
NAG Library Routine Document

E04RDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04RDF reads in a linear semidefinite programming problem (SDP) from a file in sparse SDPA format
and returns it in the form which is usable by routines E04RAF (initialization), E04REF (linear objective
function), E04RNF (linear matrix constraints), E04SVF (solver) and E04RZF (deallocation) from the
NAG optimization modelling suite.

2 Specification

SUBROUTINE E04RDF (INFILE, MAXNVAR, MAXNBLK, MAXNNZ, FILELST, NVAR,
NBLK, NNZ, CVEC, NNZA, IROWA, ICOLA, A, BLKSIZEA,
IFAIL)

&
&

INTEGER INFILE, MAXNVAR, MAXNBLK, MAXNNZ, FILELST, NVAR,
NBLK, NNZ, NNZA(MAXNVAR+1), IROWA(MAXNNZ),
ICOLA(MAXNNZ), BLKSIZEA(MAXNBLK), IFAIL

&
&

REAL (KIND=nag_wp) CVEC(MAXNVAR), A(MAXNNZ)

3 Description

E04RDF is capable of reading linear semidefinite programming problems (SDP) from a text file in
sparse SDPA format. The problem is captured and returned in the following form:

minimize
x2Rn

cTx ðaÞ

subject to
Xn
i¼1

xiAi �A0 � 0; ðbÞ ð1Þ

where Ai denotes symmetric matrices and c is a vector. The expression S � 0 stands for a constraint on
the eigenvalues of a symmetric matrix S, namely, all the eigenvalues should be non-negative, i.e., the
matrix S should be positive semidefinite.

Please note that this form covers even general linear SDP formulations with multiple linear matrix
inequalities and a set of standard linear constraints. A set of mA linear matrix inequalities

Xn
i¼1

xiA
k
i �Ak

0 � 0; k ¼ 1; . . . ;mA ð2Þ

can be equivalently expressed as one matrix inequality (1)(b) in the following block diagonal form
where the matrices A1

i ; A
2
i ; . . . ; A

mA
i create the diagonal blocks of Ai:

Xn
i¼1

xi

A1
i

A2
i

. .
.

AmA

i

0
BBB@

1
CCCA�

A1
0

A2
0

. .
.

AmA

0

0
BBB@

1
CCCA � 0:

In addition, notice that if all matrices Ak
i belonging to the same block, say block k, are themselves

diagonal matrices (or have dimension 1� 1), the associated matrix inequality

Xn
i¼1

xiA
k
i � Ak

0 � 0 ð3Þ

defines actually a standard linear constraint

E04 – Minimizing or Maximizing a Function E04RDF

Mark 26 E04RDF.1

Bx � l

where l and columns of the matrix B are formed by the diagonals of matrices Ak
0 and Ak

1; . . . ; A
k
n,

respectively. Precisely, li ¼ Ak
0

� �
ii
and bij ¼ Ak

j

� �
ii
. See Section 10.

3.1 Sparse SDPA file format

The problem data is written in an ASCII input file in a SDPA sparse format which was first introduced
in Fujisawa et al. (1998). In the description below we follow closely the specification from Borchers
(1999).

The format is line oriented. If more elements are required on the line they need to be separated by a
space, a tab or any of the special characters ‘,’, ‘(’, ‘)’, ‘{’ or ‘}’. The file consists of six sections:

1. Comments. The file can begin with arbitrarily many lines of comments. Each line of comments
must begin with ‘"’ or ‘*’.

2. The first line after the comments contains integer n, the number of variables. The rest of this line is
ignored.

3. The second line after the comments contains integer mA, the number of blocks in the block
diagonal structure of the matrices. Additional text on this line after mA is ignored.

4. The third line after the comments contains a vector of mA integers that give the sizes of the
individual blocks. Negative numbers may be used to indicate that a block is actually a diagonal
submatrix. Thus a block size of ‘�5’ indicates a 5 by 5 block in which only the diagonal elements
are nonzero.

