E04 — Minimizing or Maximizing a Function E04RHF

NAG Library Routine Document
E04RHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

EO4RHF is a part of the NAG optimization modelling suite and defines bounds on the variables of the
problem.

2 Specification

SUBROUTINE EO4RHF (HANDLE, NVAR, BL, BU, IFAIL)

INTEGER NVAR, IFAIL
REAL (KIND=nag_wp) BL(NVAR), BU(NVAR)
TYPE (C_PTR) HANDLE

3 Description

After the initialization routine EO4RAF has been called, EOARHF may be used to define the variable
bounds I, < x < u, of the problem unless the bounds have already been defined. This will typically be
used for problems, such as quadratic programming (QP)

minilﬂlgize 1a"He + 'z (a)
z€R"
subject to I < Bz < up (b) (1)
I <x<u, (c)
nonlinear programming (NLP)
mini%lize f(x) (a)
:Ee n
subject to I, < g(z) < uy (b) (2)
Ilp < Bx <up (c)
l, <z <u, (d)
linear semidefinite programming (SDP)
minimize 'z (a)
zeR"
subject to Zaz A — Ak =0, k=1,. (b) (3)
ZB < Bz < up (C)
I, <z <wuy (d)
or semidefinite programming with bilinear matrix inequalities (BMI-SDP)
miniglize IZTHx + 'z (a)
‘TE n
subject to Zx QL + Zx AP A =0, k=1,...,m4 (b) (4)
i,j=1
ZB S Bx S up (C)
l, <x<wu, (d)

where [, and u, are n-dimensional vectors. Note that upper and lower bounds are specified for all the
variables. This form allows full generality in specifying various types of constraint. If certain bounds
are not present, the associated elements of [, or u, may be set to special values that are treated as —oo
or +oo. See the description of the optional parameter Infinite Bound Size of the solvers in the suite,
EO4STF and E04SVF. Its value is denoted as bigbnd further in this text. Note that the bounds are

Mark 26 E04RHF 1

E04RHF NAG Library Manual

interpreted based on its value at the time of calling this routine and any later alterations to Infinite
Bound Size will not affect these constraints.

See EO4RAF for more details.
4 References
Candes E and Recht B (2009) Exact matrix completion via convex optimization Foundations of

Computation Mathematics (Volume 9) 717-772

S Arguments

1: HANDLE - TYPE (C_PTR) Input
On entry: the handle to the problem. It needs to be initialized by EO4RAF and must not be
changed.

2: NVAR — INTEGER Input

On entry: n, the number of decision variables = in the problem. It must be unchanged from the
value set during the initialization of the handle by E04RAF.

3: BL(NVAR) — REAL (KIND=nag_wp) array Input
: BU(NVAR) — REAL (KIND=nag_wp) array Input

On entry: l,, BL and u,, BU define lower and upper bounds on the variables, respectively. To
specify a nonexistent lower bound (i.e., [; = —00), set BL(j) < —bigbnd; to specify a nonexistent
upper bound (i.e., u; = 00), set BU(j) > bigbnd. Fixing of the variables is not allowed in this
release, however, this limitation will be removed in a future release.

Constraints:
BL(j) < BU(j), for j=1,2,...,NVAR;
BL(j) < bigbnd, for j=1,2,... ,NVAR;
BU(j) > —bigbnd, for j=1,2,...,NVAR.
5: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, —1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value —1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, the recommended value is —1. When the value —1 or 1
is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL = 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL =1

The supplied HANDLE does not define a valid handle to the data structure for the NAG
optimization modelling suite. It has not been initialized by EO4RAF or it has been corrupted.

EO4RHF2 Mark 26

E04 — Minimizing or Maximizing a Function E04RHF

IFAIL =2

The problem cannot be modified in this phase any more, the solver has already been called.

IFAIL =3

Variable bounds have already been defined.

IFAIL =4

On entry, NVAR = (value), expected value = (value).
Constraint: NVAR must match the value given during initialization of HANDLE.

IFAIL =10

On entry, j = (value), BL(j) = (value), bigbnd = (value).
Constraint: BL(j) < bigbnd.

On entry, j = (value), BL(j) = (value) and BU(j) = (value).
Constraint: BL(j) < BU(j).

On entry, j = (value), BU(j) = (value), bighnd = (value).
Constraint: BU(j) > —bigbnd.

IFAIL = —99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL = —399
Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL = —999
Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

EO4RHF is not threaded in any implementation.

9 Further Comments

None.

