E04 — Minimizing or Maximizing a Function E04RNF

NAG Library Routine Document
E04RNF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

EO4RNF is a part of the NAG optimization modelling suite and defines one or more linear matrix
constraints of the problem.

2 Specification

SUBROUTINE EOQO4RNF (HANDLE, NVAR, DIMA, NNZA, NNZASUM, IROWA, ICOLA, A, &
NBLK, BLKSIZEA, IDBLK, IFAIL)

INTEGER NVAR, DIMA, NNZA(NVAR+1), NNZASUM, IROWA(NNZASUM), &
ICOLA(NNZASUM), NBLK, BLKSIZEA(NBLK), IDBLK, IFAIL

REAL (KIND=nag_wp) A(NNZASUM)

TYPE (C_PTR) HANDLE

3 Description

After the initialization routine EO4RAF has been called, EO4RNF may be used to add one or more
linear matrix inequalities

inAi — AO t 0 (1)

i=1

to the problem definition. Here A; are d by d symmetric matrices. The expression S = 0 stands for a
constraint on eigenvalues of a symmetric matrix S, namely, all the eigenvalues should be non-negative,
i.e., the matrix S should be positive semidefinite.

Typically, this will be used in linear semidefinite programming problems (SDP)

minimize 'z (a)
zeR"
subject to Z%Af —Ak=0, k=1,...,ma (b) (2)
=1
Ip < Br <up (c)
I, <x<wu, (d)

or to define the linear part of bilinear matrix inequalities (3)(b) in (BMI-SDP)

minilﬁqize I2THx + 'z (a)

.7:6 n

subject to Y mia;Qk + Y w A —AF =0, k=1,...,my4 (b) 3)
ig=1 =1
lp < Br <up (c)

EO4RNF can be called repeatedly to accumulate more matrix inequalities. See EO4RAF for more
details.

3.1 Input data organization

All the matrices A;, for i =0,1,...,n, are symmetric and thus only their upper triangles are passed to
the routine. They are stored in sparse coordinate storage format (see Section 2.1.1 in the F11 Chapter
Introduction), i.e., every nonzero from the upper triangles is coded as a triplet of row index, column
index and the numeric value. These triplets of all (upper triangle) nonzeros from all A; matrices are
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passed to the routine in three arrays: IROWA for row indices, ICOLA for column indices and A for the
values. No particular order of nonzeros within one matrix is enforced but all nonzeros from Ay must be
stored first, followed by all nonzero from A;, followed by A,, etc.

The number of stored nonzeros from each A; matrix is given in NNZA(7 4 1), thus this array indicates
which section of arrays IROWA, ICOLA and A belongs to which A; matrix. See Table 1 and the
example in Section 9. See also EO4RDF which uses the same data organization.

IROWA upper triangle upper triangle upper triangle
ICOLA nonzeros nonzeros e nonzeros
A from Ay from A; from A,
—— ~—— ——
NNZA(1) NNZA(2) NNZA(n+1)
Table 1
Coordinate storage format of matrices Ay, A, ..., A, in input arrays

There are two possibilities for defining more matrix inequality constraints

d mAf—AF =0, k=1,2,...,m4 (4)

=1

to the problem. The first is to call EO4RNF m4 times and define a single matrix inequality at a time.
This might be more straightforward and therefore it is recommended. Alternatively, it is possible to
merge all my4 constraints into one inequality and pass them in a single call to EO4RNF. It is easy to see
that (4) can be equivalently expressed as one bigger matrix inequality with the following block diagonal
structure

Al Al
" 2 A
S o - | -
i=1 . .
AP Apa
ma
If d;, denotes the dimension of inequality k, the new merged inequality has dimension d = de and
k=1
each of the A; matrices is formed by A!, A% ... A4 stored as m, diagonal blocks. In such a case,
NBLK is set to m4 and BLKSIZEA(k) to dy, the size of the kth diagonal blocks. This might be useful
in connection with EO4RDF.

On the other hand, if there is no block structure and just one matrix inequality is provided, NBLK
should be set to 1 and BLKSIZEA is not referenced.