5. The fourth line after the comments contains an n-dimensional real vector defining the objective
function vector c.

6. The remaining lines of the file contain nonzero entries in the constraint matrices, with one entry per
line. The format for each line is

matno blkno i j entry

where matno is the number 0; . . . ; nð Þ of the matrix to which this entry belongs and blkno specifies
the block number k ¼ 1; 2; . . . ;mA within this matrix. Together, they uniquely identify the block
Ablkno

matno. Integers i and j are one-based indices which specify a location of the entry within the
block. Note that since all matrices are assumed to be symmetric, only entries in the upper triangle
of a matrix should be supplied. Finally, entry should give the real value of the entry in the matrix.
Precisely, Ablkno

matno

� �
ij ¼ Ablkno

matno

� �
ji ¼ entry.

In the text below and in the file listing (FILELST) we use the word ‘token’ as a reference to a group of
contiguous characters without a space or any other delimeters.

3.2 Recommendation on how best to use E04RDF

(a) The input file with the problem needs to be opened for reading by X04ACF (MODE ¼ 0). In this
way we avoid possible limitations of maximal lengths of lines inherited by Fortran I/O (X04ACF
uses the formatted stream access mode to bypass the restriction). If the file is opened by other
means or standard input is used instead, lines within the file might be truncated which would
produce a file format error message. This would most likely happen on the line defining the
objective function. Setting FILELST ¼ 1 might help with possible file formatting errors.

(b) Unless the dimension of the problem (or its overestimate) is known in advance, call E04RDF
initially with MAXNVAR ¼ 0, MAXNBLK ¼ 0 and MAXNNZ ¼ 0. In this case the exact size of
the problem is computed and returned in NVAR, NBLK and NNZ. No other data will be stored and
none of the arrays CVEC, NNZA, IROWA, ICOLA, A, BLKSIZEA will be referenced. Then the
exact storage can be allocated and the file reopened. When E04RDF is called for the second time,
the problem is read in and stored in appropriate arrays.

E04RDF NAG Library Manual

E04RDF.2 Mark 26

(c) The example in Section 10 shows a typical sequence of calls to solve the problem read in by
E04RDF. First an empty handle needs to be initialized by E04RAF with NVAR variables. This
should be followed by calls to E04REF and E04RNF to formulate the objective function and the
constraints, respectively. The arguments of both routines use the same naming and storage as in
E04RDF so the variables can be passed unchanged; only DIMA in E04RNF is new and should
equal to SUM BLKSIZEAð1 : NBLKÞð Þ and NNZASUM in E04RNF is the same as NNZ in
E04RDF. You may at this point want to modify option settings using E04ZMF. If dual variables
(Lagrangian multipliers) are required from the solver, sufficient space needs to be allocated. The
size is equal to the sum of the number of elements of dense triangular matrices for each block. For
further details, see the argument UA of the solver E04SVF. The solver should be called and then
followed, finally, by a call to E04RZF to deallocate memory associated with the problem.

4 References

Borchers B (1999) SDPLIB 1.2, A Library of semidefinite programming test problems. Optimization
Methods and Software 11(1) 683–690 http://euler.nmt.edu/~brian/sdplib/

Fujisawa K, Kojima M and Nakata K (1998) SDPA (Semidefinite Programming Algorithm) User's
Manual Technical Report B-308 Department of Mathematical and Computing Sciences, Tokyo Institute
of Technology.

5 Arguments

1: INFILE – INTEGER Input

On entry: the unit number associated with the sparse SDPA data file. Note: that the file needs to
be opened in read mode by X04ACF with MODE ¼ 0.

Constraint: INFILE � 0.

2: MAXNVAR – INTEGER Input

On entry: the upper limit for the number of variables in the problem. If it is set to zero, CVEC
and NNZA will not be referenced.

Constraint: MAXNVAR � 0.

