
NAG Library Routine Document

E05USF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E05USF is designed to find the global minimum of an arbitrary smooth sum of squares function subject
to constraints (which may include simple bounds on the variables, linear constraints and smooth
nonlinear constraints) by generating a number of different starting points and performing a local search
from each using sequential quadratic programming.

2 Specification

SUBROUTINE E05USF (M, N, NCLIN, NCNLN, A, LDA, BL, BU, Y, CONFUN,
OBJFUN, NPTS, X, LDX, START, REPEAT1, NB, OBJF, F,
FJAC, LDFJAC, SDFJAC, ITER, C, LDC, CJAC, LDCJAC,
SDCJAC, CLAMDA, LDCLDA, ISTATE, LISTAT, IOPTS, OPTS,
IUSER, RUSER, INFO, IFAIL)

&
&
&
&

INTEGER M, N, NCLIN, NCNLN, LDA, NPTS, LDX, NB, LDFJAC,
SDFJAC, ITER(NB), LDC, LDCJAC, SDCJAC, LDCLDA,
ISTATE(LISTAT,*), LISTAT, IOPTS(740), IUSER(*),
INFO(NB), IFAIL

&
&
&

REAL (KIND=nag_wp) A(LDA,*), BL(N+NCLIN+NCNLN), BU(N+NCLIN+NCNLN),
Y(M), X(LDX,*), OBJF(NB), F(M,*),
FJAC(LDFJAC,SDFJAC,*), C(LDC,*),
CJAC(LDCJAC,SDCJAC,*), CLAMDA(LDCLDA,*), OPTS(485),
RUSER(*)

&
&
&
&

LOGICAL REPEAT1
EXTERNAL CONFUN, OBJFUN, START

Before calling E05USF, the optional parameter arrays IOPTS and OPTS must be initialized for use with
E05USF by calling E05ZKF with OPTSTR set to ‘Initialize = e05usf’. Optional parameters may
subsequently be specified by calling E05ZKF before the call to E05USF.

3 Description

The local minimization method is E04USA. The problem is assumed to be stated in the following form:

minimize
x2Rn

F xð Þ ¼ 1
2

Xm
i¼1

yi � fi xð Þð Þ2 subject to l �
x

ALx
c xð Þ

0
@

1
A � u; ð1Þ

where F xð Þ (the objective function) is a nonlinear function which can be represented as the sum of
squares of m subfunctions y1 � f1 xð Þð Þ; y2 � f2 xð Þð Þ; . . . ; ym � fm xð Þð Þ, the yi are constant, AL is an nL

by n constant linear constraint matrix, and c xð Þ is an nN element vector of nonlinear constraint
functions. (The matrix AL and the vector c xð Þ may be empty.) The objective function and the constraint
functions are assumed to be smooth, i.e., at least twice-continuously differentiable. (This routine will
usually solve (1) if any isolated discontinuities are away from the solution.)

E05USF solves a user-specified number of local optimization problems with different starting points.
You may specify the starting points via the subroutine START. If a random number generator is used to
generate the starting points then the argument REPEAT1 allows you to specify whether a repeatable set
of points are generated or whether different starting points are generated on different calls. The
resulting local minima are ordered and the best NB results returned in order of ascending values of the
resulting objective function values at the minima. Thus the value returned in position 1 will be the best
result obtained. If a sufficiently high number of different points are chosen then this is likely to be the
global minimum.

E05 – Global Optimization of a Function E05USF

Mark 26 E05USF.1

4 References

Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

Hock W and Schittkowski K (1981) Test Examples for Nonlinear Programming Codes. Lecture Notes in
Economics and Mathematical Systems 187 Springer–Verlag

5 Arguments

1: M – INTEGER Input

On entry: m, the number of subfunctions associated with F xð Þ.
Constraint: M > 0.

2: N – INTEGER Input

On entry: n, the number of variables.

Constraint: N > 0.

3: NCLIN – INTEGER Input

On entry: nL, the number of general linear constraints.

Constraint: NCLIN � 0.

4: NCNLN – INTEGER Input

On entry: nN , the number of nonlinear constraints.

Constraint: NCNLN � 0.

5: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N if NCLIN > 0, and at least 1
otherwise.

On entry: the matrix AL of general linear constraints in (1). That is, the ith row contains the
coefficients of the ith general linear constraint, for i ¼ 1; 2; . . . ;NCLIN.

If NCLIN ¼ 0, the array A is not referenced.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which E05USF
is called.

Constraint: LDA � NCLIN.

7: BLðNþ NCLINþ NCNLNÞ – REAL (KIND=nag_wp) array Input
8: BUðNþ NCLINþ NCNLNÞ – REAL (KIND=nag_wp) array Input

On entry: BL must contain the lower bounds and BU the upper bounds for all the constraints in
the following order. The first n elements of each array must contain the bounds on the variables,
the next nL elements the bounds for the general linear constraints (if any) and the next nN

elements the bounds for the general nonlinear constraints (if any). To specify a nonexistent lower
bound (i.e., lj ¼ �1), set BLðjÞ � �bigbnd, and to specify a nonexistent upper bound (i.e.,
uj ¼ þ1), set BUðjÞ � bigbnd; the default value of bigbnd is 1020, but this may be changed by
the optional parameter Infinite Bound Size. To specify the jth constraint as an equality, set
BLðjÞ ¼ BUðjÞ ¼ �, say, where �j j < bigbnd.

Constraints:

BLðjÞ � BUðjÞ, for j ¼ 1; 2; . . . ;Nþ NCLINþ NCNLN;
if BLðjÞ ¼ BUðjÞ ¼ �, �j j < bigbnd.

E05USF NAG Library Manual

E05USF.2 Mark 26

9: YðMÞ – REAL (KIND=nag_wp) array Input

On entry: the coefficients of the constant vector y of the objective function.

10: CONFUN – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

CONFUN must calculate the vector c xð Þ of nonlinear constraint functions and (optionally) its

Jacobian (¼ @c

@x
) for a specified n-element vector x. If there are no nonlinear constraints (i.e.,

NCNLN ¼ 0), CONFUN will never be called by E05USF and CONFUN may be the dummy
routine E04UDM. (E04UDM is included in the NAG Library.) If there are nonlinear constraints,
the first call to CONFUN will occur before the first call to OBJFUN.