3.2 Definition of Bilinear Matrix Inequalities (BMI)

EO4RNF is designed to be used together with EO4RPF to define bilinear matrix inequalities (3)(b).
EO4RNF sets the linear part of the constraint and EO4RPF expands it by higher order terms. To
distinquish which linear matrix inequality (or more precisely, which block) is to be expanded, EO4RPF
needs the number of the block, IDBLK. The blocks are numbered as they are added, starting from 1.

Whenever a matrix inequality (or a set of them expressed as diagonal blocks) is stored, the routine
returns IDBLK of the last inequality added. IDBLK is just the order of the inequality amongst all
matrix inequalities accumulated through the calls. The first inequality has IDBLK = 1, the second one
IDBLK = 2, etc. Therefore if you call EO4RNF for the very first time with NBLK = 42, it adds 42
inequalities with IDBLK from 1 to 42 and the routine returns IDBLK = 42 (the number of the last one).
A subsequent call with NBLK = 1 would add only one inequality, this time with IDBLK = 43 which
would be returned.

4 References

None.
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S  Arguments

1: HANDLE - TYPE (C_PTR) Input
On entry: the handle to the problem. It needs to be initialized by EO4RAF and must not be
changed.

2: NVAR — INTEGER Input

On entry: n, the number of decision variables = in the problem. It must be unchanged from the
value set during the initialization of the handle by E04RAF.

3: DIMA - INTEGER Input

On entry: d, the dimension of the matrices A;, for i =0,1,...,NVAR.
Constraint: DIMA > 0.

4: NNZA(NVAR + 1) — INTEGER array Input

On entry: NNZA(i+ 1), for i =0,1,...,NVAR, gives the number of nonzero elements in the
upper triangle of matrix A;. To define A; as a zero matrix, set NNZA(i + 1) = 0. However, there
must be at least one matrix with at least one nonzero.

Constraints:

NNZA (i) > 0;
n+1

D NNZA(i) > 1.
i=1

5: NNZASUM - INTEGER Input

On entry: the dimension of the arrays IROWA, ICOLA and A, at least the total number of all
nonzeros in all matrices A;.

Constraints:

NNZASUM > 0;

n+1

> NNZA(i) < NNZASUM.
i=1

IROWA(NNZASUM) — INTEGER array Input
ICOLA(NNZASUM) — INTEGER array Input
A(NNZASUM) — REAL (KIND=nag_wp) array Input

On entry: nonzero elements in upper triangle of matrices A; stored in coordinate storage. The
first NNZA(1) elements belong to Ay, the following NNZA(2) elements belong to A;, etc. See
explanation above.

Constraints:
1 <IROWA(i) < DIMA, IROWA(i) < ICOLA(:) < DIMA,;
IROWA and ICOLA match the block diagonal pattern set by BLKSIZEA.
9: NBLK — INTEGER Input

On entry: my4, number of diagonal blocks in A; matrices. As explained above it is equivalent to
the number of matrix inequalities supplied in this call.

Constraint: NBLK > 1.

10  BLKSIZEA(NBLK) — INTEGER array Input
On entry: if NBLK > 1, sizes d;, of the diagonal blocks.
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11:

12:

6

If NBLK = 1, BLKSIZEA is not referenced.
Constraints:

BLKSIZEA(i) > 1;
mA
> "BLKSIZEA(i) = DIMA.

=1
IDBLK — INTEGER Input/Output

On entry: if IDBLK = 0, new matrix inequalities are created. This is the only value allowed at
the moment; nonzero values are reserved for future releases of the NAG Library.

Constraint: IDBLK = 0.

On exit: the number of the last matrix inequality added. By definition, it is the number of the
matrix inequalities already defined plus NBLK.

IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, —1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value —1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, the recommended value is —1. When the value —1 or 1
is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL =0 unless the routine detects an error or a warning has been flagged (see
Section 6).

Error Indicators and Warnings

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL =1

The supplied HANDLE does not define a valid handle to the data structure for the NAG
optimization modelling suite. It has not been initialized by EO4RAF or it has been corrupted.

IFAIL = 2

The problem cannot be modified in this phase any more, the solver has already been called.

IFAIL =4

On entry, IDBLK = (value).
Constraint: IDBLK = 0.

