
NAG Library Routine Document

D02AGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02AGF solves a two-point boundary value problem for a system of ordinary differential equations,
using initial value techniques and Newton iteration; it generalizes D02HAF to include the case where
parameters other than boundary values are to be determined.

2 Specification

SUBROUTINE D02AGF (H, E, PARERR, PARAM, C, N, N1, M1, AUX, BCAUX, RAAUX,
PRSOL, MAT, COPY, WSPACE, WSPAC1, WSPAC2, IFAIL)

&

INTEGER N, N1, M1, IFAIL
REAL (KIND=nag_wp) H, E(N), PARERR(N1), PARAM(N1), C(M1,N),

MAT(N1,N1), COPY(1,1), WSPACE(N,9), WSPAC1(N),
WSPAC2(N)

&
&

EXTERNAL AUX, BCAUX, RAAUX, PRSOL

3 Description

D02AGF solves a two-point boundary value problem by determining the unknown parameters
p1; p2; . . . ; pn1 of the problem. These parameters may be, but need not be, boundary values (as they are
in D02HAF); they may include eigenvalue parameters in the coefficients of the differential equations,
length of the range of integration, etc. The notation and methods used are similar to those of D02HAF
and you are advised to study this first. (There the parameters p1; p2; . . . ; pn1 correspond to the unknown
boundary conditions.) It is assumed that we have a system of n first-order ordinary differential
equations of the form

dyi
dx

¼ fi x; y1; y2; . . . ; ynð Þ; i ¼ 1; 2; . . . ; n;

and that derivatives fi are evaluated by AUX. The system, including the boundary conditions given by
BCAUX, and the range of integration and matching point, r, given by RAAUX, involves the n1

unknown parameters p1; p2; . . . ; pn1 which are to be determined, and for which initial estimates must be
supplied. The number of unknown parameters n1 must not exceed the number of equations n. If n1 < n,
we assume that n � n1ð Þ equations of the system are not involved in the matching process. These are
usually referred to as ‘driving equations’; they are independent of the parameters and of the solutions of
the other n1 equations. In numbering the equations for AUX, the driving equations must be put last.

The estimated values of the parameters are corrected by a form of Newton iteration. The Newton
correction on each iteration is calculated using a matrix whose i; jð Þth element depends on the
derivative of the ith component of the solution, yi, with respect to the jth parameter, pj. This matrix is
calculated by a simple numerical differentiation technique which requires n1 evaluations of the
differential system.

4 References

None.

5 Arguments

You are strongly recommended to read Sections 3 and 9 in conjunction with this section.

D02 – Ordinary Differential D02AGF

Mark 26 D02AGF.1

1: H – REAL (KIND=nag_wp) Input/Output

On entry: H must be set to an estimate of the step size, h, needed for integration.

On exit: the last step length used.

2: EðNÞ – REAL (KIND=nag_wp) array Input

On entry: EðiÞ must be set to a small quantity to control the ith solution component. The element
EðiÞ is used:

(i) in the bound on the local error in the ith component of the solution yi during integration,

(ii) in the convergence test on the ith component of the solution yi at the matching point in the
Newton iteration.

The elements EðiÞ should not be chosen too small. They should usually be several orders of
magnitude larger than machine precision.

3: PARERRðN1Þ – REAL (KIND=nag_wp) array Input

On entry: PARERRðiÞ must be set to a small quantity to control the ith parameter component.
The element PARERRðiÞ is used:

(i) in the convergence test on the ith parameter in the Newton iteration,

(ii) in perturbing the ith parameter when approximating the derivatives of the components of the
solution with respect to the ith parameter, for use in the Newton iteration.

The elements PARERRðiÞ should not be chosen too small. They should usually be several orders
of magnitude larger than machine precision.

4: PARAMðN1Þ – REAL (KIND=nag_wp) array Input/Output

On entry: PARAMðiÞ must be set to an estimate for the ith parameter, pi, for i ¼ 1; 2; . . . ;N1.