10 Example

There is a vast number of problems which can be reformulated as SDP. This example follows Candes
and Recht (2009) to show how a rank minimization problem can be approximated by SDP. In addition,
it demonstrates how to work with the monitor mode of EO4SVF.

The problem can be stated as follows: Let's have m respondents answering k questions where they
express their preferences as a number between 0 and 1 or the question can be left unanswered. The task
is to fill in the missing entries, i.e., to guess the unexpressed preferences. This problem falls into the
category of matrix completion. The idea is to choose the missing entries to minimize the rank of the

Mark 26 EO4RHF3

E04RHF NAG Library Manual

matrix as it is commonly believed that only a few factors contribute to an individual's tastes or
preferences.

Rank minimization is in general NP-hard but it can be approximated by a heuristic, minimizing the
nuclear norm of the matrix. The nuclear norm of a matrix is the sum of its singular values. A rank
deficient matrix must have (several) zero singular values. Given the fact that the singular values are
always non-negative, a minimization of the nuclear norm has the same effect as ¢; norm in compress
sensing, i.e., it encourages many singular values to be zero and thus it can be considered as a heuristic
for the original rank minimization problem.

Let Y denote the partially filled in m x k matrix with the valid responses on (i,7) € {2 positions. We
are looking for Y of the same size so that the valid responses are unchanged and the nuclear norm
(denoted here as ||-||,) is minimal.

mini}gnize Y]],
subject to Y;=Y; forall (i,5) € 2.
This is equivalent to

minimize trace(W7) + trace(W;)
Wi, Wa,Y

subject to Y=Yy, forall (i,j)€

W, Y
(YT W2> =0

which is the linear semidefinite problem solved in this example, see Candes and Recht (2009) and the
references therein for details.

This example has m = 15 respondents and k = 6 answers. The obtained answers are

* * * * * 04
06 04 08 =« * *
* * 0.8 « 02
0.8 02 =« * * *
* 04 x 00 x 02
04 x * 02 x 02
. * 08 02 06 = *
Y = * * 0.2 x * *
*x 04 x 06 00 =x
* * 04 * *
* * 02 02 04 04
* * * * 1.0 0.8
1.0 *x 02 =« * 0.6
* * * * * 0.2
06 x 02 04 =« *

where * denotes missing entries (—1.0 is used instead in the data file). The obtained matrix has rank 4
and it is shown below printed to 1-digit accuracy:

EO4RHF 4 Mark 26

E04 — Minimizing or Maximizing a Function

0.5
0.6
0.4
0.8
0.0
0.4
0.6
0.1
0.6
0.2
0.5
0.7
1.0
0.2
0.6

0.3
0.4
0.3
0.2
0.4
0.1
0.8
0.1
0.4
0.1
0.3
0.4
0.3
0.1
0.3

0.2
0.8
0.8
0.3
0.2
0.2
0.2
0.2
0.1
0.4
0.2
0.3
0.2
0.1
0.2

02 04 04
02 03 04
0.0 02 02
04 03 04
0.0 02 02
02 0.1 02
06 02 04
0.0 0.0 0.1
0.6 0.0 03
0.0 0.1 0.1
02 04 04
0.0 1.0 0.8
0.5 05 0.6
0.1 02 02
04 02 03

E04RHF

The example also turns on monitor mode of EO4SVF, there is a time limit introduced for the solver
which is being checked at the end of every outer iteration. If the time limit is reached, the routine is
stopped by setting INFORM = 0 within the monitor step.

See also Section 10 in EO4RAF for links to further examples in the suite.

10.1 Program Text

Program eO4rhfe

min trace(X1l) + trace(X2)
s.t. [X1, Y; Y', X2] >=0
0 <= Y_ij <=1
! Use Statements
Use nag_library, Only: eO4raf,
e04zmf,
Use, Intrinsic
! Implicit None Statement
Implicit None
! Parameters
Real (Kind=nag_wp), Parameter
Real (Kind=nag_wp), Parameter
Integer, Parameter
! Local Scalars
Type (c_ptr)
Integer

EO4ARHF Example Program Text

Mark 26 Release. NAG Copyright 201l6.