3: MAXNBLK – INTEGER Input

On entry: the upper limit for the number of matrix constraints (i.e., the number of diagonal
blocks within the matrix). If it is set to zero, BLKSIZEA will not be referenced.

Constraint: MAXNBLK � 0.

4: MAXNNZ – INTEGER Input

On entry: the upper limit on the sum of nonzeros in all matrices Ak
i , for i ¼ 0; 1; . . . ;NVAR and

k ¼ 1; 2; . . . ;NBLK. If it is set to zero, IROWA, ICOLA and A will not be referenced.

Constraint: MAXNNZ � 0.

5: FILELST – INTEGER Input

On entry: if FILELST 6¼ 0, a listing of the input data is sent to the current advisory message unit
(as defined by X04ABF). This can be useful for debugging the data file.

If FILELST ¼ 0, no listing is produced.

E04 – Minimizing or Maximizing a Function E04RDF

Mark 26 E04RDF.3

http://euler.nmt.edu/~brian/sdplib/

6: NVAR – INTEGER Output
7: NBLK – INTEGER Output
8: NNZ – INTEGER Output

On exit: the actual number of the variables n, matrix constraints mA and number of nonzeros of
the problem in the file. This also indicates the exact memory needed in CVEC, NNZA, IROWA,
ICOLA, A and BLKSIZEA.

9: CVECðMAXNVARÞ – REAL (KIND=nag_wp) array Output

On exit: CVECðiÞ, for i ¼ 1; 2; . . . ;NVAR, stores the dense vector c of the linear objective
function.

10: NNZAðMAXNVAR þ 1Þ – INTEGER array Output

On exit: NNZAði þ 1Þ, for i ¼ 0; 1; . . . ;NVAR, stores the number of nonzero elements in
matrices Ai.

11: IROWAðMAXNNZÞ – INTEGER array Output
12: ICOLAðMAXNNZÞ – INTEGER array Output
13: AðMAXNNZÞ – REAL (KIND=nag_wp) array Output

On exit: IROWA, ICOLA and A store the nonzeros in the upper triangle of matrices Ai, for
i ¼ 0; 1; . . . ;NVAR, in the coordinate storage, i.e., IROWAðjÞ are one-based row indices,
ICOLAðjÞ are one-based column indices and AðjÞ are the values of the nonzero elements, for
j ¼ 1; 2; . . . ;NNZ. See Section 9.

14: BLKSIZEAðMAXNBLKÞ – INTEGER array Output

On exit: BLKSIZEAðkÞ, for k ¼ 1; 2; . . . ;NBLK, stores the sizes of the diagonal blocks in
matrices Ai from the top to the bottom.

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Note: E04RDF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

At least one of MAXNVAR, MAXNBLK or MAXNNZ is too small. Suggested values are
returned in NVAR, NBLK and NNZ, respectively.

IFAIL ¼ 2

The token on line valueh i at position valueh i to valueh i was not recognized as a valid integer.

E04RDF NAG Library Manual

E04RDF.4 Mark 26

IFAIL ¼ 3

The token on line valueh i at position valueh i to valueh i was not recognized as a valid real
number.

IFAIL ¼ 4

The token on line valueh i starting at position valueh i was too long and was not recognized.

IFAIL ¼ 5

An invalid number of variables was given on line valueh i.
The number stated there is valueh i and needs to be at least 1.

IFAIL ¼ 6

An invalid number of blocks was given on line valueh i.
The number stated there is valueh i and needs to be at least 1.

IFAIL ¼ 7

An invalid size of the block number valueh i was given on line valueh i.
The number stated there is valueh i and needs to be nonzero.

IFAIL ¼ 8

Not enough data was given on line valueh i specifying block sizes.
Expected mA tokens but found only valueh i.

IFAIL ¼ 9

Not enough data was given on line valueh i specifying the objective function.
Expected n tokens but found only valueh i.