On exit: the corrected value for the ith parameter, unless an error has occurred, when it contains
t h e l a s t c a l c u l a t e d v a l u e o f t h e p a r am e t e r (p o s s i b l y p e r t u r b e d b y
PARERRðiÞ � 1þ PARAMðiÞj jð Þ if the error occurred when calculating the approximate
derivatives).

5: CðM1;NÞ – REAL (KIND=nag_wp) array Output

On exit: the solution when M1 > 1 (see M1).

If M1 ¼ 1, the elements of C are not used.

6: N – INTEGER Input

On entry: n, the total number of differential equations.

7: N1 – INTEGER Input

On entry: n1, the number of parameters.

If N1 < N, the last N� N1 differential equations (in AUX) are driving equations (see Section 3).

Constraint: N1 � N.

8: M1 – INTEGER Input

On entry: determines whether or not the final solution is computed as well as the parameter
values.

M1 ¼ 1
The final solution is not calculated;

D02AGF NAG Library Manual

D02AGF.2 Mark 26

M1 > 1
The final values of the solution at interval (length of range)/ M1� 1ð Þ are calculated and
stored sequentially in the array C starting with the values of yi evaluated at the first end
point (see RAAUX) stored in Cð1; iÞ.

9: AUX – SUBROUTINE, supplied by the user. External Procedure

AUX must evaluate the functions fi (i.e., the derivatives y0i) for given values of its arguments,
x; y1; . . . ; yn , p1; . . . ; pn1 :

The specification of AUX is:

SUBROUTINE AUX (F, Y, X, PARAM)

REAL (KIND=nag_wp) F(*), Y(*), X, PARAM(*)

In the description of the arguments of D02AGF below, n and n1 denote the numerical values
of N and N1 in the call of D02AGF.

1: Fð�Þ – REAL (KIND=nag_wp) array Output

On exit: the value of fi, for i ¼ 1; 2; . . . ; n.

2: Yð�Þ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ; n, the value of the argument.

3: X – REAL (KIND=nag_wp) Input

On entry: x, the value of the argument.

4: PARAMð�Þ – REAL (KIND=nag_wp) array Input

On entry: pi, for i ¼ 1; 2; . . . ; n1, the value of the parameters.

AUX must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02AGF is called. Arguments denoted as Input must not be changed by
this procedure.

10: BCAUX – SUBROUTINE, supplied by the user. External Procedure

BCAUX must evaluate the values of yi at the end points of the range given the values of
p1; . . . ; pn1 .

The specification of BCAUX is:

SUBROUTINE BCAUX (G0, G1, PARAM)

REAL (KIND=nag_wp) G0(*), G1(*), PARAM(*)

In the description of the arguments of D02AGF below, n and n1 denote the numerical values
of N and N1 in the call of D02AGF.

1: G0ð�Þ – REAL (KIND=nag_wp) array Output

On exit: the values yi, for i ¼ 1; 2; . . . ;n, at the boundary point x0 (see RAAUX).

2: G1ð�Þ – REAL (KIND=nag_wp) array Output

On exit: the values yi, for i ¼ 1; 2; . . . ;n, at the boundary point x1 (see RAAUX).

3: PARAMð�Þ – REAL (KIND=nag_wp) array Input

On entry: pi, for i ¼ 1; 2; . . . ; n, the value of the parameters.

D02 – Ordinary Differential D02AGF

Mark 26 D02AGF.3

BCAUX must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02AGF is called. Arguments denoted as Input must not be changed by
this procedure.

11: RAAUX – SUBROUTINE, supplied by the user. External Procedure

RAAUX must evaluate the end points, x0 and x1, of the range and the matching point, r, given
the values p1; p2; . . . ; pn1 .