Matrix completion problem (rank minimization)

solved approximately

by SDP via nuclear norm minimization formulated as:

Local Arrays
Real

Real (Kind=nag_wp)
Integer, Allocatable

Integer
Character (1)

Intrinsic Procedures
Intrinsic

Executable Statements
Continue

Write (nout,*)

Mark 26

(Kind=nag_wp), Allocatable

e04svtf, &

e04rff, eO4rhf, eO04rnf, eOdrzf,
f08kbf, nag_wp, x04cbf
iso_c_binding, Only: c_null_ptr, &
c_ptr
stol = 1E-5_nag_wp
time_limit = 120.0_nag_wp

nin = 5, nout = ©

h

dima, i, idblk, idx, idxobj, idxx, &
ifail, info, inform, j, lwork, m, n, &
nblk, nnz, nnzasum, nnzc, nnzh, &
nnzu, nnzua, nnzuc, nvar, rank

a(:), bl(:), bu(:), c(:), s(:), &
work(:), x(:), yv(:,:)

rdummy (1), rinfo(32), stats(32)
blksizea(:), icola(:), didxc(:), &
irowa(:), nnza(:)

idummy (1)

cdummy (1)

int, max, min, sum

"EO4RHF Example Program Results’

EO4RHF.5

E04RHF NAG Library Manual

Write (nout,*)
Flush (nout)

! Skip heading in data file.
Read (nin,*)

! Read in the problem size and allocate space for the input data.
Read (nin,*) m, n
Allocate (y(m,n))

! Read in the matrix Y.
Read (nin,*)(y(i,1l:n),i=1,m)

! Count the number of specified elements (i.e., nonnegative)
nnz = 0

i,3j)>=0.0_nag_wp) Then

! Initialize handle.
h = c_null_ptr

! There are as many variables as missing entries in the Y matrix
! plus two full symmetric matrices m x m and n x n.

nvar = m*(m+1)/2 + n*(n+l)/2 + m*n - nnz

Allocate (x(nvar),bl(nvar),bu(nvar))

! Initialize an empty problem handle with NVAR variables.
ifail = 0
Call eO4raf(h,nvar,ifail)

! Create bounds for the missing entries in Y matrix to be between 0 and 1

bl(:) = -1E+20_nag_wp

bu(:) = 1E+20_nag_wp

bl (m* (m+1)/2+n*(n+1)/2+1:nvar) = 0.0_nag_wp
bu(m* (m+1)/2+n* (n+1) /2+1:nvar) = 1.0_nag_wp
ifail = 0

Call eO4rhf(h,nvar,bl,bu,ifail)

! Allocate space for the objective - minimize trace of the matrix
! constraint. There is no quadratic part in the objective.

nnzc = m + n

nnzh = 0O

Allocate (idxc(nnzc),c(nnzc))

! Construct linear matrix inequality to request that
! [X1, Y; Y', X2] is positive semidefinite.

! How many nonzeros do we need? As many as number of variables
! and the number of specified elements together.
nnzasum = m* (m+1l)/2 + n*(n+l)/2 + m*n

Allocate (nnza(nvar+1l),irowa(nnzasum),icola(nnzasum),a(nnzasum))
nnza(l) = nnz
nnza(2:nvar+l) = 1

! Copy Y to the upper block of A_O with the different sign
! (because of the sign at A_0O!)
! (upper triangle)
idx =1
Do i =1, m
Do j =1, n
If (y(i,3j)>=0.0_nag_wp) Then
irowa(idx) = i
icola(idx) = m + jJ
a(idx) = -y(i,3)
idx = idx + 1

EO04RHF.6 Mark 26

E04 — Minimizing or Maximizing a Function E04RHF

End If
End Do
End Do
! One matrix for each variable, A_i has just one nonzero - it binds
! x_1 with its position in the matrix constraint. Set also the objective.
! 1,1 - block, X1 matrix (mxm)

idxobj =1
idxx = 1
Do i =1, m
! the next element is diagonal ==> part of the objective as a trace()
idxc(idxobj) = idxx

c(idxobj) = 1.0_nag_wp
idxobj = idxobj + 1
Do j =1i, m
irowa(idx) = i
icola(idx) = j
a(idx) = 1.0_nag_wp
idx = idx + 1
idxx = idxx + 1
End Do
End Do
! 2,2 - block, X2 matrix (nxn)
Do i =1, n
! the next element is diagonal ==> part of the objective as a trace()
idxc(idxobj) = idxx
c(idxobj) = 1.0_nag_wp
idxobj = idxobj + 1
Do j =i, n
irowa(idx) = m + 1
icola(idx) = m + j
a(idx) = 1.0_nag_wp
idx = idx + 1
idxx = idxx + 1
End Do
End Do
! 1,2 - block, missing element in Y we are after
Do i =1, m
Do j =1, n
If (y(i,j)<0.0_nag_wp) Then
irowa(idx) = 1
icola(idx) = m + J
a(idx) = 1.0_nag_wp
idx = idx + 1
End If
End Do
End Do