IFAIL ¼ 10

Not enough data was given on line valueh i specifying nonzero matrix elements.
Expected valueh i tokens but found only valueh i.

IFAIL ¼ 11

Invalid structural data found on line valueh i.
The given matrix number is out of bounds. Its value valueh i must be between 0 and n (inclusive).

IFAIL ¼ 12

Invalid structural data found on line valueh i.
The given block number is out of bounds. Its value valueh i must be between 1 and mA

(inclusive).

IFAIL ¼ 13

Invalid structural data found on line valueh i.
The given row index is out of bounds, it must respect the size of the block. Its value valueh i must
be between valueh i and valueh i (inclusive).

IFAIL ¼ 14

Invalid structural data found on line valueh i.
The given column index is out of bounds, it must respect the size of the block. Its value valueh i
must be between valueh i and valueh i (inclusive).

E04 – Minimizing or Maximizing a Function E04RDF

Mark 26 E04RDF.5

IFAIL ¼ 15

Invalid structural data found on line valueh i.
The specified nonzero element is not in the upper triangle.
The row index is valueh i and column index is valueh i.

IFAIL ¼ 16

Invalid structural data found on line valueh i.
The specified element belongs to a diagonal block but is not diagonal.
The row index is valueh i and column index is valueh i.

IFAIL ¼ 17

An entry in the constraints with matno ¼ valueh i, blkno ¼ valueh i, row index valueh i and
column index valueh i was defined more than once. All entries need to be unique.

IFAIL ¼ 18

A premature end of the input stream. The part defining the dimensions of the blocks was not
found.

A premature end of the input stream. The part defining the nonzero entries was not found.

A premature end of the input stream. The part defining the number of blocks was not found.

A premature end of the input stream. The part defining the number of variables was not found.

A premature end of the input stream. The part defining the objective function was not found.

IFAIL ¼ 19

The input stream seems to be empty. No data was read. This might indicate a problem with
opening the file, check that X04ACF was used correctly.

IFAIL ¼ 20

Reading from the stream caused an unknown error on line valueh i.

IFAIL ¼ 21

On entry, INFILE ¼ valueh i.
Constraint: INFILE � 0.

On entry, MAXNBLK ¼ valueh i.
Constraint: MAXNBLK � 0.

On entry, MAXNNZ ¼ valueh i.
Constraint: MAXNNZ � 0.

On entry, MAXNVAR ¼ valueh i.
Constraint: MAXNVAR � 0.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

E04RDF NAG Library Manual

E04RDF.6 Mark 26

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

E04RDF is not threaded in any implementation.

9 Further Comments

The following artificial example demonstrates how the elements of Ai matrices are organized within
arrays NNZA, IROWA, ICOLA and A. For simplicity let us assume that NBLK ¼ 1,
BLKSIZEAð1Þ ¼ 3 and NVAR ¼ 4. Please note that the values of the elements were chosen to ease
readability rather than to define a valid problem.

Let the matrix constraint (1)(b) be defined by

A0 ¼
0 0:1 0
0:1 0 0:2
0 0:2 0:3

0
@

1
A;

A1 ¼
1:1 0 0
0 1:2 1:3
0 1:3 1:4

0
@

1
A;

A2 empty;

A3 ¼
0 0 0
0 3:1 0
0 0 3:2

0
@

1
A;

A4 ¼
4:1 4:2 4:3
4:2 0 0
4:3 0 0

0
@

1
A:

All matrices Ai have to be symmetric and therefore only the elements in the upper triangles are stored.
The table below shows how the arrays would be populated.

IROWA 1 2 3 1 2 2 3 2 3 1 2 3
ICOLA 2 3 3 1 2 3 3 2 3 1 1 1
A 0:1 0:2 0:3|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl} 1:1 1:2 1:3 1:4|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} |fflffl{zfflffl} 3:1 3:2|fflfflfflfflfflffl{zfflfflfflfflfflffl} 4:1 4:2 4:3|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

A0 A1 A2 A3 A4

NNZA 3 4 0 2 3

See also Section 3 in E04RNF which accepts the same format.

