
NAG Library Routine Document

D02NNF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02NNF is a reverse communication routine for integrating stiff systems of implicit ordinary
differential equations coupled with algebraic equations.

2 Specification

SUBROUTINE D02NNF (NEQ, LDYSAV, T, TOUT, Y, YDOT, RWORK, RTOL, ATOL,
ITOL, INFORM, YSAV, SDYSAV, WKJAC, NWKJAC, JACPVT,
NJCPVT, IMON, INLN, IRES, IREVCM, LDERIV, ITASK,
ITRACE, IFAIL)

&
&
&

INTEGER NEQ, LDYSAV, ITOL, INFORM(23), SDYSAV, NWKJAC,
JACPVT(NJCPVT), NJCPVT, IMON, INLN, IRES, IREVCM,
ITASK, ITRACE, IFAIL

&
&

REAL (KIND=nag_wp) T, TOUT, Y(NEQ), YDOT(NEQ), RWORK(50+4*NEQ),
RTOL(*), ATOL(*), YSAV(LDYSAV,SDYSAV),
WKJAC(NWKJAC)

&
&

LOGICAL LDERIV(2)

3 Description

D02NNF is a general purpose routine for integrating the initial value problem for a stiff system of
implicit ordinary differential equations coupled with algebraic equations, written in the form

A t; yð Þy0 ¼ g t; yð Þ:
An outline of a typical calling program is given below:

! Declarations

call linear algebra setup routine
call integrator setup routine
IREVCM=0

1000 CALL D02NNF(NEQ, NEQMAX, T, TOUT, Y, YDOT, RWORK, RTOL,
ATOL, ITOL, INFORM, YSAVE, NY2DIM, WKJAC, NWKJAC, JACPVT,
NJCPVT, IMON, INLN, IRES, IREVCM, LDERIV,
ITASK, ITRACE, IFAIL)

IF (IREVCM.GT.0) THEN
IF (IREVCM.GT.7 .AND. IREVCM.LT.11) THEN

IF (IREVCM.EQ.8) THEN
supply the Jacobian matrix (i)

ELSE IF (IREVCM.EQ.9) THEN
perform monitoring tasks requested by the user (ii)

ELSE IF (IREVCM.EQ.10) THEN
indicates an unsuccessful step

END IF
ELSE

evaluate the residual (iii)
ENDIF
GO TO 1000

END IF

! post processing (optional linear algebra diagnostic call
! (sparse case only), optional integrator diagnostic call)

D02 – Ordinary Differential D02NNF

Mark 26 D02NNF.1



STOP
END

There are three major operations that may be required of the calling subroutine on an intermediate
return (IREVCM 6¼ 0) from D02NNF; these are denoted (i), (ii) and (iii).

The following sections describe in greater detail exactly what is required of each of these operations.

(i) Supply the Jacobian matrix

You need only provide this facility if the argument JCEVAL ¼ A (or JCEVAL ¼ F if using
sparse matrix linear algebra) in a call to the linear algebra setup routine (see JCEVAL in D02NUF).
If the Jacobian matrix is to be evaluated numerically by the integrator, then the remainder of
section (i) can be ignored.

We must define the system of nonlinear equations which is solved internally by the integrator. The
time derivative, y0, has the form

y0 ¼ y� zð Þ= hdð Þ;
where h is the current step size and d is an argument that depends on the integration method in use.
The vector y is the current solution and the vector z depends on information from previous time
steps. This means that d

dy0ð Þ ¼ hdð Þ ddyð Þ .
The system of nonlinear equations that is solved has the form

A t; yð Þy0 � g t; yð Þ ¼ 0

but is solved in the form

f t; yð Þ ¼ 0;

where f is the function defined by

f t; yð Þ ¼ hdð Þ A t; yð Þ y� zð Þ= hdð Þ � g t; yð Þð Þ:

It is the Jacobian matrix
@r

@y
that you must supply as follows:

@fi
@yj

¼ aij t; yð Þ þ hd
@

@yj

XNEQ
k¼1

aik t; yð Þy0k � gi t; yð Þ
 !

;

where t, h and d are located in RWORKð19Þ, RWORKð16Þ and RWORKð20Þ respectively and the
arrays Y and YDOT contain the current solution and time derivatives respectively. Only the
nonzero elements of the Jacobian need be set, since the locations where it is to be stored are preset
to zero.

Hereafter in this document this operation will be referred to as JAC.

(ii) Perform tasks requested by you

This operation is essentially a monitoring function and additionally provides the opportunity of
changing the current values of Y, YDOT, HNEXT (the step size that the integrator proposes to take
on the next step), HMIN (the minimum step size to be taken on the next step), and HMAX (the
maximum step size to be taken on the next step). The scaled local error at the end of a time step
may be obtained by calling the real function D02ZAF as follows:

IFAIL = 1
ERRLOC = D02ZAF(NEQ,ROWK(51+NEQMAX),RWORK(51),IFAIL)

! CHECK IFAIL BEFORE PROCEEDING

The following gives details of the location within the array RWORK of variables that may be of
interest to you:

Variable Specification Location

TCURR the current value of the independent variable RWORKð19Þ
HLAST last step size successfully used by the integrator RWORKð15Þ
HNEXT step size that the integrator proposes to take on the next step RWORKð16Þ

D02NNF NAG Library Manual

D02NNF.2 Mark 26



HMIN minimum step size to be taken on the next step RWORKð17Þ
HMAX maximum step size to be taken on the next step RWORKð18Þ
NQU the order of the integrator used on the last step RWORKð10Þ

You are advised to consult the description of MONITR in D02NGF for details on what optional
input can be made.