The specification of RAAUX is:

SUBROUTINE RAAUX (X0, X1, R, PARAM)

REAL (KIND=nag_wp) X0, X1, R, PARAM(*)

In the description of the arguments of D02AGF below, n1 denotes the numerical value of N1
in the call of D02AGF.

1: X0 – REAL (KIND=nag_wp) Output

On exit: must contain the left-hand end of the range, x0.

2: X1 – REAL (KIND=nag_wp) Output

On exit: must contain the right-hand end of the range x1.

3: R – REAL (KIND=nag_wp) Output

On exit: must contain the matching point, r.

4: PARAMð�Þ – REAL (KIND=nag_wp) array Input

On entry: pi, for i ¼ 1; 2; . . . ; n1, the value of the parameters.

RAAUX must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02AGF is called. Arguments denoted as Input must not be changed by
this procedure.

12: PRSOL – SUBROUTINE, supplied by the user. External Procedure

PRSOL is called at each iteration of the Newton method and can be used to print the current
values of the parameters pi, for i ¼ 1; 2; . . . ;n1, their errors, ei, and the sum of squares of the
errors at the matching point, r.

The specification of PRSOL is:

SUBROUTINE PRSOL (PARAM, RES, N1, ERR)

INTEGER N1
REAL (KIND=nag_wp) PARAM(N1), RES, ERR(N1)

1: PARAMðN1Þ – REAL (KIND=nag_wp) array Input

On entry: pi, for i ¼ 1; 2; . . . ; n1, the current value of the parameters.

2: RES – REAL (KIND=nag_wp) Input

On entry: the sum of squares of the errors in the arguments,
Xn1

i¼1

e2i .

3: N1 – INTEGER Input

On entry: n1, the number of parameters.

D02AGF NAG Library Manual

D02AGF.4 Mark 26

4: ERRðN1Þ – REAL (KIND=nag_wp) array Input

On entry: the errors in the parameters, ei, for i ¼ 1; 2; . . . ; n1.

PRSOL must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which D02AGF is called. Arguments denoted as Input must not be changed by
this procedure.

13: MATðN1;N1Þ – REAL (KIND=nag_wp) array Workspace
14: COPYð1; 1Þ – REAL (KIND=nag_wp) array Input
15: WSPACEðN; 9Þ – REAL (KIND=nag_wp) array Workspace
16: WSPAC1ðNÞ – REAL (KIND=nag_wp) array Workspace
17: WSPAC2ðNÞ – REAL (KIND=nag_wp) array Workspace

18: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

This indicates that N1 > N on entry, that is the number of parameters is greater than the number
of differential equations.

IFAIL ¼ 2

As for IFAIL ¼ 4 except that the integration failed while calculating the matrix for use in the
Newton iteration.

IFAIL ¼ 3

The current matching point r does not lie between the current end points x0 and x1. If the values
x0, x1 and r depend on the parameters pi, this may occur at any time in the Newton iteration if
care is not taken to avoid it when coding RAAUX.

IFAIL ¼ 4

The step length for integration H has halved more than 13 times (or too many steps were needed
to reach the end of the range of integration) in attempting to control the local truncation error
whilst integrating to obtain the solution corresponding to the current values pi. If, on failure, H
has the sign of r� x0 then failure has occurred whilst integrating from x0 to r, otherwise it has
occurred whilst integrating from x1 to r.

IFAIL ¼ 5

The matrix of the equations to be solved for corrections to the variable parameters in the Newton
method is singular (as determined by F07ADF (DGETRF)).

D02 – Ordinary Differential D02AGF

Mark 26 D02AGF.5

IFAIL ¼ 6

A satisfactory correction to the parameters was not obtained on the last Newton iteration
employed. A Newton iteration is deemed to be unsatisfactory if the sum of the squares of the
residuals (which can be printed using PRSOL) has not been reduced after three iterations using a
new Newton correction.

