (Kind=nag_wp) :: ruser(1)
Integer :: iuser(1)

! .. Executable Statements ..

F01 – Matrix Operations, Including Inversion F01EMF

Mark 26 F01EMF.5

Write (nout,*) ’F01EMF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n

lda = n
Allocate (a(lda,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! Find f(A)
ifail = 0
Call f01emf(n,a,lda,fexp2,iuser,ruser,iflag,imnorm,ifail)

! Print solution
ifail = 0
Call x04caf(’G’,’N’,n,n,a,lda,’F(A) = EXP(2A)’,ifail)

! Print the norm of the imaginary part to check it is small
Write (nout,*)
Write (nout,Fmt=’(1X,A,F6.2)’) ’Imnorm =’, imnorm

End Program f01emfe

10.2 Program Data

F01EMF Example Program Data

4 :Value of N

1.0 0.0 -2.0 1.0
-1.0 2.0 0.0 1.0
2.0 0.0 1.0 0.0
1.0 0.0 -1.0 2.0 :End of matrix A

10.3 Program Results

F01EMF Example Program Results

F(A) = EXP(2A)
1 2 3 4

1 -12.1880 0.0000 -3.4747 8.3697
2 -13.7274 54.5982 -23.9801 82.8593
3 -9.7900 0.0000 -25.4527 26.5294
4 -18.1597 0.0000 -34.8991 49.2404

Imnorm = 0.00

F01EMF NAG Library Manual

F01EMF.6 (last) Mark 26

	F01EMF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Davies and Higham (2003)
	Higham (2008)

	5 Arguments
	N
	A
	LDA
	F
	M
	IFLAG
	NZ
	Z
	FZ
	IUSER
	RUSER

	IUSER
	RUSER
	IFLAG
	IMNORM
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=-1
	IFAIL=-3
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Fortran Library Manual, Mark 26.1
	Copyright Statement
	Foreword
	Introduction
	How to Use the NAG Library and its Documentation
	Mark 26.1 NAG Fortran Library News
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Code Contributors
	Support from NAG
	Index

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Contents
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Contents
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Contents
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Contents
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Contents
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Contents
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Contents
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Contents
	D02 Chapter Introduction
	D02M-N Sub-chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Contents
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Contents
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Contents
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Contents
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Contents
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Contents
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Contents
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Contents
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Contents
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Contents
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Contents
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Contents
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Contents
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Contents
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Contents
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Contents
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Contents
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Contents
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Contents
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Contents
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Contents
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Contents
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Contents
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Contents
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Contents
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Contents
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Contents
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Contents
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Contents
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Contents
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Contents
	G13 Chapter Introduction

	G22 - Linear Model Specification
	G22 Chapter Contents
	G22 Chapter Introduction

	H - Operations Research
	H Chapter Contents
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Contents
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Contents
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Contents
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Contents
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Contents
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Contents
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Contents
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Contents
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Contents
	X07 Chapter Introduction