On entry, NVAR = (value), expected value = (value).
Constraint: NVAR must match the value given during initialization of HANDLE.

IFAIL =6

On entry, DIMA = (value).
Constraint: DIMA > 0.

On entry, i = (value) and NNZA(i) = (value).
Constraint: NNZA(7) > 0.

On entry, NNZASUM = (value) and sum (NNZA) = (value).
Constraint: NNZASUM > sum (NNZA).

EO4RNF.4 Mark 26



E04 — Minimizing or Maximizing a Function E04RNF

On entry, sum (NNZA) = (value).
Constraint: sum (NNZA) > 1.
IFAIL =7

On entry, DIMA = (value) and sum (BLKSIZEA) = (value).
Constraint: sum (BLKSIZEA) = DIMA.

On entry, i = (value) and BLKSIZEA(i) = (value).
Constraint: BLKSIZEA(i) > 1.

On entry, NBLK = (value).
Constraint: NBLK > 0.
IFAIL = 8

An error occurred in matrix A;, i = (value) (counting indices 1...NVAR + 1).
On entry, j = (value), ICOLA(j) = (value) and DIMA = (value).
Constraint: 1 <ICOLA(j) < DIMA.

An error occurred in matrix A;, i = (value) (counting indices 1...NVAR + 1).
On entry, j = (value), IROWA(j) = (value) and DIMA = (value).
Constraint: 1 < IROWA(j) < DIMA.

An error occurred in matrix A;, i = (value) (counting indices 1...NVAR + 1).
On entry, j = (value), IROWA(j) = (value) and ICOLA(j) = (value).
Constraint: IROWA (j) < ICOLA(j) (elements within the upper triangle).

An error occurred in matrix A;, i = (value) (counting indices 1...NVAR + 1).

On entry, j = (value), IROWA(j) = (value) and ICOLA(j) = (value). Maximum column index
in this row given by the block structure defined by BLKSIZEA is (value).

Constraint: all elements of A; must respect the block structure given by BLKSIZEA.

An error occurred in matrix A;, i = (value) (counting indices 1...NVAR + 1).
On entry, more than one element of A; has row index (value) and column index (value).
Constraint: each element of A; must have a unique row and column index.

IFAIL = —99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL = —399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL = —999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7  Accuracy

Not applicable.

8 Parallelism and Performance

EO4RNF is not threaded in any implementation.
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9 Further Comments

The following example demonstrates how the elements of the Af’ matrices are organized within the
input arrays. Let us assume that there are two blocks defined (NBLK = 2). The first has dimension 3 by
3 (BLKSIZEA(1) = 3) and the second 2 by 2 (BLKSIZEA(2) =2). For simplicity, the number of
variables is 2. Please note that the values were chosen to ease orientation rather than to define a valid
problem.

0.1 0 03 21 0 0
A= 0 02 04|, A} empty Aj=| 0 22 0],
03 04 0 0 0 23

2 0 —0.1 2 [ —11 0 2 [ —21 =22
AO_(—O.I 0)’ Al_( 0 —1.2)’ A2_<—2.2 —2.3)'
Both inequalities will be passed in a single call to EO4RNF, therefore the matrices are merged into the
following block diagonal form:

0.1 0 03
0 02 04
Ap=103 04 0 )
0 —0.1
—0.1 0
0 0 0
0 0 0
A[ - 0 O 0 9
—1.1 0
0 —12
2.1 0 o0
0 22 O
Ay = 0 0 23
-21 =22
-22 =23

All matrices are symmetric and therefore only the upper triangles are passed to the routine. The
coordinate storage format is used. Note that elements within the same matrix do not need to be in any
specific order. The table below shows one of the ways the arrays could be populated.

IROWA 2 2 4 1 1 4 5 1 2 3 4 4 5
ICOLA 2 3 5 1 3 4 5 1 2 3 4 5 5
A 02 04 -01 01 03| -1.1 —-12 |21 22 23 =21 =22 =23
Ao Ay Ay
NNZA 5 2 6
10 Example

There are various problems which can be successfully reformulated and solved as an SDP problem. The
following example shows how a maximization of the minimal eigenvalue of a matrix depending on
certain parameters can be utilized in statistics.