! Add the sparse linear objective to the handle.
ifail = 0
Call eO4rff (h,nnzc,idxc,c,nnzh,idummy, idummy, rdummy,ifail)

! Just one matrix inequality of the dimension of the extended matrix.
nblk = 1
Allocate (blksizea(nblk))
dima = m + n

blksizea(:) = (/dima/)
! Add the constraint to the problem formulation.
idblk = O
ifail = 0
Call eO4rnf(h,nvar,dima,nnza,nnzasum,irowa,icola,a,nblk,blksizea,idblk, &
ifail)

! Set optional arguments of the solver.
! Completely turn off printing, allow timing and
! turn on the monitor mode to stop every iteration.

ifail = 0

Call eO4zmf (h,'Print File = -1’,ifail)
ifail = 0

Call eO4zmf (h,’Stats Time = Yes’,ifail)
ifail = 0

Mark 26 EO4RHFE7

E04RHF NAG Library Manual

Call eO4zmf (h,'Monitor Frequency = 1’,ifail)

ifail = 0
Call e04zmf(h,’'Initial X = Automatic’,ifail)
ifail = 0

Call eO4zmf (h,’'Dimacs = Check’,ifail)

! Pass the handle to the solver, we are not interested in
! Lagrangian multipliers.

nnzu = 0
nnzuc = 0
nnzua = 0
loop: Do
ifail = -1

Call e04svf (h,nvar,x,nnzu, rdummy,nnzuc, rdummy,nnzua,rdummy,rinfo,
stats,inform,ifail)

If (inform==1) Then
! Monitor stop
Write (nout,99998) int(stats(1l)), rinfo(1l),
sum(rinfo(2:4))/3.0_nag_wp
Flush (nout)

! Check time limit and possibly stop the solver.
If (stats(8)>time_limit) Then
inform = 0
End If
Else
! Final exit, solver finished.
Write (nout,99997) int(stats(1l)), rinfo(1l),
sum(rinfo(2:4))/3.0_nag_wp
Flush (nout)
Exit loop
End If

End Do loop

If (ifail==0 .Or. ifail==50) Then
! Successful run, fill the missing elements in the matrix Y.
idx = m*(m+1)/2 + n*(n+l)/2 + 1
Do i =1, m

! Print the matrix.
ifail = 0

Call x04cbf(’'General’,’'N’,m,n,y,m,’'F7.1", 'Completed Matrix’,’'Integer’,

cdummy, 'Integer’,cdummy,80,0,ifail)

! Compute rank of the matrix via SVD, use the fact that the order
! of the singular values is descending.
lwork = 20*max(m,n)
Allocate (s(min(m,n)),work(lwork))
Call f08kbf(’'No’,’'No’,m,n,y,m,s,rdummy,l,rdummy,l,work,lwork,info)
If (info==0) Then
lp_rank: Do rank = 1, min(m,n)
If (s(rank)<=stol) Then
Exit 1lp_rank
End If
End Do 1lp_rank
Write (nout,99999) ’'Rank is’, rank - 1
99999 Format (1X,A,I20)
End If
Else If (ifail==20) Then
Write (nout,*) ’'The given time limit was reached, run aborted.’
End If

&

EO4RHFES Mark 26

E04 — Minimizing or Maximizing a Function

! Destroy the handle.
ifail = 0
Call eO4rzf(h,ifail)