The specification of CONFUN is:

SUBROUTINE CONFUN (MODE, NCNLN, N, LDCJSL, NEEDC, X, C, CJSL,
NSTATE, IUSER, RUSER)

&

INTEGER MODE, NCNLN, N, LDCJSL, NEEDC(NCNLN), NSTATE,
IUSER(*)

&

REAL (KIND=nag_wp) X(N), C(NCNLN), CJSL(LDCJSL,*), RUSER(*)

1: MODE – INTEGER Input/Output

On entry: indicates which values must be assigned during each call of CONFUN. Only
the following values need be assigned, for each value of i such that NEEDCðiÞ > 0:

MODE ¼ 0
CðiÞ, the ith nonlinear constraint.

MODE ¼ 1
All available elements in the ith row of CJSL.

MODE ¼ 2
CðiÞ and all available elements in the ith row of CJSL.

On exit: may be set to a negative value if you wish to abandon the solution to the
current local minimization problem. In this case E05USF will move to the next local
minimization problem.

2: NCNLN – INTEGER Input

On entry: nN , the number of nonlinear constraints.

3: N – INTEGER Input

On entry: n, the number of variables.

4: LDCJSL – INTEGER Input

On entry: LDCJSL is the first dimension of the array CJSL.

5: NEEDCðNCNLNÞ – INTEGER array Input

On entry: the indices of the elements of C and/or CJSL that must be evaluated by
CONFUN. If NEEDCðiÞ > 0, CðiÞ and/or the available elements of the ith row of CJSL
(see argument MODE) must be evaluated at x.

6: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: x, the vector of variables at which the constraint functions and/or the
available elements of the constraint Jacobian are to be evaluated.

E05 – Global Optimization of a Function E05USF

Mark 26 E05USF.3

7: CðNCNLNÞ – REAL (KIND=nag_wp) array Output

On exit: if NEEDCðiÞ > 0 and MODE ¼ 0 or 2, CðiÞ must contain the value of ci xð Þ.
The remaining elements of C, corresponding to the non-positive elements of NEEDC,
need not be set.

8: CJSLðLDCJSL; �Þ – REAL (KIND=nag_wp) array Input/Output

CJSL may be regarded as a two-dimensional ‘slice’ of the three-dimensional array
CJAC of E05USF.

On entry: unless Derivative Level ¼ 2 or 3, the elements of CJSL are set to special
values which enable E05USF to detect whether they are changed by CONFUN.

On exit: if NEEDCðiÞ > 0 and MODE ¼ 1 or 2, the ith row of CJSL must contain the
available elements of the vector rci given by

rci ¼ @ci
@x1

;
@ci
@x2

; . . . ;
@ci
@xn

� �T

;

where
@ci
@xj

is the partial derivative of the ith constraint with respect to the jth variable,

evaluated at the point x. See also the argument NSTATE. The remaining rows of CJSL,
corresponding to non-positive elements of NEEDC, need not be set.

If all elements of the constraint Jacobian are known (i.e., Derivative Level ¼ 2 or 3;
note the default is Derivative Level ¼ 3), any constant elements may be assigned to
CJSL one time only at the start of each local optimization. An element of CJSL that is
not subsequently assigned in CONFUN will retain its initial value throughout the local
optimization. Constant elements may be loaded into CJSL during the first call to
CONFUN for the local optimization (signalled by the value NSTATE ¼ 1). The ability
to preload constants is useful when many Jacobian elements are identically zero, in
which case CJSL may be initialized to zero and nonzero elements may be reset by
CONFUN.

Note that constant nonzero elements do affect the values of the constraints. Thus, if
CJSLði; jÞ is set to a constant value, it need not be reset in subsequent calls to
CONFUN, but the value CJSLði; jÞ � XðjÞ must nonetheless be added to CðiÞ. For
example, if CJSLð1; 1Þ ¼ 2 and CJSLð1; 2Þ ¼ �5 then the term 2� Xð1Þ � 5� Xð2Þ
must be included in the definition of Cð1Þ.
It must be emphasized that, if Derivative Level ¼ 0 or 1, unassigned elements of CJSL
are not treated as constant; they are estimated by finite differences, at nontrivial
expense. If you do not supply a value for the optional parameter Difference Interval,
an interval for each element of x is computed automatically at the start of each local
optimization. The automatic procedure can usually identify constant elements of CJSL,
which are then computed once only by finite differences.

9: NSTATE – INTEGER Input

On entry: if NSTATE ¼ 1 then E05USF is calling CONFUN for the first time on the
current local optimization problem. This argument setting allows you to save
computation time if certain data must be read or calculated only once.

10: IUSERð�Þ – INTEGER array User Workspace
11: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

CONFUN is called with the arguments IUSER and RUSER as supplied to E05USF. You
should use the arrays IUSER and RUSER to supply information to CONFUN.

CONFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E05USF is called. Arguments denoted as Input must not be changed
by this procedure.

E05USF NAG Library Manual

E05USF.4 Mark 26

CONFUN should be tested separately before being used in conjunction with E05USF. See also
the description of the optional parameter Verify.

11: OBJFUN – SUBROUTINE, supplied by the user. External Procedure

OBJFUN must calculate either the ith element of the vector f xð Þ ¼ f1 xð Þ; f2 xð Þ; . . . ; fm xð Þð ÞT or

all m elements of f xð Þ and (optionally) its Jacobian (¼ @f

@x
) for a specified n-element vector x.

The specification of OBJFUN is:

SUBROUTINE OBJFUN (MODE, M, N, LDFJSL, NEEDFI, X, F, FJSL,
NSTATE, IUSER, RUSER)

&

INTEGER MODE, M, N, LDFJSL, NEEDFI, NSTATE, IUSER(*)
REAL (KIND=nag_wp) X(N), F(M), FJSL(LDFJSL,*), RUSER(*)

1: MODE – INTEGER Input/Output

On entry: indicates which values must be assigned during each call of OBJFUN. Only
the following values need be assigned:

MODE ¼ 0 and NEEDFI ¼ i, where i > 0
FðiÞ.