If either Y or YDOT are changed, then IMON must be set to 2 before return to D02NNF. If either
of the values HMIN or HMAX are changed, then IMON must be set � 3 before return to
D02NNF. If HNEXT is changed, then IMON must be set to 4 before return to D02NNF.

In addition you can force D02NNF to evaluate the residual vector

A t; yð Þy0 � g t; yð Þ
by setting IMON ¼ 0 and INLN ¼ 3 and then returning to D02NNF; on return to this monitoring
operation the residual vector will be stored in RWORKð50þ 2� NEQþ iÞ, for i ¼ 1; 2; . . . ;NEQ.

Hereafter in this document this operation will be referred to as MONITR.

(iii) Evaluate the residual

This operation must evaluate the residual

�r ¼ g t; yð Þ �A t; yð Þy0 ð1Þ
in one case and the reduced residual

�r̂ ¼ �A t; yð Þy0 ð2Þ
in another, where t is located in RWORKð19Þ. The form of the residual that is returned is
determined by the value of IRES returned by D02NNF. If IRES ¼ �1, then the residual defined by
equation (2) above must be returned; if IRES ¼ 1, then the residual returned by equation (1) above
must be returned.

Hereafter in this document this operation will be referred to as RESID.

4 References

See the D02M–N Sub-chapter Introduction.

5 Arguments

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and
re-entries, and a final exit, as indicated by the argument IREVCM. Between intermediate exits and re-
entries, all arguments other than YDOT, RWORK, WKJAC, IMON, INLN and IRES must remain
unchanged.

1: NEQ – INTEGER Input

On initial entry: the number of equations to be solved.

Constraint: NEQ � 1.

2: LDYSAV – INTEGER Input

On initial entry: a bound on the maximum number of equations to be solved during the
integration.

Constraint: LDYSAV � NEQ.

3: T – REAL (KIND=nag_wp) Input/Output

On initial entry: t, the value of the independent variable. The input value of T is used only on the
first call as the initial point of the integration.

On final exit: the value at which the computed solution y is returned (usually at TOUT).

D02 – Ordinary Differential D02NNF

Mark 26 D02NNF.3



4: TOUT – REAL (KIND=nag_wp) Input/Output

On initial entry: the next value of t at which a computed solution is desired. For the initial t, the
input value of TOUT is used to determine the direction of integration. Integration is permitted in
either direction (see also ITASK).

Constraint: TOUT 6¼ T.

On exit: is unaltered unless ITASK ¼ 6 and LDERIVð2Þ ¼ :TRUE: on entry (see also ITASK and
LDERIV) in which case TOUT will be set to the result of taking a small step at the start of the
integration.

5: YðNEQÞ – REAL (KIND=nag_wp) array Input/Output

On initial entry: the values of the dependent variables (solution). On the first call the first NEQ
elements of y must contain the vector of initial values.

On final exit: the computed solution vector evaluated at T (usually t ¼ TOUT).

6: YDOTðNEQÞ – REAL (KIND=nag_wp) array Input/Output

On initial entry: if LDERIVð1Þ ¼ :TRUE:, YDOT must contain approximations to the time
derivatives y0 of the vector y. If LDERIVð1Þ ¼ :FALSE:, then YDOT need not be set on entry.

On final exit: contains the time derivatives y0 of the vector y at the last integration point.

7: RWORKð50þ 4� NEQÞ – REAL (KIND=nag_wp) array Communication Array

On initial entry: must be the same array as used by one of the method setup routines D02MVF,
D02NVF or D02NWF, and by one of the storage setup routines D02NSF, D02NTF or D02NUF.
The contents of RWORK must not be changed between any call to a setup routine and the first
call to D02NNF.

On intermediate re-entry: must contain residual evaluations as described under the argument
IREVCM.

On intermediate exit: contains information for JAC, RESID and MONITR operations as
described under Section 3 and the argument IREVCM.

8: RTOLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array RTOL must be at least 1 if ITOL ¼ 1 or 2, and at least NEQ
otherwise.

On initial entry: the relative local error tolerance.

Constraint: RTOLðiÞ � 0:0 for all relevant i (see ITOL).

9: ATOLð�Þ – REAL (KIND=nag_wp) array Input

Note: the dimension of the array ATOL must be at least 1 if ITOL ¼ 1 or 3, and at least NEQ
otherwise.

On initial entry: the absolute local error tolerance.

Constraint: ATOLðiÞ � 0:0 for all relevant i (see ITOL).