IFAIL ¼ 7

Convergence has not been obtained after 12 satisfactory iterations of the Newton method.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

A further discussion of these errors and the steps which might be taken to correct them is given in
Section 9.

7 Accuracy

If the process converges, the accuracy to which the unknown parameters are determined is usually close
to that specified by you; and the solution, if requested, is usually determined to the accuracy specified.

8 Parallelism and Performance

D02AGF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

D02AGF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by D02AGF depends on the complexity of the system, and on the number of iterations
required. In practice, integration of the differential equations is by far the most costly process involved.

There may be particular difficulty in integrating the differential equations in one direction (indicated by
IFAIL ¼ 2 or 4). The value of r should be adjusted to avoid such difficulties.

If the matching point r is at one of the end points x0 or x1 and some of the parameters are used only to
determine the boundary values at this point, then good initial estimates for these parameters are not
required, since they are completely determined by the routine (for example, see p2 in EX1 of
Section 10).

Wherever they occur in the procedure, the error parameters contained in the arrays E and PARERR are
used in ‘mixed’ form; that is EðiÞ always occurs in expressions of the form EðiÞ � 1þ yij jð Þ, and

D02AGF NAG Library Manual

D02AGF.6 Mark 26

PARERRðiÞ always occurs in expressions of the form PARERRðiÞ � 1þ pij jð Þ. Though not ideal for
every application, it is expected that this mixture of absolute and relative error testing will be adequate
for most purposes.

Note that convergence is not guaranteed. You are strongly advised to provide an output PRSOL, as
shown in EX1 of Section 10, in order to monitor the progress of the iteration. Failure of the Newton
iteration to converge (see IFAIL ¼ 6 or 7) usually results from poor starting approximations to the
parameters, though occasionally such failures occur because the elements of one or both of the arrays
PARERR or E are too small. (It should be possible to distinguish these cases by studying the output
from PRSOL.) Poor starting approximations can also result in the failure described under IFAIL ¼ 4
and 5 in Section 6 (especially if these errors occur after some Newton iterations have been completed,
that is, after two or more calls of PRSOL). More frequently, a singular matrix in the Newton method
(monitored as IFAIL ¼ 5) occurs because the mathematical problem has been posed incorrectly. The
case IFAIL ¼ 4 usually occurs because h or r has been poorly estimated, so these values should be
checked first. If IFAIL ¼ 2 is monitored, the solution y1; y2; . . . ; yn is sensitive to perturbations in the
parameters pi. Reduce the size of one or more values PARERRðiÞ to reduce the perturbations. Since
only one value pi is perturbed at any time when forming the matrix, the perturbation which is too large
can be located by studying the final output from PRSOL and the values of the parameters returned by
D02AGF. If this change leads to other types of failure improve the initial values of pi by other means.

The computing time for integrating the differential equations can sometimes depend critically on the
quality of the initial estimates for the parameters pi. If it seems that too much computing time is
required and, in particular, if the values ERRðiÞ (available on each call of PRSOL) are much larger than
the expected values of the solution at the matching point r, then the coding of AUX, BCAUX and
RAAUX should be checked for errors. If no errors can be found, an independent attempt should be
made to improve the initial estimates for PARAMðiÞ.
The subroutine can be used to solve a very wide range of problems, for example:

(a) eigenvalue problems, including problems where the eigenvalue occurs in the boundary conditions;

(b) problems where the differential equations depend on some parameters which are to be determined
so as to satisfy certain boundary conditions (see EX1 in Section 10);

(c) problems where one of the end points of the range of integration is to be determined as the point
where a variable yi takes a particular value (see EX2 in Section 10);

(d) singular problems and problems on infinite ranges of integration where the values of the solution at
x0 or x1 or both are determined by a power series or an asymptotic expansion (or a more
complicated expression) and where some of the coefficients in the expression are to be determined
(see EX1 in Section 10); and

(e) differential equations with certain terms defined by other independent (driving) differential
equations.