MODE ¼ 0 and NEEDFI < 0
F.

MODE ¼ 1 and NEEDFI < 0
All available elements of FJSL.

MODE ¼ 2 and NEEDFI < 0
F and all available elements of FJSL.

On exit: may be set to a negative value if you wish to abandon the solution to the
current local minimization problem. In this case E05USF will move to the next local
minimization problem.

2: M – INTEGER Input

On entry: m, the number of subfunctions.

3: N – INTEGER Input

On entry: n, the number of variables.

4: LDFJSL – INTEGER Input

On entry: LDFJSL is the first dimension of the array FJSL.

5: NEEDFI – INTEGER Input

On entry: if NEEDFI ¼ i > 0, only the ith element of f xð Þ needs to be evaluated at x;
the remaining elements need not be set. This can result in significant computational
savings when m � n.

6: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: x, the vector of variables at which the objective function and/or all available
elements of its gradient are to be evaluated.

7: FðMÞ – REAL (KIND=nag_wp) array Output

On exit: if MODE ¼ 0 and NEEDFI ¼ i > 0, FðiÞ must contain the value of fi at x.

E05 – Global Optimization of a Function E05USF

Mark 26 E05USF.5

If MODE ¼ 0 or 2 and NEEDFI < 0, FðiÞ must contain the value of fi at x, for
i ¼ 1; 2; . . . ;m.

8: FJSLðLDFJSL; �Þ – REAL (KIND=nag_wp) array Input/Output

FJSL may be regarded as a two-dimensional ‘slice’ of the three-dimensional array
FJAC of E05USF.

On entry: is set to a special value.

On exit: if MODE ¼ 1 or 2 and NEEDFI < 0, the ith row of FJSL must contain the
available elements of the vector rfi given by

rfi ¼ @fi=@x1; @fi=@x2; . . . ; @fi=@xnð ÞT;
evaluated at the point x. See also the argument NSTATE.

9: NSTATE – INTEGER Input

On entry: if NSTATE ¼ 1 then E05USF is calling OBJFUN for the first time on the
current local optimization problem. This argument setting allows you to save
computation time if certain data must be read or calculated only once.

10: IUSERð�Þ – INTEGER array User Workspace
11: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

OBJFUN is called with the arguments IUSER and RUSER as supplied to E05USF. You
should use the arrays IUSER and RUSER to supply information to OBJFUN.

OBJFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E05USF is called. Arguments denoted as Input must not be changed by this
procedure.

OBJFUN should be tested separately before being used in conjunction with E05USF. See also the
description of the optional parameter Verify.

12: NPTS – INTEGER Input

On entry: the number of different starting points to be generated and used. The more points used,
the more likely that the best returned solution will be a global minimum.

Constraint: 1 � NB � NPTS.

13: XðLDX; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array X must be at least NB.

On exit: Xðj; iÞ contains the final estimate of the ith solution, for j ¼ 1; 2; . . . ;N.

14: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which E05USF
is called.

Constraint: LDX � N.

15: START – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

START must calculate the NPTS starting points to be used by the local optimizer. If you do not
wish to write a routine specific to your problem then E05UCZ may be used as the actual
argument. E05UCZ is supplied in the NAG Library and uses the NAG quasi-random number
generators to distribute starting points uniformly across the domain. It is affected by the value of
REPEAT1.

E05USF NAG Library Manual

E05USF.6 Mark 26

The specification of START is:

SUBROUTINE START (NPTS, QUAS, N, REPEAT1, BL, BU, IUSER, RUSER,
MODE)

&

INTEGER NPTS, N, IUSER(*), MODE
REAL (KIND=nag_wp) QUAS(N,NPTS), BL(N), BU(N), RUSER(*)
LOGICAL REPEAT1

1: NPTS – INTEGER Input

On entry: indicates the number of starting points.

2: QUASðN;NPTSÞ – REAL (KIND=nag_wp) array Input/Output

On entry: all elements of QUAS will have been set to zero, so only nonzero values need
be set subsequently.

On exit: must contain the starting points for the NPTS local minimizations, i.e.,
QUASðj; iÞ must contain the jth component of the ith starting point.

3: N – INTEGER Input

On entry: the number of variables.

4: REPEAT1 – LOGICAL Input

On entry: specifies whether a repeatable or non-repeatable sequence of points are to be
generated.

5: BLðNÞ – REAL (KIND=nag_wp) array Input

On entry: the lower bounds on the variables. These may be used to ensure that the
starting points generated in some sense ‘cover’ the region, but there is no requirement
that a starting point be feasible.

6: BUðNÞ – REAL (KIND=nag_wp) array Input

On entry: the upper bounds on the variables. (See BL.)

7: IUSERð�Þ – INTEGER array User Workspace
8: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

START is called with the arguments IUSER and RUSER as supplied to E05USF. You
should use the arrays IUSER and RUSER to supply information to START.

9: MODE – INTEGER Input/Output

On entry: MODE will contain 0.

On exit: if you set MODE to a negative value then E05USF will terminate immediately
with IFAIL ¼ 9.

START must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E05USF is called. Arguments denoted as Input must not be changed by this
procedure.

16: REPEAT1 – LOGICAL Input

On entry: is passed as an argument to START and may be used to initialize a random number
generator to a repeatable, or non-repeatable, sequence. See Section 9 for more detail.

E05 – Global Optimization of a Function E05USF

Mark 26 E05USF.7

17: NB – INTEGER Input

On entry: the number of solutions to be returned. The routine saves up to NB local minima
ordered by increasing value of the final objective function. If the defining criterion for ‘best
solution’ is only that the value of the objective function is as small as possible then NB should
be set to 1. However, if you want to look at other solutions that may have desirable properties
then setting NB > 1 will produce NB local minima, ordered by increasing value of their objective
functions at the minima.

Constraint: 1 � NB � NPTS.