For further examples, please refer to Section 10 in EO4RAF.
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Given a series of M vectors of length p, {v; : i =1,2,..., M} this example solves the SDP problem:

maximize t
Al At

M
subject to Z)\ivivf =t
p)

M

Sou-

i=1

N>0, k=1,..., M.

This formulation comes from an area of statistics called experimental design and corresponds to finding
an approximate F optimal design for a linear regression.

A linear regression model has the form:
y=XB+e

where y is a vector of observed values, X is a design matrix of (known) independent variables and ¢ is
a vector of errors. In experimental design it is assumed that each row of X is chosen from a set of M
possible vectors, {v; : i = 1,2,..., M}. The goal of experimental design is to choose the rows of X so
that the error covariance is ‘small’. For an F optimal design this is defined as the X that maximizes the
minimum eigenvalue of X'X.

In this example we construct the £ optimal design for a polynomial regression model of the form:
y=Po+ bz + Boa’ + B3z’ + Baa’ + ¢
where x € {1 —jx0.05:5=0,1,...,40}.

10.1 Program Text

Program eO4rnfe

! EO4RNF Example Program Text
! Mark 26 Release. NAG Copyright 201l6.

Compute E-optimal experiment design via semidefinite programming,
this can be done as follows

max {lambda_min(A) | A = sum x_i*v_i*v_i"T, x_i>=0, sum x_i = 1}
where v_i are given vectors.

! Use nag_library

! .. Use Statements
Use nag_library, Only: eO4raf, eO4rff, eO4rhf, eO4rjf, eO4rnf, eO4rzf, &
eO04svf, e04zmf, nag wp
Use, Intrinsic :: iso_c_binding, Only: c_null_ptr, &
c_ptr
! .. Implicit None Statement
Implicit None

! .. Parameters
Real (Kind=nag_wp), Parameter :: big = 1E+20_nag_wp
Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars
Type (c_ptr) :: h
Real (Kind=nag_wp) :: tol
Integer :: dima, i, idblk, idlc, idx, ifail, &
inform, j, k, m, nblk, nnzasum, &
nnzb, nnzc, nnzu, nnzua, nnzuc, &
nvar, p
! .. Local Arrays
Real (Kind=nag_wp), Allocatable :: a(:), b(:), bl(:), bu(:), c(:), &
v(:,:), x(z)
Real (Kind=nag_wp) :: rdummy (1), rinfo(32), stats(32)
Integer, Allocatable :: blksizea(:), icola(:), icolb(:), &
idxc(:), dirowa(:), irowb(:), nnza(:)
Integer :: idummy (1)

! .. Intrinsic Procedures
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Intrinsic :: repeat
! .. Executable Statements
Continue

Write (nout,*) ’EO4RNF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file.
Read (nin,*)

! Read in the number of vectors and their size.
Read (nin,*) m
Read (nin,*) p

Allocate (v(p,m))

! Read in the vectors v_j.
Do j =1, m
Read (nin,*)(v(i,j),i=1,p)
End Do

! Initialize handle.
h = c_null_ptr

! Variables of the problem will be x_1, ..., x_m (weights of the vectors)
! and t (artificial variable for minimum eigenvalue).
nvar = m + 1

! Initialize an empty problem handle with NVAR variables.
ifail = 0O
Call eO4raf(h,nvar,ifail)

! Add the objective function to the handle: max t.
nnzc = 1
Allocate (idxc(nnzc),c(nnzc))
idxc(:) = (/m+1/)
c(:) = (/1._nag_wp/)

ifail = 0
Call e0O4rff(h,nnzc,idxc,c,0,idummy, idummy,rdummy,ifail)

Allocate (bl(nvar),bu(nvar))
bl(1l:m) = 0.0_nag_wp

bl(m+l) = -big

bu(l:m+1l) = big

! Add simple bounds on variables, x_i>=0.
ifail = 0
Call eO4rhf (h,nvar,bl,bu,ifail)

nnzb = m
Allocate (irowb(nnzb),icolb(nnzb),b(nnzb))
irowb(:) =1
icolb(:) = (/(3,3=1,m)/)
b(:) = 1.0_nag_wp
! Add the linear constraint: sum x_1i = 1.
idlc = 0
ifail = 0
Call e04rjf(h,1,(/1.0_nag_wp/),(/1.0_nag_wp/),nnzb,irowb,icolb,b,idlc, &
ifail)