10 Example

For this routine two examples are presented. There is a single example program for D02AGF, with a
main program and the code to solve the two example problems given in Example 1 (EX1) and Example
2 (EX2).

Example 1 (EX1)

This example finds the solution of the differential equation

y00 ¼ y3 � y0

2x

on the range 0 � x � 16, with boundary conditions y 0ð Þ ¼ 0:1 and y 16ð Þ ¼ 1=6.

We cannot use the differential equation at x ¼ 0 because it is singular, so we take the truncated series
expansion

y xð Þ ¼ 1
10 þ p1

ffiffiffi
x

p
10

þ x

100

D02 – Ordinary Differential D02AGF

Mark 26 D02AGF.7

near the origin (which is correct to the number of terms given in this case). Here p1 is one of the
parameters to be determined. We choose the range as 0:1; 16½ � and setting p2 ¼ y0 16ð Þ, we can determine
all the boundary conditions. We take the matching point to be 16, the end of the range, and so a good
init ial guess for p2 is not necessary. We write y ¼ Yð1Þ, y0 ¼ Yð2Þ, and estimate
p1 ¼ PARAMð1Þ ¼ 0:2, p2 ¼ PARAMð2Þ ¼ 0:0.

Example 2 (EX2)

This example finds the gravitational constant p1 and the range p2 over which a projectile must be fired
to hit the target with a given velocity. The differential equations are

y0 ¼ tan�

v0 ¼ � p1 sin�þ 0:00002v2
� �

v cos�

�0 ¼ �p1
v2
k

on the range 0 < x < p2 with boundary conditions

y ¼ 0; v ¼ 500; � ¼ 0:5 at x ¼ 0
y ¼ 0; v ¼ 450; � ¼ p3 at x ¼ p2:

We write y ¼ Yð1Þ, v ¼ Yð2Þ, � ¼ Yð3Þ, and we take the matching point r ¼ p2. We estimate
p1 ¼ PARAMð1Þ ¼ 32, p2 ¼ PARAMð2Þ ¼ 6000 and p3 ¼ PARAMð3Þ ¼ 0:54 (though this estimate is
not important).

10.1 Program Text

! D02AGF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module d02agfe_mod

! D02AGF Example Program Module:
! Parameters and User-defined Routines

! iprint: set iprint = 1 for output at each Newton iteration.
! nin: the input channel number
! nout: the output channel number

! For Example 1:
! n_ex1 : number of differential equations,
! n1_ex1: number of parameters.

! For Example 2:
! n_ex2 : number of differential equations,
! n1_ex2: number of parameters.

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: aux1, aux2, bcaux1, bcaux2, prsol1, &

prsol2, raaux1, raaux2
! .. Parameters ..

Integer, Parameter :: iprint = 0
Integer, Parameter, Public :: n1_ex1 = 2, n1_ex2 = 3, nin = 5, &

nout = 6, n_ex1 = 2, n_ex2 = 3
Contains

Subroutine aux1(f,y,x,param)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(*)

D02AGF NAG Library Manual

D02AGF.8 Mark 26

Real (Kind=nag_wp), Intent (In) :: param(*), y(*)
! .. Executable Statements ..

f(1) = y(2)
f(2) = (y(1)**3-y(2))/(2.0_nag_wp*x)
Return

End Subroutine aux1
Subroutine raaux1(x0,x1,r,param)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: r, x0, x1

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: param(*)

! .. Executable Statements ..
x0 = 0.1_nag_wp
x1 = 16.0_nag_wp
r = 16.0_nag_wp
Return

End Subroutine raaux1
Subroutine bcaux1(g0,g1,param)

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: g0(*), g1(*)
Real (Kind=nag_wp), Intent (In) :: param(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: z