18: OBJFðNBÞ – REAL (KIND=nag_wp) array Output

On exit: OBJFðiÞ contains the value of the objective function at the final iterate for the ith
solution.

19: FðM; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array F must be at least NB.

On exit: Fðj; iÞ contains the value of the jth function fj at the final iterate, for j ¼ 1; 2; . . . ;M, for
the ith solution, for i ¼ 1; 2; . . . ;NB.

20: FJACðLDFJAC; SDFJAC; �Þ – REAL (KIND=nag_wp) array Output

Note: the last dimension of the array FJAC must be at least NB.

On exit: for the ith returned solution, the Jacobian matrix of the functions f1; f2; . . . ; fm at the
final iterate, i.e., FJACðk; j; iÞ contains the partial derivative of the kth function with respect to
the jth variable, for k ¼ 1; 2; . . . ;M, j ¼ 1; 2; . . . ;N and i ¼ 1; 2; . . . ;NB. (See also the discussion
of argument FJSL under OBJFUN.)

21: LDFJAC – INTEGER Input

On entry: the first dimension of the array FJAC as declared in the (sub)program from which
E05USF is called.

Constraint: LDFJAC � M.

22: SDFJAC – INTEGER Input

On entry: the second dimension of the array FJAC as declared in the (sub)program from which
E05USF is called.

Constraint: SDFJAC � N.

23: ITERðNBÞ – INTEGER array Output

On exit: ITERðiÞ contains the number of major iterations performed to obtain the ith solution. If
less than NB solutions are returned then ITERðNBÞ contains the number of starting points that
have resulted in a converged solution. If this is close to NPTS then this might be indicative that
fewer than NB local minima exist.

24: CðLDC; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array C must be at least NB.

On exit: if NCNLN > 0, Cðj; iÞ contains the value of the jth nonlinear constraint function cj at
the final iterate, for the ith solution, for j ¼ 1; 2; . . . ;NCNLN.

If NCNLN ¼ 0, the array C is not referenced.

E05USF NAG Library Manual

E05USF.8 Mark 26

25: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which E05USF
is called.

Constraint: LDC � NCNLN.

26: CJACðLDCJAC; SDCJAC; �Þ – REAL (KIND=nag_wp) array Output

Note: the last dimension of the array CJAC must be at least NB.

On exit: if NCNLN > 0, CJAC contains the Jacobian matrices of the nonlinear constraint
functions at the final iterate for each of the returned solutions, i.e., CJACðk; j; iÞ contains the
partial derivative of the kth constraint function with respect to the jth variable, for
k ¼ 1; 2; . . . ;NCNLN and j ¼ 1; 2; . . . ;N, for the ith solution. (See the discussion of argument
CJSL under CONFUN.)

If NCNLN ¼ 0, the array CJAC is not referenced.

27: LDCJAC – INTEGER Input

On entry: the first dimension of the array CJAC as declared in the (sub)program from which
E05USF is called.

Constraint: LDCJAC � NCNLN.

28: SDCJAC – INTEGER Input

On entry: the second dimension of the array CJAC as declared in the (sub)program from which
E05USF is called.

Constraint: if NCNLN > 0, SDCJAC � N.

29: CLAMDAðLDCLDA; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array CLAMDA must be at least NB.

On exit: the values of the QP multipliers from the last QP subproblem solved for the ith solution.
CLAMDAðj; iÞ should be non-negat ive i f ISTATEðj; iÞ ¼ 1 and non-posi t ive i f
ISTATEðj; iÞ ¼ 2.

30: LDCLDA – INTEGER Input

On entry: the first dimension of the array CLAMDA as declared in the (sub)program from which
E05USF is called.

Constraint: LDCLDA � Nþ NCLINþ NCNLN.

31: ISTATEðLISTAT; �Þ – INTEGER array Output

Note: the second dimension of the array ISTATE must be at least NB.

On exit: ISTATEðj; iÞ contains the status of the constraints in the QP working set for the ith
solution. The significance of each possible value of ISTATEðj; iÞ is as follows:

ISTATEðj; iÞ Meaning

0 The constraint is satisfied to within the feasibility tolerance, but is not in the QP
working set.

1 This inequality constraint is included in the QP working set at its lower bound.

2 This inequality constraint is included in the QP working set at its upper bound.

3 This constraint is included in the QP working set as an equality. This value of
ISTATE can occur only when BLðjÞ ¼ BUðjÞ.

E05 – Global Optimization of a Function E05USF

Mark 26 E05USF.9

32: LISTAT – INTEGER Input

On entry: the first dimension of the array ISTATE as declared in the (sub)program from which
E05USF is called.

Constraint: LISTAT � Nþ NCLINþ NCNLN.

33: IOPTSð740Þ – INTEGER array Communication Array
34: OPTSð485Þ – REAL (KIND=nag_wp) array Communication Array

The arrays IOPTS and OPTS must not be altered between calls to any of the routines E05USF
and E05ZKF.

35: IUSERð�Þ – INTEGER array User Workspace
36: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by E05USF, but are passed directly to CONFUN, OBJFUN and
START and should be used to pass information to these routines.

With SMP-enabled versions of E05USF the arrays IUSER and RUSER provided are classified as
OpenMP shared memory. Use of IUSER and RUSER has to take account of this in order to
preserve thread safety whenever information is written back to either of these arrays.

37: INFOðNBÞ – INTEGER array Output

On exit: if IFAIL ¼ 0, INFOðiÞ does not contain an error value returned by E04USF/E04USA .

If IFAIL ¼ 8 on exit, then not all NB solutions have been found, and INFOðNBÞ contains the
number of solutions actually found.

38: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E05USF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

An input value is incorrect. One or more of the following requirements are violated:

On entry, BLðiÞ > BUðiÞ: i ¼ valueh i.
Constraint: BLðiÞ � BUðiÞ, for all i.
On entry, LDA ¼ valueh i and NCLIN ¼ valueh i.
Constraint: LDA � NCLIN.

On entry, LDC ¼ valueh i and NCNLN ¼ valueh i.
Constraint: LDC � NCNLN.