10: ITOL – INTEGER Input

On initial entry: a value to indicate the form of the local error test. ITOL indicates to D02NNF
whether to interpret either or both of RTOL or ATOL as a vector or a scalar. The error test to be
satisfied is ei=wik k < 1:0, where wi is defined as follows:

D02NNF NAG Library Manual

D02NNF.4 Mark 26



ITOL RTOL ATOL wi

1 scalar scalar RTOLð1Þ � yij j þ ATOLð1Þ
2 scalar vector RTOLð1Þ � yij j þ ATOLðiÞ
3 vector scalar RTOLðiÞ � yij j þ ATOLð1Þ
4 vector vector RTOLðiÞ � yij j þ ATOLðiÞ

ei is an estimate of the local error in yi, computed internally, and the choice of norm to be used is
defined by a previous call to an integrator setup routine.

Constraint: ITOL ¼ 1, 2, 3 or 4.

11: INFORMð23Þ – INTEGER array Communication Array

12: YSAVðLDYSAV;SDYSAVÞ – REAL (KIND=nag_wp) array Communication Array

13: SDYSAV – INTEGER Input

On initial entry: the second dimension of the array YSAV as declared in the (sub)program from
which D02NNF is called. An appropriate value for SDYSAV is described in the specifications of
the integrator setup routines D02MVF, D02NVF and D02NWF. This value must be the same as
that supplied to the integrator setup routine.

14: WKJACðNWKJACÞ – REAL (KIND=nag_wp) array Input/Output

On intermediate re-entry: elements of the Jacobian as defined under the description of IREVCM.
If a numerical Jacobian was requested then WKJAC is used for workspace.

On intermediate exit: the Jacobian is overwritten.

15: NWKJAC – INTEGER Input

On initial entry: the dimension of the array WKJAC as declared in the (sub)program from which
D02NNF is called. The actual size depends on the linear algebra method used. An appropriate
value for NWKJAC is described in the specifications of the linear algebra setup routines
D02NSF, D02NTF and D02NUF for full, banded and sparse matrix linear algebra respectively.
This value must be the same as that supplied to the linear algebra setup routine.

16: JACPVTðNJCPVTÞ – INTEGER array Communication Array
17: NJCPVT – INTEGER Input

On initial entry: the dimension of the array JACPVT as declared in the (sub)program from which
D02NNF is called. The actual size depends on the linear algebra method used. An appropriate
value for NJCPVT is described in the specifications of the linear algebra setup routines D02NTF
and D02NUF for banded and sparse matrix linear algebra respectively. This value must be the
same as that supplied to the linear algebra setup routine. When full matrix linear algebra is
chosen, the array JACPVT is not used and hence NJCPVT should be set to 1.

18: IMON – INTEGER Input/Output

On intermediate exit: used to pass information between D02NNF and the MONITR operation
(see Section 3). With IREVCM ¼ 9, IMON contains a flag indicating under what circumstances
the return from D02NNF occurred:

IMON ¼ �2
Exit from D02NNF after IRES ¼ 4 (set in the RESID operation (see Section 3) caused an
early termination (this facility could be used to locate discontinuities).

IMON ¼ �1
The current step failed repeatedly.

IMON ¼ 0
Exit from D02NNF after a call to the internal nonlinear equation solver.

D02 – Ordinary Differential D02NNF

Mark 26 D02NNF.5



IMON ¼ 1
The current step was successful.

On intermediate re-entry: may be reset to determine subsequent action in D02NNF.

IMON ¼ �2
Integration is to be halted. A return will be made from D02NNF to the calling (sub)
program with IFAIL ¼ 12.

IMON ¼ �1
Allow D02NNF to continue with its own internal strategy. The integrator will try up to
three restarts unless IMON 6¼ �1.

IMON ¼ 0
Return to the internal nonlinear equation solver, where the action taken is determined by
the value of INLN.

IMON ¼ 1
Normal exit to D02NNF to continue integration.

IMON ¼ 2
Restart the integration at the current time point. The integrator will restart from order 1
when this option is used. The internal initialization module solves for new values of y and
y0 by using the values supplied in Y and YDOT by the MONITR operation (see Section 3)
as initial estimates.

IMON ¼ 3
Try to continue with the same step size and order as was to be used before entering the
MONITR operation (see Section 3). HMIN and HMAX may be altered if desired.

IMON ¼ 4
Continue the integration but using a new value of HNEXT and possibly new values of
HMIN and HMAX.

19: INLN – INTEGER Input/Output

On intermediate re-entry: with IMON ¼ 0 and IREVCM ¼ 9, INLN specifies the action to be
taken by the internal nonlinear equation solver. By setting INLN ¼ 3 and returning to D02NNF,
the residual vector is evaluated and placed in RWORKð50þ 2� NEQþ iÞ, for i ¼ 1; 2; . . . ;NEQ
and then the MONITR operation (see Section 3) is invoked again. At present this is the only
option available: INLN must not be set to any other value.

On intermediate exit: contains a flag indicating the action to be taken, if any, by the internal
nonlinear equation solver.

20: IRES – INTEGER Input/Output

On intermediate exit: with IREVCM ¼ 1, 2, 3, 4, 5, 6, 7 or 11, IRES specifies the form of the
residual to be returned by the RESID operation (see Section 3).

If IRES ¼ 1, then �r ¼ g t; yð Þ �A t; yð Þy0 must be returned.