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..
z = 0.1_nag_wp
g0(1) = 0.1_nag_wp + param(1)*sqrt(z)*0.1_nag_wp + 0.01_nag_wp*z
g0(2) = param(1)*0.05_nag_wp/sqrt(z) + 0.01_nag_wp
g1(1) = 1.0_nag_wp/6.0_nag_wp
g1(2) = param(2)
Return

End Subroutine bcaux1
Subroutine prsol1(param,res,n1,err)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: res
Integer, Intent (In) :: n1

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: err(n1), param(n1)

! .. Local Scalars ..
Integer :: i

! .. Executable Statements ..
If (iprint/=0) Then

Write (nout,99999) ’Current parameters ’, (param(i),i=1,n1)
Write (nout,99998) ’Residuals ’, (err(i),i=1,n1)
Write (nout,99998) ’Sum of residuals squared ’, res
Write (nout,*)

End If
Return

99999 Format (1X,A,6(E14.6,2X))
99998 Format (1X,A,6(E12.4,1X))

End Subroutine prsol1
Subroutine aux2(f,y,x,param)

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: eps = 2.0E-5_nag_wp

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(*)
Real (Kind=nag_wp), Intent (In) :: param(*), y(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: c, s

! .. Intrinsic Procedures ..
Intrinsic :: cos, sin

! .. Executable Statements ..
c = cos(y(3))

D02 – Ordinary Differential D02AGF

Mark 26 D02AGF.9

s = sin(y(3))
f(1) = s/c
f(2) = -(param(1)*s+eps*y(2)*y(2))/(y(2)*c)
f(3) = -param(1)/(y(2)*y(2))
Return

End Subroutine aux2
Subroutine raaux2(x0,x1,r,param)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: r, x0, x1

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: param(*)

! .. Executable Statements ..
x0 = 0.0_nag_wp
x1 = param(2)
r = param(2)
Return

End Subroutine raaux2
Subroutine bcaux2(g0,g1,param)

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: g0(*), g1(*)
Real (Kind=nag_wp), Intent (In) :: param(*)

! .. Executable Statements ..
g0(1) = 0.0E0_nag_wp
g0(2) = 500.0E0_nag_wp
g0(3) = 0.5E0_nag_wp
g1(1) = 0.0E0_nag_wp
g1(2) = 450.0E0_nag_wp
g1(3) = param(3)
Return

End Subroutine bcaux2
Subroutine prsol2(param,res,n1,err)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: res
Integer, Intent (In) :: n1

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: err(n1), param(n1)

! .. Local Scalars ..
Integer :: i

! .. Executable Statements ..
If (iprint/=0) Then

Write (nout,99999) ’Current parameters ’, (param(i),i=1,n1)
Write (nout,99998) ’Residuals ’, (err(i),i=1,n1)
Write (nout,99998) ’Sum of residuals squared ’, res
Write (nout,*)

End If
Return

99999 Format (1X,A,6(E14.6,2X))
99998 Format (1X,A,6(E12.4,1X))

End Subroutine prsol2
End Module d02agfe_mod
Program d02agfe

! D02AGF Example Main Program

! .. Use Statements ..
Use d02agfe_mod, Only: nout

! .. Implicit None Statement ..
Implicit None

! .. Executable Statements ..
Write (nout,*) ’D02AGF Example Program Results’

Call ex1

Call ex2

Contains
Subroutine ex1

D02AGF NAG Library Manual

D02AGF.10 Mark 26

! .. Use Statements ..
Use nag_library, Only: d02agf, nag_wp
Use d02agfe_mod, Only: aux1, bcaux1, n1_ex1, nin, n_ex1, prsol1, &

raaux1
! .. Local Scalars ..

Real (Kind=nag_wp) :: h, r, soler, x, x1, xx
Integer :: i, ifail, j, m1

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: c(:,:), e(:), mat(:,:), param(:), &

parerr(:), wspac1(:), wspac2(:), &
wspace(:,:)

Real (Kind=nag_wp) :: dummy(1,1)
! .. Intrinsic Procedures ..