E05USF NAG Library Manual

E05USF.10 Mark 26

On entry, LDCJAC ¼ valueh i and NCNLN ¼ valueh i.
Constraint: LDCJAC � NCNLN.

On entry, LDCLDA ¼ valueh i, N ¼ valueh i, NCLIN ¼ valueh i and NCNLN ¼ valueh i.
Constraint: LDCLDA � Nþ NCLINþ NCNLN.

On entry, LDFJAC ¼ valueh i and M ¼ valueh i.
Constraint: LDFJAC � M.

On entry, LDX ¼ valueh i and N ¼ valueh i.
Constraint: LDX � N.

On entry, LISTAT ¼ valueh i, N ¼ valueh i, NCLIN ¼ valueh i and NCNLN ¼ valueh i.
Constraint: LISTAT � Nþ NCLINþ NCNLN.

On entry, M ¼ valueh i.
Constraint: M > 0.

On entry, N ¼ valueh i.
Constraint: N > 0.

On entry, NB ¼ valueh i and NPTS ¼ valueh i.
Constraint: 1 � NB � NPTS.

On entry, NCLIN ¼ valueh i.
Constraint: NCLIN � 0.

On entry, NCNLN ¼ valueh i.
Constraint: NCNLN � 0.

On entry, NCNLN > 0, SDCJAC ¼ valueh i and N ¼ valueh i.
Constraint: if NCNLN > 0, SDCJAC � N.

On entry, SDFJAC ¼ valueh i and N ¼ valueh i.
Constraint: SDFJAC � N.

IFAIL ¼ 2

E05USF has terminated without finding any solutions. The majority of calls to the local optimizer
have failed to find a feasible point for the linear constraints and bounds, which means that either
no feasible point exists for the given value of the optional parameter Linear Feasibility
Tolerance (default value

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
macheps

p
, where macheps is the machine precision), or no feasible

point could be found in the number of iterations specified by the optional parameter Minor
Iteration Limit. You should check that there are no constraint redundancies. If the data for the
constraints are accurate only to an absolute precision �, you should ensure that the value of the
optional parameter Linear Feasibility Tolerance is greater than �. For example, if all elements
of AL are of order unity and are accurate to only three decimal places, Linear Feasibility
Tolerance should be at least 10�3.

No solution obtained. Linear constraints may be infeasible.

IFAIL ¼ 3

E05USF has failed to find any solutions. The majority of local optimizations could not find a
feasible point for the nonlinear constraints. The problem may have no feasible solution. This
behaviour will occur if there is no feasible point for the nonlinear constraints. (However, there is
no general test that can determine whether a feasible point exists for a set of nonlinear
constraints.)

No solution obtained. Nonlinear constraints may be infeasible.

IFAIL ¼ 4

E05USF has failed to find any solutions. The majority of local optimizations have failed because
the limiting number of iterations have been reached.

No solution obtained. Many potential solutions reach iteration limit.

E05 – Global Optimization of a Function E05USF

Mark 26 E05USF.11

IFAIL ¼ 7

The user-supplied derivatives of the objective function and/or nonlinear constraints appear to be
incorrect.

Large errors were found in the derivatives of the objective function and/or nonlinear constraints.
This value of IFAIL will occur if the verification process indicated that at least one gradient or
Jacobian element had no correct figures. You should refer to or enable the printed output to
determine which elements are suspected to be in error.

As a first-step, you should check that the code for the objective and constraint values is correct –
for example, by computing the function at a point where the correct value is known. However,
care should be taken that the chosen point fully tests the evaluation of the function. It is
remarkable how often the values x ¼ 0 or x ¼ 1 are used to test function evaluation procedures,
and how often the special properties of these numbers make the test meaningless.

Gradient checking will be ineffective if the objective function uses information computed by the
constraints, since they are not necessarily computed before each function evaluation.

Errors in programming the function may be quite subtle in that the function value is ‘almost’
correct. For example, the function may not be accurate to full precision because of the inaccurate
calculation of a subsidiary quantity, or the limited accuracy of data upon which the function
depends. A common error on machines where numerical calculations are usually performed in
double precision is to include even one single precision constant in the calculation of the
function; since some compilers do not convert such constants to double precision, half the correct
figures may be lost by such a seemingly trivial error.

IFAIL ¼ 8

Only valueh i solutions obtained.

Not all NB solutions have been found. INFOðNBÞ contains the number actually found.

IFAIL ¼ 9

User terminated computation from START procedure: MODE ¼ valueh i.
If E05UCZ has been used as an actual argument for START then the message displayed, when
IFAIL ¼ 0 or �1 on entry to E05USF, will have the following meaning:

998 failure to allocate space, a smaller value of NPTS should be tried.

997 an internal error has occurred. Please contact NAG for assistance.

IFAIL ¼ 10

Failed to initialize optional parameter arrays.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

E05USF NAG Library Manual

E05USF.12 Mark 26

7 Accuracy

If IFAIL ¼ 0 on exit and the value of INFOðiÞ ¼ 0, then the vector returned in the array X for solution
i is an estimate of the solution to an accuracy of approximately Optimality Tolerance.

8 Parallelism and Performance

E05USF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library. In these implementations, this routine may make calls to the user-supplied functions from
within an OpenMP parallel region. Thus OpenMP directives within the user functions can only be used
if you are compiling the user-supplied function and linking the executable in accordance with the
instructions in the Users' Note for your implementation. The user workspace arrays IUSER and RUSER
are classified as OpenMP shared memory and use of IUSER and RUSER has to take account of this in
order to preserve thread safety whenever information is written back to either of these arrays. If at all
possible, it is recommended that these arrays are only used to supply read-only data to the user
functions when a multithreaded implementation is being used.

E05USF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

You should be wary of requesting much intermediate output from the local optimizer, since large
volumes may be produced if NPTS is large.

The auxiliary routine E05UCZ makes use of the NAG quasi-random Sobol generator (G05YLF and
G05YMF). If E05UCZ is used as the actual argument for START and REPEAT1 ¼ :FALSE: then a
randomly chosen value for ISKIP is used, otherwise ISKIP is set to 100. If REPEAT1 is set to .FALSE.
and the program is executed several times, each time producing the same best answer, then there is
increased probability that this answer is a global minimum. However, if it is important that identical
results be obtained on successive runs, then REPEAT1 should be set to .TRUE..