! Generate matrix constraint as:
! sum_{i=1}"m x_i*v_i*v_i"T - t*I >=0

nblk 1
dima = p

! Total number of nonzeros
nnzasum = p + m*(p+1)*p/2
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Allocate (nnza(nvar+1l),irowa(nnzasum),icola(nnzasum),a(nnzasum),x(nvar))
! A_0 is empty

nnza(l) = 0
! A_l, A2, ..., A_m are v_i*v_i"T
nnza(2:m+1) = (p+1)*p/2
idx = 0
Dok =1, m
Do i =1, p
Do j =1i, p

idx = idx + 1
irowa (idx) i
icola(idx)
a(idx) = v
End Do
End Do
End Do
! A_{m+1l} is the -identity
nnza(m+2) = p
Do i=1,p
idx = idx + 1

1
J
(i,k)*v(j,k)

irowa(idx) = 1

icola(idx) = 1i

a(idx) = -1.0_nag_wp
End Do

! Add the constraint to the problem formulation.
Allocate (blksizea(nblk))
blksizea(:) = (/dima/)

idblk = 0

ifail = 0

Call eO4rnf (h,nvar,dima,nnza,nnzasum,irowa,icola,a,nblk,blksizea,idblk, &
ifail)

! Set optional arguments of the solver.
ifail = 0
Call e04zmf (h, 'Task = Maximize’,ifail)
ifail = 0
Call eO4zmf (h,’'Initial X = Automatic’,ifail)

! Pass the handle to the solver, we are not interested in
! Lagrangian multipliers.

nnzu = 0
nnzuc = 0
nnzua = 0
ifail = 0

Call e0O4svf (h,nvar,x,nnzu, rdummy,nnzuc, rdummy,nnzua,rdummny,rinfo,stats, &
inform,ifail)

! Print results
Write (nout,?*)
tol = 0.00001_nag_wp
Write (nout,*) ' Weight Row of design matrix’
Write (nout,*) repeat(’-',13+p*8)
Do j =1, m
If (x(j)>tol) Then
Write (*,99999) x(j), v(l:p,3J)
End If
End Do
Write (nout,99998) ’only those rows with a weight > ', tol, ' are shown’

! Destroy the handle.
ifail = 0
Call eO4rzf(h,ifail)

99999 Format (1X,F7.2,5X,10(1X,F7.2))

99998 Format (1X,A,E8.1,A)
End Program eO4rnfe
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10.2 Program Data

EO4RNF Example Program Data

41
5

FRRPRRPRPRRRERRRRRERRERRERRRRRRERERERERBERBERRERRRRRRE

.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000

-1

-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.

0.

Number of vectors to choose from
Length of vectors

.00000000
95000000
90000000
85000000
80000000
75000000
70000000
65000000
60000000
55000000
50000000
45000000
40000000
35000000
30000000
25000000
20000000
15000000
10000000
05000000
00000000

0.05000000

ENeNoNoNoNoNoNoloNoNoNoNoNoNoNoNoNoNe)

.10000000
.15000000
.20000000
.25000000
.30000000
.35000000
.40000000
.45000000
.50000000
.55000000
.60000000
.65000000
.70000000
.75000000
.80000000
.85000000
.90000000
.95000000
.00000000

10.3 Program Results

1

aeclNoNoNoNoNoNoloNolooRoNololoNoNoNoNoNoNoNoNoloNolooNooNoNoNoNoNoNoNoNoNoNe)