10 Example

The following example comes from Fujisawa et al. (1998).

E04 – Minimizing or Maximizing a Function E04RDF

Mark 26 E04RDF.7

Imagine that we want to store the following problem in a file in the SDPA format.

minimize
x2R2

10x1 þ 20x2

subject to 1 0
1 1

� �
x1
x2

� �
� 1

1:5

� �
5 2
2 6

� �
x2 � 3 0

0 4

� �
� 0:

There are two variables (n ¼ 2) in the problem. One linear matrix constraint and one block of linear
constraints can be formed as (1) with two diagonal blocks (mA ¼ 2). Both blocks have dimension 2 but
the first one (defining linear constraints) is only diagonal, thus the sizes will be stated as �2 2 .

The problem can be rewritten as

minimize
x2R2

cTx

subject to A1x1 þA2x2 �A0 � 0

where

c ¼ 10 20
� �T

,

A0 ¼
1 0 0 0
0 1:5 0 0
0 0 3 0
0 0 0 4

0
B@

1
CA,

A1 ¼
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

0
B@

1
CA,

A2 ¼
0 0 0 0
0 1 0 0
0 0 5 2
0 0 2 6

0
B@

1
CA.

The optimal solution is x� ¼ 1:0 1:0
� �T

with the objective function value 30:0. The optimal

Lagrangian multipliers (dual variables) are 10:0, 0:0 and 20=7; �20=7
�20=7; 20=7

� �
.

See also Section 10 in E04RAF for links to further examples in the suite.

10.1 Program Text

Program e04rdfe

! E04RDF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

! Load a linear semidefinite programming problem from a sparse SDPA
! file, formulate the problem via a handle, pass it to the solver
! and print both primal and dual variables.

! .. Use Statements ..
Use nag_library, Only: e04raf, e04rdf, e04ref, e04rnf, e04ryf, e04rzf, &

e04svf, e04zmf, nag_wp, x04acf, x04adf, x04ccf
Use, Intrinsic :: iso_c_binding, Only: c_ptr

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: filelst = 0, infile = 42, nout = 6
Character (*), Parameter :: fname_default = ’e04rdfe.opt’

! .. Local Scalars ..
Type (c_ptr) :: handle
Integer :: idblk, idx, ifail, ifail_e04rd, &

E04RDF NAG Library Manual

E04RDF.8 Mark 26

inform, k, maxnblk, maxnnz, maxnvar, &
nblk, nnz, nnzu, nnzua, nnzuc, &
ntests, nvar

Character (256) :: fname
Character (60) :: title

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), cvec(:), u(:), ua(:), uc(:), &

x(:)
Real (Kind=nag_wp) :: rinfo(32), stats(32)
Integer, Allocatable :: blksizea(:), icola(:), irowa(:), &

nnza(:)
! .. Intrinsic Procedures ..

Intrinsic :: command_argument_count, &
get_command_argument, sum, trim

! .. Executable Statements ..
Continue

Write (nout,*) ’E04RDF Example Program Results’
Write (nout,*)

! Use the first command line argument as the filename or
! choose default hard-coded filename in ’fname_default’.

ntests = command_argument_count()
If (ntests==0) Then

! Assume the default filename.
fname = fname_default

Else
Call get_command_argument(1,fname)

End If

Write (nout,*) ’Reading SDPA file: ’, trim(fname)
Flush (nout)

! Open the input file.
ifail = 0
Call x04acf(infile,fname,0,ifail)

! Go through the file and find the dimension of the problem.
! Unless the file format is wrong, the routine should finish
! with IFAIL = 1 (not enough space).

maxnvar = 0
maxnblk = 0
maxnnz = 0
Allocate (cvec(maxnvar),nnza(maxnvar+1),irowa(maxnnz),icola(maxnnz), &

a(maxnnz),blksizea(maxnblk))
ifail_e04rd = -1
Call e04rdf(infile,maxnvar,maxnblk,maxnnz,filelst,nvar,nblk,nnz,cvec, &

nnza,irowa,icola,a,blksizea,ifail_e04rd)
Deallocate (cvec,nnza,irowa,icola,a,blksizea)

! Close the file, it will need to be reopened later.
ifail = 0
Call x04adf(infile,ifail)

If (ifail_e04rd/=1) Then
! Possible problem with formatting, etc.