If IRES ¼ �1, then �r̂ ¼ �A t; yð Þy0 must be returned.

On intermediate re-entry: should be unchanged unless one of the following actions is required of
D02NNF in which case IRES should be set accordingly.

IRES ¼ 2
Indicates to D02NNF that control should be passed back immediately to the calling (sub)
program with the error indicator set to IFAIL ¼ 11.

IRES ¼ 3
Indicates to D02NNF that an error condition has occurred in the solution vector, its time
derivative or in the value of t. The integrator will use a smaller time step to try to avoid
this condition. If this is not possible D02NNF returns to the calling (sub)program with the
error indicator set to IFAIL ¼ 7.

D02NNF NAG Library Manual

D02NNF.6 Mark 26



IRES ¼ 4
Indicates to D02NNF to stop its current operation and to enter the MONITR operation (see
Section 3) immediately.

21: IREVCM – INTEGER Input/Output

On initial entry: must contain 0.

On intermediate re-entry: should remain unchanged.

On intermediate exit: indicates what action you must take before re-entering D02NNF. The
possible exit values of IREVCM are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11 which should be interpreted
as follows:

IREVCM ¼ 1, 2, 3, 4, 5, 6, 7 or 11
Indicates that a RESID operation (see Section 3) is required: you must supply the residual
of the system. For each of these values of IREVCM, yi is located in YðiÞ, for
i ¼ 1; 2; . . . ;NEQ.

For IREVCM ¼ 1, 3, 6 or 11, y0i is located in YDOTðiÞ and ri should be stored in
RWORKð50þ 2� NEQþ iÞ, for i ¼ 1; 2; . . . ;NEQ.

For IREVCM ¼ 2, y0i is located in RWORKð50þ NEQþ iÞ and ri should be stored in
RWORKð50þ 2� NEQþ iÞ, for i ¼ 1; 2; . . . ;NEQ.

For IREVCM ¼ 4 or 7, y0i is located in YDOTðiÞ and ri should be stored in
RWORKð50þ NEQþ iÞ, for i ¼ 1; 2; . . . ;NEQ.

For IREVCM ¼ 5, y0i is located in RWORKð50þ 2� NEQþ iÞ and ri should be stored in
YDOTðiÞ, for i ¼ 1; 2; . . . ;NEQ.

IREVCM ¼ 8
Indicates that a JAC operation (see Section 3) is required: you must supply the Jacobian
matrix.

If full matrix linear algebra is being used, then the i; jð Þth element of the Jacobian must be stored
in WKJACð j� 1ð Þ � NEQþ iÞ.
If banded matrix linear algebra is being used, then the i; jð Þth element of the Jacobian
m u s t b e s t o r e d i n WKJACð i� 1ð Þ �mB þ kÞ, w h e r e mB ¼ mL þmU þ 1 a n d
k ¼ min mL � iþ 1; 0ð Þ þ j; here mL and mU are the number of subdiagonals and super-
diagonals, respectively, in the band.

If sparse matrix linear algebra is being used, then D02NRF must be called to determine which
column of the Jacobian is required and where it should be stored.

CALL D02NRF(J, IPLACE, INFORM)

will return in J the number of the column of the Jacobian that is required and will set
IPLACE ¼ 1 or 2 (see D02NRF). If IPLACE ¼ 1, you must store the nonzero element
i; jð Þ of the Jacobian in RWORKð50þ 2� NEQþ iÞ; otherwise it must be stored in
RWORKð50þ NEQþ iÞ.

IREVCM ¼ 9
Indicates that a MONITR operation (see Section 3) can be performed.

IREVCM ¼ 10
Indicates that the current step was not successful, due to error test failure or convergence
test failure. The only information supplied to you on this return is the current value of the
variable t, located in RWORKð19Þ. No values must be changed before re-entering
D02NNF; this facility enables you to determine the number of unsuccessful steps.

On final exit: IREVCM ¼ 0 indicating that the user-specified task has been completed or an error
has been encountered (see the descriptions for ITASK and IFAIL).

Constraint: 0 � IREVCM � 11.

D02 – Ordinary Differential D02NNF

Mark 26 D02NNF.7



22: LDERIVð2Þ – LOGICAL array Input/Output

On initial entry: LDERIVð1Þ must be set to .TRUE. if you have supplied both an initial y and an
initial y0. LDERIVð1Þ must be set to .FALSE. if only the initial y has been supplied.

LDERIVð2Þ must be set to .TRUE. if the integrator is to use a modified Newton method to
evaluate the initial y and y0. Note that y and y0, if supplied, are used as initial estimates. This
method involves taking a small step at the start of the integration, and if ITASK ¼ 6 on entry, T
and TOUT will be set to the result of taking this small step. LDERIVð2Þ must be set to .FALSE.
if the integrator is to use functional iteration to evaluate the initial y and y0, and if this fails a
modified Newton method will then be attempted. LDERIVð2Þ ¼ :TRUE: is recommended if there
are implicit equations or the initial y and y0 are zero.

On final exit: LDERIVð1Þ is normally unchanged. However if ITASK ¼ 6 and internal
initialization was successful then LDERIVð1Þ ¼ :TRUE:.