Intrinsic :: real
! .. Executable Statements ..
! Skip heading in data file

Read (nin,*)
! m1: final solution calculated at m1 points in range including
! end points.

Read (nin,*) m1
Allocate (c(m1,n_ex1),e(n_ex1),mat(n_ex1,n_ex1),param(n_ex1), &

parerr(n_ex1),wspac1(n_ex1),wspac2(n_ex1),wspace(n_ex1,9))
! h: step size estimate,
! param: initial parameter estimates,
! parerr: Newton iteration tolerances,
! soler: bound on the local error.

Read (nin,*) h
Read (nin,*) param(1:n1_ex1)
Read (nin,*) parerr(1:n1_ex1)
Read (nin,*) soler
e(1:n_ex1) = soler
Write (nout,*)
Write (nout,*)
Write (nout,*) ’Case 1’
Write (nout,*)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d02agf(h,e,parerr,param,c,n_ex1,n1_ex1,m1,aux1,bcaux1,raaux1, &

prsol1,mat,dummy,wspace,wspac1,wspac2,ifail)

Write (nout,*) ’Final parameters’
Write (nout,99999)(param(i),i=1,n1_ex1)
Write (nout,*)
Write (nout,*) ’Final solution’
Write (nout,*) ’X-value Components of solution’
Call raaux1(x,x1,r,param)
h = (x1-x)/real(m1-1,kind=nag_wp)
xx = x
Do i = 1, m1

Write (nout,99998) xx, (c(i,j),j=1,n_ex1)
xx = xx + h

End Do

Return

99999 Format (1X,3E16.6)
99998 Format (1X,F7.2,3E13.4)

End Subroutine ex1
Subroutine ex2

! .. Use Statements ..
Use nag_library, Only: d02agf, nag_wp
Use d02agfe_mod, Only: aux2, bcaux2, n1_ex2, nin, n_ex2, prsol2, &

raaux2
! .. Local Scalars ..

Real (Kind=nag_wp) :: h, r, soler, x, x1, xx
Integer :: i, ifail, j, m1

! .. Local Arrays ..

D02 – Ordinary Differential D02AGF

Mark 26 D02AGF.11

Real (Kind=nag_wp), Allocatable :: c(:,:), e(:), mat(:,:), param(:), &
parerr(:), wspac1(:), wspac2(:), &
wspace(:,:)

Real (Kind=nag_wp) :: dummy(1,1)
! .. Executable Statements ..

Read (nin,*)
! Read in problem parameters
! m1: final solution calculated at m1 points in range including
! end points.

Read (nin,*) m1
Allocate (c(m1,n_ex2),e(n_ex2),mat(n_ex2,n_ex2),param(n_ex2), &

parerr(n_ex2),wspac1(n_ex2),wspac2(n_ex2),wspace(n_ex2,9))
Write (nout,*)
Write (nout,*)
Write (nout,*) ’Case 2’
Write (nout,*)

! h: step size estimate,
! param: initial parameter estimates,
! parerr: Newton iteration tolerances,
! soler: bound on the local error.

Read (nin,*) h
Read (nin,*) param(1:n1_ex2)
Read (nin,*) parerr(1:n1_ex2)
Read (nin,*) soler
e(1:n_ex2) = soler

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d02agf(h,e,parerr,param,c,n_ex2,n1_ex2,m1,aux2,bcaux2,raaux2, &

prsol2,mat,dummy,wspace,wspac1,wspac2,ifail)

Write (nout,*) ’Final parameters’
Write (nout,99999)(param(i),i=1,n_ex2)
Write (nout,*)
Write (nout,*) ’Final solution’
Write (nout,*) ’X-value Components of solution’
Call raaux2(x,x1,r,param)
h = (x1-x)/5.0E0_nag_wp
xx = x
Do i = 1, 6