Write (nout,99999) ’Reading the SDPA file failed with IFAIL = ’, ifail
99999 Format (1X,A,I3)

Write (nout,*) ’Terminating the example program.’
Go To 100

End If

! Allocate the right size of arrays for the data.
Write (nout,*) ’Allocating space for the problem.’
Write (nout,Fmt=99998) ’NVAR = ’, nvar
Write (nout,Fmt=99998) ’NBLK = ’, nblk
Write (nout,Fmt=99998) ’NNZ = ’, nnz

99998 Format (6X,A,I7)
Flush (nout)

maxnvar = nvar

E04 – Minimizing or Maximizing a Function E04RDF

Mark 26 E04RDF.9

maxnblk = nblk
maxnnz = nnz

Allocate (cvec(maxnvar),nnza(maxnvar+1),irowa(maxnnz),icola(maxnnz), &
a(maxnnz),blksizea(maxnblk))

! Reopen the file.
ifail = 0
Call x04acf(infile,fname,0,ifail)

! Read the problem data, there should be enough space this time.
ifail = 0
Call e04rdf(infile,maxnvar,maxnblk,maxnnz,filelst,nvar,nblk,nnz,cvec, &

nnza,irowa,icola,a,blksizea,ifail)

! Close the file.
ifail = 0
Call x04adf(infile,ifail)

! Problem was successfully decoded.
Write (nout,*) &

’Linear SDP problem was read, start formulating the problem’
Flush (nout)

! Initialize the handle of the problem.
ifail = 0
Call e04raf(handle,nvar,ifail)

! Add the linear objective function to the formulation.
ifail = 0
Call e04ref(handle,nvar,cvec,ifail)

! Add all linear matrix constraints to the formulation.
idblk = 0
ifail = 0
Call e04rnf(handle,nvar,sum(blksizea(1:nblk)),nnza,nnz,irowa,icola,a, &

nblk,blksizea,idblk,ifail)

Write (nout,*) ’The problem formulation in a handle is completed.’
Write (nout,*)
Flush (nout)

! Print overview of the handle.
ifail = 0
Call e04ryf(handle,nout,’Overview’,ifail)

! Set optional arguments.
ifail = 0
Call e04zmf(handle,’DIMACS Measures = Check’,ifail)
ifail = 0
Call e04zmf(handle,’Initial X = Automatic’,ifail)

! Compute memory needed for primal & dual variables.

! There are no box constraints or linear constraints set
! by E04RHF or E04RJF, neither second order cone constraints.

nnzu = 0
nnzuc = 0

! Count size of the matrix multipliers, stored as packed
! triangle respecting the block structure.

nnzua = 0
Do k = 1, nblk

nnzua = nnzua + blksizea(k)*(blksizea(k)+1)/2
End Do

Allocate (x(nvar),ua(nnzua),u(nnzu),uc(nnzuc))

! Call the solver.
ifail = 0
Call e04svf(handle,nvar,x,nnzu,u,nnzuc,uc,nnzua,ua,rinfo,stats,inform, &

E04RDF NAG Library Manual

E04RDF.10 Mark 26

ifail)

! Print results.