LDERIVð2Þ ¼ :TRUE:, if implicit equations were detected. Otherwise LDERIVð2Þ ¼ :FALSE:.

23: ITASK – INTEGER Input

On initial entry: the task to be performed by the integrator.

ITASK ¼ 1
Normal computation of output values of y tð Þ at t ¼ TOUT (by overshooting and
interpolating).

ITASK ¼ 2
Take one step only and return.

ITASK ¼ 3
Stop at the first internal integration point at or beyond t ¼ TOUT and return.

ITASK ¼ 4
Normal computation of output values of y tð Þ at t ¼ TOUT but without overshooting
t ¼ TCRIT. TCRIT must be specified as an option in one of the integrator setup routines
before the first call to the integrator, or specified in the optional input routine before a
continuation call. TCRIT (e.g., see D02NVF) may be equal to or beyond TOUT, but not
before it in the direction of integration.

ITASK ¼ 5
Take one step only and return, without passing TCRIT (e.g., see D02NVF). TCRIT must
be specified under ITASK ¼ 4.

ITASK ¼ 6
The integrator will solve for the initial values of y and y0 only and then return to the
calling (sub)program without doing the integration. This option can be used to check the
initial values of y and y0. Functional iteration or a ‘small’ backward Euler method used in
conjunction with a damped Newton iteration is used to calculate these values (see
LDERIV). Note that if a backward Euler step is used then the value of t will have been
advanced a short distance from the initial point.

Note: if D02NNF is recalled with a different value of ITASK (and TOUT altered) then the
initialization procedure is repeated, possibly leading to different initial conditions.

Constraint: 1 � ITASK � 6.

24: ITRACE – INTEGER Input

On initial entry: the level of output that is printed by the integrator. ITRACE may take the value
�1, 0, 1, 2 or 3.

ITRACE < �1
�1 is assumed and similarly if ITRACE > 3, then 3 is assumed.

ITRACE ¼ �1
No output is generated.

D02NNF NAG Library Manual

D02NNF.8 Mark 26



ITRACE ¼ 0
Only warning messages are printed on the current error message unit (see X04AAF).

ITRACE > 0
Warning messages are printed as above, and on the current advisory message unit (see
X04ABF) output is generated which details Jacobian entries, the nonlinear iteration and
the time integration. The advisory messages are given in greater detail the larger the value
of ITRACE.

25: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, the integrator detected an illegal input, or that a linear algebra and/or integrator setup
routine has not been called prior to the call to the integrator. If ITRACE � 0, the form of the
error will be detailed on the current error message unit (see X04AAF).

IFAIL ¼ 2

The maximum number of steps specified has been taken (see the description of optional inputs in
the integrator setup routines and the optional input continuation routine, D02NZF).

IFAIL ¼ 3

With the given values of RTOL and ATOL no further progress can be made across the integration
range from the current point T. The components Yð1Þ;Yð2Þ; . . . ;YðNEQÞ contain the computed
values of the solution at the current point T.

IFAIL ¼ 4

There were repeated error test failures on an attempted step, before completing the requested
task, but the integration was successful as far as T. The problem may have a singularity, or the
local error requirements may be inappropriate.

IFAIL ¼ 5

There were repeated convergence test failures on an attempted step, before completing the
requested task, but the integration was successful as far as T. This may be caused by an
inaccurate Jacobian matrix or one which is incorrectly computed.

IFAIL ¼ 6

Some error weight wi became zero during the integration (see the description of ITOL). Pure
relative error control (ATOLðiÞ ¼ 0:0) was requested on a variable (the ith) which has now
vanished. The integration was successful as far as T.

D02 – Ordinary Differential D02NNF

Mark 26 D02NNF.9



IFAIL ¼ 7

The RESID operation (see Section 3) set the error flag IRES ¼ 3 continually despite repeated
attempts by the integrator to avoid this.

IFAIL ¼ 8

LDERIVð1Þ ¼ :FALSE: on entry but the internal initialization routine was unable to initialize y0
(more detailed information may be directed to the current error message unit, see X04AAF).

IFAIL ¼ 9

A singular Jacobian
@r

@y
has been encountered. You should check the problem formulation and

Jacobian calculation.

IFAIL ¼ 10

An error occurred during Jacobian formulation or back-substitution (a more detailed error
description may be directed to the current error message unit, see X04AAF).

IFAIL ¼ 11

The RESID operation (see Section 3) signalled the integrator to halt the integration and return by
setting IRES ¼ 2. Integration was successful as far as T.

IFAIL ¼ 12

The MONITR operation (see Section 3) set IMON ¼ �2 and so forced a return but the
integration was successful as far as T.

IFAIL ¼ 13

The requested task has been completed, but it is estimated that a small change in RTOL and
ATOL is unlikely to produce any change in the computed solution. (Only applies when you are
not operating in one step mode, that is when ITASK 6¼ 2 or 5.)

IFAIL ¼ 14

The values of RTOL and ATOL are so small that D02NNF is unable to start the integration.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The accuracy of the numerical solution may be controlled by a careful choice of the arguments RTOL
and ATOL, and to a much lesser extent by the choice of norm. You are advised to use scalar error
control unless the components of the solution are expected to be poorly scaled. For the type of decaying

D02NNF NAG Library Manual

D02NNF.10 Mark 26



solution typical of many stiff problems, relative error control with a small absolute error threshold will
be most appropriate (that is, you are advised to choose ITOL ¼ 1 with ATOLð1Þ small but positive).