EO4RNF Example Program Results

E04sSVv, NLP-SDP Solver

Number of variables

(Pennon)
42
simple
inequalities 41

(Standard)
(Standard)
Matrix inequalities

equalities

Begin of Options
Outer Iteration Limit
Inner Iteration Limit

Infinite Bound Size

Initial X
Initial U
Initial P
Hessian Density
Init Value P

Init Value Pmat

EO04RNF.10

.00000000 -1.00000000
.90250000 -0.85737500
.81000000 -0.72900000
.72250000 -0.61412500
.64000000 -0.51200000
.56250000 -0.42187500
.49000000 -0.34300000
.42250000 -0.27462500
.36000000 -0.21600000
.30250000 -0.16637500
.25000000 -0.12500000
.20250000 -0.09112500
.16000000 -0.06400000
.12250000 -0.04287500
.09000000 -0.02700000
.06250000 -0.01562500
.04000000 -0.00800000
.02250000 -0.00337500
.01000000 -0.00100000
.00250000 -0.00012500
.00000000 0.00000000
.00250000 0.00012500
.01000000 0.00100000
.02250000 0.00337500
.04000000 0.00800000
.06250000 0.01562500
.09000000 0.02700000
.12250000 0.04287500
.16000000 0.06400000
.20250000 0.09112500
.25000000 0.12500000
.30250000 0.16637500
.36000000 0.21600000
.42250000 0.27462500
.49000000 0.34300000
.56250000 0.42187500
.64000000 0.51200000
.72250000 0.61412500
.81000000 0.72900000
.90250000 0.85737500
.00000000 1.00000000

linear non

2
0
1

.00000000
.81450625
.65610000
.52200625
.40960000
.31640625
.24010000
.17850625
.12960000
.09150625
.06250000
.04100625
.02560000
.01500625
.00810000
.00390625
.00160000
.00050625
.00010000
.00000625
.00000000
.00000625
.00010000
.00050625
.00160000
.00390625
.00810000
.01500625
.02560000
.04100625
.06250000
.09150625
.12960000
.17850625
.24010000
.31640625
.40960000
.52200625
.65610000
.81450625
.00000000

meNoNoNoNoNoNoloNololoRoNolooNoNoNoNoNoNoNoNoloNolooNoNoNoNoNoNoNoNoNoNoNeNeN

[eliminated

lin
0
0
0 [dense

100
100

.00000E+20

Automatic
Automatic
Automatic

Dense

.00000E+00
.00000E+00

1,
[max dimension

* % k¥ Ok X X X X

[eTi T/, Iy o T o T e Ry o TN o T o}
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0]

0]
5]
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Presolve Block Detect

Pr
Pr

Print Options

int File
int Level

Monitoring File
Monitoring Level
Monitor Frequency

St

ats Time

P Min
Pmat Min
U Update Restriction
Umat Update Restriction

Pr

eference

Transform Constraints
Dimacs Measures

Stop Criteria

Stop Tolerance 1
Stop Tolerance 2

Stop Tolerance Feasibility

Linesearch Mode
Inner Stop Tolerance
Inner Stop Criteria

Task
P Update Speed
End of Options

it| objective

0O 0.00000E+00
1 -2.25709E+00
2 -9.90666E-01
3 -3.96590E-01
4 -1.52400E-01
5 -5.45545E-02
6 -1.62316E-02
7 -2.39571E-03
8 3.39831E-03
9 6.27924E-03
10 7.23641E-03
11 7.56230E-03
12 7.67523E-03
13 7.71758E-03
14 7.73491E-03
it| objective

15 7.74186E-03
16 7.74450E-03
17 7.74545E-03
18 7.74574E-03

Status: converged,

.80E+01
.53E-03
.29E-03
.52E-03
.63E-04
.47E-03
.05E-02

.41E-04
.25E-03
.07E-03
.26E-04
.18E-02
.26E-03
.34E-06

an optimal

Final objective value

Relative precision

Optima
Feasib

lity
ility

Complementarity

DIMACS
DIMACS
DIMACS
DIMACS
DIMACS
DIMACS
Iterat

error
error
error
error
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Weight Row of design matrix
0.09 1.00 -1.00 1.00 -1.00 1.00
0.25 1.00 -0.70 0.49 -0.34 0.24
0.32 1.00 0.00 0.00 0.00 0.00
0.25 1.00 0.70 0.49 0.34 0.24
0.09 1.00 1.00 1.00 1.00 1.00

only those rows with a weight > 0.1E-04 are shown

EO04RNF.12 (last) Mark 26
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