Write (nout,*)
Write (nout,*) ’Optimal solution:’
Write (nout,99997) x(1:nvar)

99997 Format (1X,’X = ’,2F9.2)
Flush (nout)

! Print packed lower triangles of the Lagrangian multipliers.
idx = 1
Do k = 1, nblk

Write (title,99996) ’Lagrangian multiplier for A_’, k
99996 Format (A,I0)

nnz = blksizea(k)*(blksizea(k)+1)/2
ifail = 0
Call x04ccf(’Lower’,’N’,blksizea(k),ua(idx:idx+nnz-1),title,ifail)
idx = idx + nnz

End Do

! Deallocate memory within the handle.
ifail = 0
Call e04rzf(handle,ifail)

100 Continue
End Program e04rdfe

10.2 Program Data

" E04RDF Example Program Data
2 =mdim
2 =nblocks
{-2, 2}
10.0 20.0
0 1 1 1 1.0
0 1 2 2 1.5
0 2 1 1 3.0
0 2 2 2 4.0
1 1 1 1 1.0
1 1 2 2 1.0
2 1 2 2 1.0
2 2 1 1 5.0
2 2 1 2 2.0
2 2 2 2 6.0

10.3 Program Results

E04RDF Example Program Results

Reading SDPA file: e04rdfe.opt
** At least one of MAXNVAR, MAXNBLK or MAXNNZ is too small.
** MAXNVAR should be at least 2, was 0.
** MAXNBLK should be at least 3, was 0.
** MAXNNZ should be at least 10, was 0.
** ABNORMAL EXIT from NAG Library routine E04RDF: IFAIL = 1
** NAG soft failure - control returned
Allocating space for the problem.

NVAR = 2
NBLK = 3
NNZ = 10

Linear SDP problem was read, start formulating the problem
The problem formulation in a handle is completed.

Overview
Status: Problem and option settings are editable.
No of variables: 2
Objective function: linear
Simple bounds: not defined yet

E04 – Minimizing or Maximizing a Function E04RDF

Mark 26 E04RDF.11

Linear constraints: not defined yet
Nonlinear constraints: not defined yet
Matrix constraints: 3

E04SV, NLP-SDP Solver (Pennon)

Number of variables 2 [eliminated 0]

simple linear nonlin
(Standard) inequalities 0 2 0
(Standard) equalities 0 0
Matrix inequalities 1 0 [dense 1, sparse 0]

[max dimension 2]

Begin of Options
Outer Iteration Limit = 100 * d
Inner Iteration Limit = 100 * d
Infinite Bound Size = 1.00000E+20 * d
Initial X = Automatic * U
Initial U = Automatic * d
Initial P = Automatic * d
Hessian Density = Dense * S
Init Value P = 1.00000E+00 * d
Init Value Pmat = 1.00000E+00 * d
Presolve Block Detect = Yes * d
Print File = 6 * d
Print Level = 2 * d
Print Options = Yes * d
Monitoring File = -1 * d
Monitoring Level = 4 * d
Monitor Frequency = 0 * d
Stats Time = No * d
P Min = 1.05367E-08 * d
Pmat Min = 1.05367E-08 * d
U Update Restriction = 5.00000E-01 * d
Umat Update Restriction = 3.00000E-01 * d
Preference = Speed * d
Transform Constraints = No * S
Dimacs Measures = Check * U
Stop Criteria = Soft * d
Stop Tolerance 1 = 1.00000E-06 * d
Stop Tolerance 2 = 1.00000E-07 * d
Stop Tolerance Feasibility = 1.00000E-07 * d
Linesearch Mode = Fullstep * S
Inner Stop Tolerance = 1.00000E-02 * d
Inner Stop Criteria = Heuristic * d
Task = Minimize * d
P Update Speed = 12 * d