9.1 Description of the Printed Output

See Section 9.1 in E04USF/E04USA.

10 Example

This example is based on Problem 57 in Hock and Schittkowski (1981) and involves the minimization
of the sum of squares function

F xð Þ ¼ 1
2

X44
i¼1

yi � fi xð Þð Þ2;

where

fi xð Þ ¼ x1 þ 0:49� x1ð Þe�x2 ai�8ð Þ

and

E05 – Global Optimization of a Function E05USF

Mark 26 E05USF.13

i yi ai i yi ai
1 0:49 8 23 0:41 22
2 0:49 8 24 0:40 22
3 0:48 10 25 0:42 24
4 0:47 10 26 0:40 24
5 0:48 10 27 0:40 24
6 0:47 10 28 0:41 26
7 0:46 12 29 0:40 26
8 0:46 12 30 0:41 26
9 0:45 12 31 0:41 28

10 0:43 12 32 0:40 28
11 0:45 14 33 0:40 30
12 0:43 14 34 0:40 30
13 0:43 14 35 0:38 30
14 0:44 16 36 0:41 32
15 0:43 16 37 0:40 32
16 0:43 16 38 0:40 34
17 0:46 18 39 0:41 36
18 0:45 18 40 0:38 36
19 0:42 20 41 0:40 38
20 0:42 20 42 0:40 38
21 0:43 20 43 0:39 40
22 0:41 22 44 0:39 42

subject to the bounds

x1 � 0:4
x2 � �4:0

to the general linear constraint

x1 þ x2 � 1:0

and to the nonlinear constraint

0:49x2 � x1x2 � 0:09:

The optimal solution (to five figures) is

x� ¼ 0:41995; 1:28484ð ÞT;
and F x�ð Þ ¼ 0:01423. The nonlinear constraint is active at the solution.

The document for E04UQF/E04UQA includes an example program to solve the same problem using
some of the optional parameters described in Section 12.

10.1 Program Text

! E05USF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e05usfe_mod

! E05USF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: confun, objfun, start

Contains
Subroutine objfun(mode,m,n,ldfjsl,needfi,x,f,fjsl,nstate,iuser,ruser)

! Evaluates the subfunctions and their 1st derivatives.

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: a(44) = (/8._nag_wp,8._nag_wp, &

10._nag_wp,10._nag_wp,10._nag_wp, &
10._nag_wp,12._nag_wp,12._nag_wp, &
12._nag_wp,12._nag_wp,14._nag_wp, &

E05USF NAG Library Manual

E05USF.14 Mark 26

14._nag_wp,14._nag_wp,16._nag_wp, &
16._nag_wp,16._nag_wp,18._nag_wp, &
18._nag_wp,20._nag_wp,20._nag_wp, &
20._nag_wp,22._nag_wp,22._nag_wp, &
22._nag_wp,24._nag_wp,24._nag_wp, &
24._nag_wp,26._nag_wp,26._nag_wp, &
26._nag_wp,28._nag_wp,28._nag_wp, &
30._nag_wp,30._nag_wp,30._nag_wp, &
32._nag_wp,32._nag_wp,34._nag_wp, &
36._nag_wp,36._nag_wp,38._nag_wp, &
38._nag_wp,40._nag_wp,42._nag_wp/)

! .. Scalar Arguments ..
Integer, Intent (In) :: ldfjsl, m, n, needfi, nstate
Integer, Intent (Inout) :: mode

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(m)
Real (Kind=nag_wp), Intent (Inout) :: fjsl(ldfjsl,*), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: temp
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..

! This is a two-dimensional objective function.
! As an example of using the mode mechanism,
! terminate if any other problem size is supplied.

If (n/=2) Then
mode = -1

End If

If (nstate==1) Then
! This is the first call.
! Take any special action here if desired.

Continue
End If

If (mode==0 .And. needfi>0) Then
f(needfi) = x(1) + (0.49_nag_wp-x(1))*exp(-x(2)*(a(needfi)- &

8.0_nag_wp))
Else

Do i = 1, m
temp = exp(-x(2)*(a(i)-8._nag_wp))

If (mode==0 .Or. mode==2) Then
f(i) = x(1) + (0.49_nag_wp-x(1))*temp

End If

If (mode==1 .Or. mode==2) Then
fjsl(i,1) = 1._nag_wp - temp
fjsl(i,2) = -(0.49_nag_wp-x(1))*(a(i)-8._nag_wp)*temp

End If

End Do
End If

Return
End Subroutine objfun
Subroutine confun(mode,ncnln,n,ldcjsl,needc,x,c,cjsl,nstate,iuser,ruser)

! Evaluates the nonlinear constraints and their 1st derivatives.

! .. Scalar Arguments ..
Integer, Intent (In) :: ldcjsl, n, ncnln, nstate
Integer, Intent (Inout) :: mode

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: c(ncnln)
Real (Kind=nag_wp), Intent (Inout) :: cjsl(ldcjsl,*), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)

E05 – Global Optimization of a Function E05USF

Mark 26 E05USF.15

Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: needc(ncnln)

! .. Executable Statements ..

! This problem has only one constraint.
! As an example of using the mode mechanism,
! terminate if any other size is supplied.

If (ncnln/=1) Then
mode = -1

End If

If (nstate==1) Then

! First call to CONFUN. Set all Jacobian elements to zero.
! Note that this will only work when ’Derivative Level = 3’
! (the default; see Section 11.1 of the E04USA document).

cjsl(1:ncnln,1:n) = 0._nag_wp
End If

If (needc(1)>0) Then

If (mode==0 .Or. mode==2) Then
c(1) = -0.09_nag_wp - x(1)*x(2) + 0.49_nag_wp*x(2)

End If

If (mode==1 .Or. mode==2) Then
cjsl(1,1) = -x(2)
cjsl(1,2) = -x(1) + 0.49_nag_wp

End If

End If

Return
End Subroutine confun
Subroutine start(npts,quas,n,repeat1,bl,bu,iuser,ruser,mode)

! Sets the initial points.
! A typical user-defined start procedure.