8 Parallelism and Performance

D02NNF is not thread safe and should not be called from a multithreaded user program. Please see
Section 3.12.1 in How to Use the NAG Library and its Documentation for more information on thread
safety.

D02NNF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D02NNF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The cost of computing a solution depends critically on the size of the differential system and to a lesser
extent on the degree of stiffness of the problem; also on the type of linear algebra being used. For
further details see Section 9 in D02NGF, D02NHF and D02NJF of the documents for D02NGF (full
matrix), D02NHF (banded matrix) or D02NJF (sparse matrix).

In general, you are advised to choose the Backward Differentiation Formula option (setup routine

D02NVF) but if efficiency is of great importance and especially if it is suspected that
@

@y
A�1gð Þ has

complex eigenvalues near the imaginary axis for some part of the integration, you should try the
BLEND option (setup routine D02NWF).

10 Example

We solve the well-known stiff Robertson problem written as a differential system in implicit form

r1 ¼ a0 þ b0 þ c0ð Þ
r2 ¼ 0:04a� 1:0E4bc� 3:0E7b2 � b0
r3 ¼ 3:0E7b2 � c0

over the range 0; 10½ � with initial conditions a ¼ 1:0 and b ¼ c ¼ 0:0 and with scalar error control
(ITOL ¼ 1). We integrate to the first internal integration point past TOUT ¼ 10:0 (ITASK ¼ 3), using a
BDF method (setup routine D02MVF) and a modified Newton method. We treat the Jacobian as sparse
(setup routine D02NUF) and we calculate it analytically. In this program we also illustrate the
monitoring of step failures (IREVCM ¼ 10) and the forcing of a return when the component falls below
0:9 in the evaluation of the residual by setting IRES ¼ 2.

10.1 Program Text

Program d02nnfe

! D02NNF Example Program Text

! Mark 26 Release. NAG Copyright 2016.

! .. Use Statements ..
Use nag_library, Only: d02mzf, d02nnf, d02nrf, d02nuf, d02nvf, d02nxf, &

d02nyf, nag_wp, x04abf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Real (Kind=nag_wp), Parameter :: alpha = 0.04_nag_wp

D02 – Ordinary Differential D02NNF

Mark 26 D02NNF.11



Real (Kind=nag_wp), Parameter :: beta = 1.0E4_nag_wp
Real (Kind=nag_wp), Parameter :: gamma = 3.0E7_nag_wp
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Real (Kind=nag_wp), Parameter :: gamm2 = 2.0_nag_wp*gamma
Integer, Parameter :: iset = 1, itrace = 0, nelts = 8, &

neq = 3, nia = 1, nin = 5, nja = 1
Integer, Parameter :: njcpvt = 20*neq + 12*nelts
Integer, Parameter :: nout = 6
Integer, Parameter :: nrw = 50 + 4*neq
Integer, Parameter :: nwkjac = 4*neq + 12*nelts
Integer, Parameter :: ldysav = neq

! .. Local Scalars ..
Real (Kind=nag_wp) :: eta, h, h0, hmax, hmin, hu, hxd, &

sens, t, tcrit, tcur, tolsf, tout, u
Integer :: i, icall, ifail, igrow, imon, imxer, &

indd, indr, inln, iplace, ires, &
irevcm, isplit, itask, itol, j, &
liwreq, liwusd, lrwreq, lrwusd, &
maxord, maxstp, mxhnil, nblock, &
nfails, ngp, niter, nje, nlu, nnz, &
nq, nqu, nre, nst, outchn, sdysav

Logical :: lblock, petzld
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: atol(:), rtol(:), rwork(:), &
wkjac(:), y(:), ydot(:), ysav(:,:)

Real (Kind=nag_wp) :: con(6)
Integer :: ia(nia), inform(23), ja(nja)
Integer, Allocatable :: jacpvt(:)
Logical, Allocatable :: algequ(:)
Logical :: lderiv(2)

! .. Executable Statements ..
Write (nout,*) ’D02NNF Example Program Results’

! Skip heading in data file
Read (nin,*)

! neq: number of differential equations
Read (nin,*) maxord, maxstp, mxhnil
sdysav = maxord + 1
Allocate (atol(neq),rtol(neq),rwork(nrw),wkjac(nwkjac),y(neq),ydot(neq), &

ysav(ldysav,sdysav),jacpvt(njcpvt),algequ(neq))

outchn = nout
Write (nout,*)
Call x04abf(iset,outchn)

! Integrate towards tout stopping at the first mesh point beyond
! tout (itask=3) using the B.D.F. formulae with a Newton method.
! Employ scalar tolerances and the Jacobian is supplied, but its
! structure is evaluated internally by calls to the Jacobian
! forming part of the program (irevcm=8). Default values for the
! array con are used. Also count the number of step failures
! (irevcm=10). The solution is interpolated using D02MZF to give
! the solution at tout.