99998 Format (1X,’Monitor at iteration ',I2,’: objective
', avg.error ',Es9.2e2)
99997 Format (1X,’Finished at iteration ’,I2,’: objective
", avg.error ’',Es9.2e2)
End Program eO4rhfe
10.2 Program Data
EO4RHF Example Program Data
15 6 : m, n - number of respondents and questions
-1.0 -1.0 -1.0 -1.0 -1.0 0.4
0.6 0.4 0.8 -1.0 -1.0 -1.0
-1.0 -1.0 0.8 -1.0 0.2 -1.0
0.8 0.2 -1.0 -1.0 -1.0 -1.0
-1.0 0.4 -1.0 0.0 -1.0 0.2
0.4 -1.0 -1.0 0.2 -1.0 0.2
-1.0 0.8 0.2 0.6 -1.0 -1.0
-1.0 -1.0 0.2 -1.0 -1.0 -1.0
-1.0 0.4 -1.0 0.6 0.0 -1.0
-1.0 -1.0 0.4 -1.0 -1.0 -1.0
-1.0 -1.0 0.2 0.2 0.4 0.4
-1.0 -1.0 -1.0 -1.0 1.0 0.8
1.0 -1.0 0.2 -1.0 -1.0 0.6
-1.0 -1.0 -1.0 -1.0 -1.0 0.2
0.6 -1.0 0.2 0.4 -1.0 -1.0
10.3 Program Results
EO4RHF Example Program Results
Monitor at iteration 0: objective 0.00, avg.error
Monitor at iteration 1: objective 154.74, avg.error
Monitor at iteration 2: objective 71.71, avg.error
Monitor at iteration 3: objective 36.88, avg.error
Monitor at iteration 4: objective 22.50, avg.error
Monitor at iteration 5: objective 16.47, avg.error
Monitor at iteration 6: objective 13.88, avg.error
Monitor at iteration 7: objective 12.76, avg.error
Monitor at iteration 8: objective 12.27, avg.error
Monitor at iteration 9: objective 12.06, avg.error
Monitor at iteration 10: objective 11.97, avg.error
Monitor at iteration 11: objective 11.93, avg.error
Monitor at iteration 12: objective 11.91, avg.error
Monitor at iteration 13: objective 11.91, avg.error
Monitor at iteration 14: objective 11.90, avg.error
Monitor at iteration 15: objective 11.90, avg.error
Monitor at iteration 16: objective 11.90, avg.error
Monitor at iteration 17: objective 11.90, avg.error
Monitor at iteration 18: objective 11.90, avg.error
Monitor at iteration 19: objective 11.90, avg.error
Monitor at iteration 20: objective 11.90, avg.error
Monitor at iteration 21: objective 11.90, avg.error
Monitor at iteration 22: objective 11.90, avg.error
Finished at iteration 23: objective 11.90, avg.error
Completed Matrix
1 2 3 4 5 6
1 0.5 0.3 0.2 0.2 0.4 0.4
2 0.6 0.4 0.8 0.2 0.3 0.4
3 0.4 0.3 0.8 0.0 0.2 0.2
4 0.8 0.2 0.3 0.4 0.3 0.4
5 0.0 0.4 0.2 0.0 0.2 0.2
6 0.4 0.1 0.2 0.2 0.1 0.2
7 0.6 0.8 0.2 0.6 0.2 0.4
8 0.1 0.1 0.2 0.0 0.0 0.1
9 0.6 0.4 0.1 0.6 0.0 0.3
10 0.2 0.1 0.4 0.0 0.1 0.1

Mark 26

-1.0 for missing entries

AR NOUORFRWOWIRPRPWOWUORNDNUORNDOR WOUND D W

"LF7.2,

"LF7.2,

.14E+01
.98E+01
.15E+01
.13E+00
.84E+00
.61E+00
.87E-01
.97E-01
.29E-01
.63E-02
.50E-02
.17E-02
.77E-03
.33E-03
.11E-04
.77E-04
.64E-04
.07E-05
.05E-05
.31E-05
.60E-06
.38E-06
.01E-06
.31E-07

E04RHF

E04RHF9

NAG Library Manual

E04RHF

11
12
13

14
15

Rank is

Mark 26

EO04RHF 10 (last)

	E04RHF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Candes and Recht (2009)

	5 Arguments
	HANDLE
	NVAR
	BL
	BU
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=10
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Fortran Library Manual, Mark 26.1
	Copyright Statement
	Foreword
	Introduction
	How to Use the NAG Library and its Documentation
	Mark 26.1 NAG Fortran Library News
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Code Contributors
	Support from NAG
	Index

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Contents
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Contents
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Contents
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Contents
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Contents
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Contents
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Contents
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Contents
	D02 Chapter Introduction
	D02M-N Sub-chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Contents
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Contents
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Contents
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Contents
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Contents
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Contents
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Contents
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Contents
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Contents
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Contents
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Contents
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Contents
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Contents
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Contents
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Contents
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Contents
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Contents
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Contents
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Contents
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Contents
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Contents
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Contents
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Contents
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Contents
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Contents
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Contents
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Contents
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Contents
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Contents
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Contents
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Contents
	G13 Chapter Introduction

	G22 - Linear Model Specification
	G22 Chapter Contents
	G22 Chapter Introduction

	H - Operations Research
	H Chapter Contents
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Contents
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Contents
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Contents
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Contents
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Contents
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Contents
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Contents
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Contents
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Contents
	X07 Chapter Introduction