! .. Use Statements ..
Use nag_library, Only: g05kgf, g05saf

! .. Scalar Arguments ..
Integer, Intent (Inout) :: mode
Integer, Intent (In) :: n, npts
Logical, Intent (In) :: repeat1

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: bl(n), bu(n)
Real (Kind=nag_wp), Intent (Inout) :: quas(n,npts), ruser(*)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Integer :: genid, i, ifail, lstate, subid

! .. Local Arrays ..
Integer, Allocatable :: state(:)

! .. Executable Statements ..
! quas is pre-assigned to zero.

If (repeat1) Then
quas(1,1) = 0.4_nag_wp
quas(2,2) = 1._nag_wp

Else
! Generate a non-repeatable spread of points between bl and bu.

genid = 2
subid = 53
lstate = -1
Allocate (state(lstate))
ifail = 0
Call g05kgf(genid,subid,state,lstate,ifail)
Deallocate (state)
Allocate (state(lstate))
ifail = 0

E05USF NAG Library Manual

E05USF.16 Mark 26

Call g05kgf(genid,subid,state,lstate,ifail)
Do i = 1, npts

ifail = 0
Call g05saf(n,state,quas(1,i),ifail)
quas(1:n,i) = bl(1:n) + (bu(1:n)-bl(1:n))*quas(1:n,i)

End Do
Deallocate (state)

End If
! Set mode negative to terminate execution for any reason.

mode = 0
Return

End Subroutine start
End Module e05usfe_mod
Program e05usfe

! E05USF Example Main Program

! .. Use Statements ..
Use nag_library, Only: dgemv, e05usf, e05zkf, nag_wp
Use e05usfe_mod, Only: confun, objfun, start

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: liopts = 740, lopts = 485, m = 44, &

n = 2, nb = 1, nclin = 1, ncnln = 1, &
nin = 5, nout = 6, npts = 3

Integer, Parameter :: sdfjac = n
Integer, Parameter :: lda = nclin
Integer, Parameter :: ldc = ncnln
Integer, Parameter :: ldcjac = ncnln
Integer, Parameter :: ldclda = n + nclin + ncnln
Integer, Parameter :: ldfjac = m
Integer, Parameter :: ldx = n
Integer, Parameter :: listat = n + nclin + ncnln
Logical, Parameter :: repeat1 = .True.

! .. Local Scalars ..
Integer :: i, ifail, j, k, l, sda, sdcjac

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), bl(:), bu(:), c(:,:), &

cjac(:,:,:), clamda(:,:), f(:,:), &
fjac(:,:,:), work(:), x(:,:), y(:)

Real (Kind=nag_wp) :: objf(nb), opts(lopts), ruser(1)
Integer :: info(nb), iopts(liopts), iter(nb), &

iuser(1)
Integer, Allocatable :: istate(:,:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*) ’E05USF Example Program Results’
Flush (nout)

! Skip heading in data file.
Read (nin,*)

If (nclin>0) Then
sda = n

Else
sda = 1

End If

If (ncnln>0) Then
sdcjac = n

Else
sdcjac = 0

End If

Allocate (a(lda,sda),bl(n+nclin+ncnln),bu(n+nclin+ncnln),y(m),c(ldc,nb), &
cjac(ldcjac,sdcjac,nb),f(m,nb),fjac(ldfjac,sdfjac,nb), &
clamda(ldclda,nb),istate(listat,nb),x(ldx,nb),work(max(1,nclin)))

If (nclin>0) Then

E05 – Global Optimization of a Function E05USF

Mark 26 E05USF.17

Read (nin,*)(a(i,1:sda),i=1,nclin)
End If

Read (nin,*) y(1:m)
Read (nin,*) bl(1:(n+nclin+ncnln))
Read (nin,*) bu(1:(n+nclin+ncnln))

! Initialize the solver.

ifail = 0
Call e05zkf(’Initialize = E05USF’,iopts,liopts,opts,lopts,ifail)

! Solve the problem.

ifail = -1
Call e05usf(m,n,nclin,ncnln,a,lda,bl,bu,y,confun,objfun,npts,x,ldx, &

start,repeat1,nb,objf,f,fjac,ldfjac,sdfjac,iter,c,ldc,cjac,ldcjac, &
sdcjac,clamda,ldclda,istate,listat,iopts,opts,iuser,ruser,info,ifail)

Select Case (ifail)
Case (0)

l = nb
Case (8)

l = info(nb)
Write (nout,99999) iter(nb)

Case Default
Go To 100

End Select

loop: Do i = 1, l
Write (nout,99998) i
Write (nout,99997) info(i)
Write (nout,99996) ’Varbl’
Do j = 1, n

Write (nout,99995) ’V’, j, istate(j,i), x(j,i), clamda(j,i)
End Do
If (nclin>0) Then

Write (nout,99996) ’L Con’

! Below is a call to the level 2 BLAS routine DGEMV.
! This performs the matrix vector multiplication A*X
! (linear constraint values) and puts the result in
! the first NCLIN locations of WORK.