Read (nin,*) hmin, hmax, h0, tcrit
Read (nin,*) eta, sens, u
Read (nin,*) lblock, petzld
Read (nin,*) t, tout
Read (nin,*) itol, isplit
Read (nin,*) y(1:neq)
Select Case (itol)
Case (1)

Read (nin,*) rtol(1), atol(1)
Case (2)

Read (nin,*) rtol(1), atol(1:neq)
Case (3)

Read (nin,*) rtol(1:neq), atol(1)
Case (4)

Read (nin,*) rtol(1:neq), atol(1:neq)
End Select

D02NNF NAG Library Manual

D02NNF.12 Mark 26



itask = 3
lderiv(1:2) = .False.
con(1:6) = zero
nfails = 0

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d02nvf(neq,sdysav,maxord,’Newton’,petzld,con,tcrit,hmin,hmax,h0, &

maxstp,mxhnil,’Average-l2’,rwork,ifail)

ifail = 0
Call d02nuf(neq,neq,’Analytical’,nwkjac,ia,nia,ja,nja,jacpvt,njcpvt, &

sens,u,eta,lblock,isplit,rwork,ifail)

irevcm = 0
Write (nout,*) ’ X Y(1) Y(2) Y(3)’
Write (nout,99999) t, (y(i),i=1,neq)
Flush (nout)

revcm: Do
ifail = -1
Call d02nnf(neq,ldysav,t,tout,y,ydot,rwork,rtol,atol,itol,inform,ysav, &

sdysav,wkjac,nwkjac,jacpvt,njcpvt,imon,inln,ires,irevcm,lderiv, &
itask,itrace,ifail)

Select Case (irevcm)
Case (0)

! Final exit.
Exit revcm

Case (1,3,4,6,7,11)
If (irevcm==4 .Or. irevcm==7) Then

indr = 50 + neq
Else

indr = 50 + 2*neq
End If

! Return residual in rwork(indr+1:indr+neq) using y’ in ydot.
rwork(indr+1) = -ydot(1) - ydot(2) - ydot(3)
rwork(indr+2) = -ydot(2)
rwork(indr+3) = -ydot(3)
If (ires==1) Then

rwork(indr+1) = rwork(indr+1) + zero
rwork(indr+2) = rwork(indr+2) + alpha*y(1) - beta*y(2)*y(3) - &

gamma*y(2)*y(2)
rwork(indr+3) = rwork(indr+3) + gamma*y(2)*y(2)

End If
Case (2)

! Return residual in rwork(51+2*neq:) using y’ in rwork(51+neq:).
indd = 50 + neq
indr = 50 + 2*neq
rwork(indr+1) = -rwork(indd+1) - rwork(indd+2) - rwork(indd+3)
rwork(indr+2) = -rwork(indd+2)
rwork(indr+3) = -rwork(indd+3)

Case (5)
! Return residual in ydot, using y’ in rwork(51+2*neq:).

indd = 50 + 2*neq
ydot(1) = -rwork(indd+1) - rwork(indd+2) - rwork(indd+3)
ydot(2) = -rwork(indd+2)
ydot(3) = -rwork(indd+3)
ydot(1) = ydot(1) + zero
ydot(2) = ydot(2) + alpha*y(1) - beta*y(2)*y(3) - gamma*y(2)*y(2)
ydot(3) = ydot(3) + gamma*y(2)*y(2)

Case (8)
! Return Jacobian in rwork(51+neq:) or rwork(51+2*neq:).

! Get index J for Jacoban evaluation.
Call d02nrf(j,iplace,inform)

hxd = rwork(16)*rwork(20)
If (iplace<2) Then

! return Jacobian in rwork(51+2*neq:).

D02 – Ordinary Differential D02NNF

Mark 26 D02NNF.13



indr = 50 + 2*neq
Else

! return Jacobian in rwork(51+neq:).
indr = 50 + neq

End If
! 8 nonzero elements in Jacobian.

If (j<2) Then
rwork(indr+1) = one - hxd*(zero)
rwork(indr+2) = zero - hxd*(alpha)

! rwork(indr+3) = zero - hxd*(zero)
Else If (j==2) Then

rwork(indr+1) = one - hxd*(zero)
rwork(indr+2) = one - hxd*(-beta*y(3)-gamm2*y(2))
rwork(indr+3) = zero - hxd*(gamm2*y(2))

Else If (j>2) Then
rwork(indr+1) = one - hxd*(zero)
rwork(indr+2) = zero - hxd*(-beta*y(2))
rwork(indr+3) = one - hxd*(zero)

End If
Case (10)

! Step failure
nfails = nfails + 1

End Select
End Do revcm

! Print solution and statistics.
If (ifail==0) Then

Call d02nyf(neq,neq,hu,h,tcur,tolsf,rwork,nst,nre,nje,nqu,nq,niter, &
imxer,algequ,inform,ifail)

ifail = 0
Call d02mzf(tout,y,neq,ldysav,neq,ysav,sdysav,rwork,ifail)

Write (nout,99999) tout, (y(i),i=1,neq)
Write (nout,99997) hu, h, tcur
Write (nout,99996) nst, nre, nje
Write (nout,99995) nqu, nq, niter
Write (nout,99994) imxer, nfails
icall = 0