Write (nout,99998) xx, (c(i,j),j=1,n_ex2)
xx = xx + h

End Do

Return

99999 Format (1X,3E16.6)
99998 Format (1X,F7.0,3E13.4)

End Subroutine ex2
End Program d02agfe

10.2 Program Data

D02AGF Example Program Data
6 : m1
0.1 : h
0.2 0.0 : param
1.0E-5 1.0E-3 : parer
1.0E-4 : soler

6 : m1, n, n1
1.0E1 : h
3.2E1 6.0E3 5.4E-1 : param
1.0E-5 1.0E-4 1.0E-4 : parer
1.0E-2 : soler

D02AGF NAG Library Manual

D02AGF.12 Mark 26

10.3 Program Results

D02AGF Example Program Results

Case 1

Final parameters
0.464269E-01 0.349429E-02

Final solution
X-value Components of solution

0.10 0.1025E+00 0.1734E-01
3.28 0.1217E+00 0.4180E-02
6.46 0.1338E+00 0.3576E-02
9.64 0.1449E+00 0.3418E-02

12.82 0.1557E+00 0.3414E-02
16.00 0.1667E+00 0.3494E-02

Case 2

Final parameters
0.323729E+02 0.596317E+04 -0.535231E+00

Final solution
X-value Components of solution

0. 0.0000E+00 0.5000E+03 0.5000E+00
1193. 0.5298E+03 0.4516E+03 0.3281E+00
2385. 0.8076E+03 0.4203E+03 0.1231E+00
3578. 0.8208E+03 0.4094E+03 -0.1032E+00
4771. 0.5563E+03 0.4200E+03 -0.3296E+00
5963. 0.0000E+00 0.4500E+03 -0.5352E+00

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 2 4 6 8 10 12 14 16

So
lu

ti
on

 a
nd

 D
er

iv
at

iv
e

x

Example Program 1
Parameterized Two-point Boundary-value Problem

solution y(x)

derivative y’(x) param(2)

D02 – Ordinary Differential D02AGF

Mark 26 D02AGF.13

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 1000 2000 3000 4000 5000 6000
-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

H
ei

gh
t

an
d

V
el

oc
it

y

A
ng

le

x

Example Program 2
Find Gravitational Constant and Range given Projectile Terminal Velocity

height

velocity

angle

D02AGF NAG Library Manual

D02AGF.14 (last) Mark 26

	D02AGF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	H
	E
	PARERR
	PARAM
	C
	N
	N1
	M1
	AUX
	F
	Y
	X
	PARAM

	BCAUX
	G0
	G1
	PARAM

	RAAUX
	X0
	X1
	R
	PARAM

	PRSOL
	PARAM
	RES
	N1
	ERR

	MAT
	COPY
	WSPACE
	WSPAC1
	WSPAC2
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Fortran Library Manual, Mark 26.1
	Copyright Statement
	Foreword
	Introduction
	How to Use the NAG Library and its Documentation
	Mark 26.1 NAG Fortran Library News
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Code Contributors
	Support from NAG
	Index

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Contents
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Contents
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Contents
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Contents
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Contents
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Contents
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Contents
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Contents
	D02 Chapter Introduction
	D02M-N Sub-chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Contents
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Contents
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Contents
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Contents
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Contents
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Contents
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Contents
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Contents
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Contents
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Contents
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Contents
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Contents
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Contents
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Contents
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Contents
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Contents
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Contents
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Contents
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Contents
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Contents
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Contents
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Contents
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Contents
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Contents
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Contents
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Contents
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Contents
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Contents
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Contents
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Contents
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Contents
	G13 Chapter Introduction

	G22 - Linear Model Specification
	G22 Chapter Contents
	G22 Chapter Introduction

	H - Operations Research
	H Chapter Contents
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Contents
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Contents
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Contents
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Contents
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Contents
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Contents
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Contents
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Contents
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Contents
	X07 Chapter Introduction