Call dgemv(’N’,nclin,n,1.0_nag_wp,a,lda,x(1,i),1,0.0_nag_wp,work,1)

Do k = n + 1, n + nclin
j = k - n
Write (nout,99995) ’L’, j, istate(k,i), work(j), clamda(k,i)

End Do
End If
If (ncnln>0) Then

Write (nout,99996) ’N Con’
Do k = n + nclin + 1, n + nclin + ncnln

j = k - n - nclin
Write (nout,99995) ’N’, j, istate(k,i), c(j,i), clamda(k,i)

End Do
End If
Write (nout,99994) objf(i)
Write (nout,99993)
Write (nout,99992)(clamda(k,i),k=1,n+nclin+ncnln)

If (l==1) Then
Exit loop

End If

Write (nout,*)

Write (nout,*) &
’ -- ’

E05USF NAG Library Manual

E05USF.18 Mark 26

End Do loop

100 Continue

99999 Format (1X,I20,’starting points converged’)
99998 Format (/,1X,’Solution number’,I16)
99997 Format (/,1X,’Local minimization exited with code’,I5)
99996 Format (/,1X,A,2X,’Istate’,3X,’Value’,9X,’Lagr Mult’,/)
99995 Format (1X,A,2(1X,I3),4X,F12.4,2X,F12.4)
99994 Format (/,1X,’Final objective value = ’,1X,F12.4)
99993 Format (/,1X,’QP multipliers’)
99992 Format (1X,F12.4)

End Program e05usfe

10.2 Program Data

E05USF Example Program Data
1.0 1.0 :End of matrix A
0.49 0.49 0.48 0.47 0.48 0.47 0.46 0.46 0.45 0.43 0.45
0.43 0.43 0.44 0.43 0.43 0.46 0.45 0.42 0.42 0.43 0.41
0.41 0.40 0.42 0.40 0.40 0.41 0.40 0.41 0.41 0.40 0.40
0.40 0.38 0.41 0.40 0.40 0.41 0.38 0.40 0.40 0.39 0.39 :End of Y
0.4 -4.0 1.0 0.0 :End of BL
1.0E+25 1.0E+25 1.0E+25 1.0E+25 :End of BU

10.3 Program Results

E05USF Example Program Results

Solution number 1

Local minimization exited with code 0

Varbl Istate Value Lagr Mult

V 1 0 0.4200 0.0000
V 2 0 1.2848 0.0000

L Con Istate Value Lagr Mult

L 1 0 1.7048 0.0000

N Con Istate Value Lagr Mult

N 1 1 -0.0000 0.0334

Final objective value = 0.0142

QP multipliers
0.0000
0.0000
0.0000
0.0334

11 Algorithmic Details

See Section 11 in E04USF/E04USA.

12 Optional Parameters

Several optional parameters in E05USF define choices in the problem specification or the algorithm
logic. In order to reduce the number of formal arguments of E05USF these optional parameters have
associated default values that are appropriate for most problems. Therefore you need only specify those
optional parameters whose values are to be different from their default values.

E05 – Global Optimization of a Function E05USF

Mark 26 E05USF.19

Optional parameters may be specified by calling E05ZKF before a call to E05USF. Before calling
E05USF, the optional parameter arrays IOPTS and OPTS must be initialized for use with E05USF by
calling E05ZKF with OPTSTR set to ‘Initialize = e05usf’.

All optional parameters not specified are set to their default values. Optional parameters specified are
unaltered by E05USF (unless they define invalid values) and so remain in effect for subsequent calls to
E05USF.

See Section 12 in E04USF/E04USA for full details.

The Warm Start option of E04USF/E04USA is not a valid option for use with E05USF.

E05USF supports two options that are distinct from those of E04USF/E04USA:

Punch Unit i Default ¼ 6

This option allows you to send information arising from an appropriate setting of Out_Level to be sent
to the Fortran unit number defined by Punch Unit. If you wish this file to be different to the standard
output unit (6) where other output is displayed then this file should be attached by calling X04ACF
prior to calling E05USF.

Out Level i Default ¼ 0

This option defines the amount of extra information to be sent to the Fortran unit number defined by
Punch Unit. The possible choices for i are the following:

i Meaning

0 No extra output.

1 Updated solutions only. This is useful during long runs to observe progress.

2 Successful start points only. This is useful to save the starting points that gave rise to the final
solution.

3 Both updated solutions and successful start points.

13 Description of Monitoring Information

See Section 13 in E04USF/E04USA.

E05USF NAG Library Manual

E05USF.20 (last) Mark 26

	E05USF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Gill et al. (1981)
	Hock and Schittkowski (1981)

	5 Arguments
	M
	N
	NCLIN
	NCNLN
	A
	LDA
	BL
	BU
	Y
	CONFUN
	MODE
	NCNLN
	N
	LDCJSL
	NEEDC
	X
	C
	CJSL
	NSTATE
	IUSER
	RUSER

	OBJFUN
	MODE
	M
	N
	LDFJSL
	NEEDFI
	X
	F
	FJSL
	NSTATE
	IUSER
	RUSER

	NPTS
	X
	LDX
	START
	NPTS
	QUAS
	N
	REPEAT1
	BL
	BU
	IUSER
	RUSER
	MODE

	REPEAT1
	NB
	OBJF
	F
	FJAC
	LDFJAC
	SDFJAC
	ITER
	C
	LDC
	CJAC
	LDCJAC
	SDCJAC
	CLAMDA
	LDCLDA
	ISTATE
	LISTAT
	IOPTS
	OPTS
	IUSER
	RUSER
	INFO
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=7
	IFAIL=8
	IFAIL=9
	IFAIL=10
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	9.1 Description of the Printed Output

	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	11 Algorithmic Details
	12 Optional Parameters
	Punch Unit
	Out_Level

	13 Description of Monitoring Information

	NAG Fortran Library Manual, Mark 26.1
	Copyright Statement
	Foreword
	Introduction
	How to Use the NAG Library and its Documentation
	Mark 26.1 NAG Fortran Library News
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Code Contributors
	Support from NAG
	Index

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Contents
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Contents
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Contents
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Contents
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Contents
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Contents
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Contents
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Contents
	D02 Chapter Introduction
	D02M-N Sub-chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Contents
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Contents
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Contents
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Contents
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Contents
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Contents
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Contents
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Contents
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Contents
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Contents
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Contents
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Contents
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Contents
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Contents
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Contents
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Contents
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Contents
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Contents
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Contents
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Contents
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Contents
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Contents
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Contents
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Contents
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Contents
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Contents
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Contents
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Contents
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Contents
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Contents
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Contents
	G13 Chapter Introduction

	G22 - Linear Model Specification
	G22 Chapter Contents
	G22 Chapter Introduction

	H - Operations Research
	H Chapter Contents
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Contents
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Contents
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Contents
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Contents
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Contents
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Contents
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Contents
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Contents
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Contents
	X07 Chapter Introduction