Call d02nxf(icall,liwreq,liwusd,lrwreq,lrwusd,nlu,nnz,ngp,isplit, &
igrow,lblock,nblock,inform)

Write (nout,99993) liwreq, liwusd
Write (nout,99992) lrwreq, lrwusd
Write (nout,99991) nlu, nnz
Write (nout,99990) ngp, isplit
Write (nout,99989) igrow, nblock

Else If (ifail==10) Then
icall = 1

Call d02nxf(icall,liwreq,liwusd,lrwreq,lrwusd,nlu,nnz,ngp,isplit, &
igrow,lblock,nblock,inform)

Write (nout,99993) liwreq, liwusd
Write (nout,99992) lrwreq, lrwusd

Else
Write (nout,99998) ifail, t

End If

99999 Format (1X,F8.3,3(F13.5,2X))
99998 Format (/,1X,’Exit D02NNF with IFAIL = ’,I5,’ and T = ’,E12.5)
99997 Format (/,1X,’ HUSED = ’,E12.5,’ HNEXT = ’,E12.5,’ TCUR = ’,E12.5)
99996 Format (1X,’ NST = ’,I6,’ NRE = ’,I6,’ NJE = ’,I6)
99995 Format (1X,’ NQU = ’,I6,’ NQ = ’,I6,’ NITER = ’,I6)
99994 Format (1X,’ Max err comp = ’,I4,’ No. of failed steps = ’,I4)
99993 Format (/,1X,’ NJCPVT (required ’,I4,’ used ’,I8,’)’)

D02NNF NAG Library Manual

D02NNF.14 Mark 26



99992 Format (1X,’ NWKJAC (required ’,I4,’ used ’,I8,’)’)
99991 Format (1X,’ No. of LU-decomps ’,I4,’ No. of nonzeros ’,I8)
99990 Format (1X,’ No. of FCN calls to form Jacobian ’,I4,’ Try ISPLIT ’,I4)
99989 Format (1X,’ Growth est ’,I8,’ No. of blocks on diagonal ’,I4)

End Program d02nnfe

10.2 Program Data

D02NNF Example Program Data
5 200 5 : maxord, maxstp, mxhnil
1.0E-10 10.0 1.0E-4 0.0 : hmin, hmax, h0, tcrit
1.0E-4 1.0E-6 0.1 : eta, sens, u
.TRUE. .TRUE. : lblock, petzld
0.0 10.0 : t, tout
1 0 : itol, isplit
1.0 0.0 0.0 : y(1:neq)
1.0E-4 1.0E-7 : rtol(1), atol(1)

10.3 Program Results

D02NNF Example Program Results

X Y(1) Y(2) Y(3)
0.000 1.00000 0.00000 0.00000

Warning: Equation(=i1) and possibly other equations are
implicit and in calculating the initial values the
equations will be treated as implicit.
In above message i1 = 1

10.000 0.84136 0.00002 0.15863

HUSED = 0.81503E+00 HNEXT = 0.12467E+01 TCUR = 0.10409E+02
NST = 51 NRE = 130 NJE = 14
NQU = 4 NQ = 4 NITER = 121
Max err comp = 3 No. of failed steps = 0

NJCPVT (required 105 used 156)
NWKJAC (required 34 used 79)
No. of LU-decomps 14 No. of nonzeros 9
No. of FCN calls to form Jacobian 0 Try ISPLIT 73
Growth est 1386 No. of blocks on diagonal 1

D02 – Ordinary Differential D02NNF

Mark 26 D02NNF.15 (last)


	D02NNF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	NEQ
	LDYSAV
	T
	TOUT
	Y
	YDOT
	RWORK
	RTOL
	ATOL
	ITOL
	INFORM
	YSAV
	SDYSAV
	WKJAC
	NWKJAC
	JACPVT
	NJCPVT
	IMON
	INLN
	IRES
	IREVCM
	LDERIV
	ITASK
	ITRACE
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=9
	IFAIL=10
	IFAIL=11
	IFAIL=12
	IFAIL=13
	IFAIL=14
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	NAG Fortran Library Manual, Mark 26.1
	Copyright Statement
	Foreword
	Introduction
	How to Use the NAG Library and its Documentation
	Mark 26.1 NAG Fortran Library News
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Code Contributors
	Support from NAG
	Index

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Contents
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Contents
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Contents
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Contents
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Contents
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Contents
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Contents
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Contents
	D02 Chapter Introduction
	D02M-N Sub-chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Contents
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Contents
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Contents
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Contents
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Contents
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Contents
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Contents
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Contents
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Contents
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Contents
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Contents
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Contents
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Contents
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Contents
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Contents
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Contents
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Contents
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Contents
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Contents
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Contents
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Contents
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Contents
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Contents
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Contents
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Contents
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Contents
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Contents
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Contents
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Contents
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Contents
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Contents
	G13 Chapter Introduction

	G22 - Linear Model Specification
	G22 Chapter Contents
	G22 Chapter Introduction

	H - Operations Research
	H Chapter Contents
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Contents
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Contents
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Contents
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Contents
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Contents
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Contents
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Contents
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Contents
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Contents
	X07 Chapter Introduction