End of Options
--
it| objective | optim | feas | compl | pen min |inner

--
0 0.00000E+00 4.06E+01 4.00E+00 3.16E+01 1.00E+00 0
1 4.02661E+01 1.07E-01 2.78E-01 1.52E+01 1.00E+00 5
2 2.90783E+01 6.52E-02 9.77E-02 2.78E+00 4.65E-01 5
3 2.84228E+01 1.67E-01 2.39E-01 7.76E-01 2.16E-01 2
4 2.97263E+01 3.98E-02 4.39E-02 2.05E-01 1.01E-01 3
5 2.99618E+01 5.01E-02 6.40E-03 3.32E-02 4.68E-02 2
6 2.99934E+01 1.45E-01 1.25E-03 6.23E-03 2.18E-02 1
7 2.99999E+01 3.31E-02 1.28E-05 4.16E-04 1.01E-02 1
8 3.00001E+01 9.97E-05 3.01E-07 9.67E-05 4.71E-03 1
9 3.00000E+01 1.37E-04 3.25E-08 2.25E-05 2.19E-03 1

10 3.00000E+01 1.16E-05 3.52E-09 5.23E-06 1.02E-03 1
11 3.00000E+01 1.13E-06 3.81E-10 1.22E-06 4.74E-04 1

--
Status: converged, an optimal solution found
--
Final objective value 3.000000E+01
Relative precision 3.941484E-08
Optimality 1.133096E-06
Feasibility 3.806810E-10
Complementarity 1.216064E-06
DIMACS error 1 5.395697E-08

E04RDF NAG Library Manual

E04RDF.12 Mark 26

DIMACS error 2 0.000000E+00
DIMACS error 3 0.000000E+00
DIMACS error 4 7.613621E-11
DIMACS error 5 4.324629E-09
DIMACS error 6 2.296238E-08
Iteration counts

Outer iterations 11
Inner iterations 23
Linesearch steps 50

Evaluation counts
Augm. Lagr. values 35
Augm. Lagr. gradient 35
Augm. Lagr. hessian 23

--

Optimal solution:
X = 1.00 1.00
Lagrangian multiplier for A_1

1
1 10.0000
Lagrangian multiplier for A_2

1
1 2.4321E-06
Lagrangian multiplier for A_3

1 2
1 2.8571
2 -2.8571 2.8571

E04 – Minimizing or Maximizing a Function E04RDF

Mark 26 E04RDF.13 (last)

	E04RDF
	1 Purpose
	2 Specification
	3 Description
	3.1 Sparse SDPA file format
	3.2 Recommendation on how best to use E04RDF

	4 References
	Borchers (1999)
	Fujisawa et al. (1998)

	5 Arguments
	INFILE
	MAXNVAR
	MAXNBLK
	MAXNNZ
	FILELST
	NVAR
	NBLK
	NNZ
	CVEC
	NNZA
	IROWA
	ICOLA
	A
	BLKSIZEA
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=9
	IFAIL=10
	IFAIL=11
	IFAIL=12
	IFAIL=13
	IFAIL=14
	IFAIL=15
	IFAIL=16
	IFAIL=17
	IFAIL=18
	IFAIL=19
	IFAIL=20
	IFAIL=21
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Fortran Library Manual, Mark 26.1
	Copyright Statement
	Foreword
	Introduction
	How to Use the NAG Library and its Documentation
	Mark 26.1 NAG Fortran Library News
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Code Contributors
	Support from NAG
	Index

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Contents
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Contents
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Contents
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Contents
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Contents
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Contents
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Contents
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Contents
	D02 Chapter Introduction
	D02M-N Sub-chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Contents
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Contents
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Contents
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Contents
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Contents
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Contents
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Contents
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Contents
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Contents
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Contents
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Contents
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Contents
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Contents
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Contents
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Contents
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Contents
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Contents
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Contents
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Contents
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Contents
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Contents
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Contents
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Contents
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Contents
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Contents
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Contents
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Contents
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Contents
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Contents
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Contents
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Contents
	G13 Chapter Introduction

	G22 - Linear Model Specification
	G22 Chapter Contents
	G22 Chapter Introduction

	H - Operations Research
	H Chapter Contents
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Contents
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Contents
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Contents
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Contents
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Contents
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Contents
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Contents
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Contents
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Contents
	X07 Chapter Introduction

